Traefik APl
Gateway for
Microservices

With Java and Python Microservices
Deployed in Kubernetes

Rahul Sharma
Akshay Mathur

ApPress’

Traefik AP| Gateway
for Microservices

With Java and Python
Microservices Deployed
in Kubernetes

Rahul Sharma
Akshay Mathur

Apress’

Traefik API Gateway for Microservices

Rahul Sharma Akshay Mathur
Patpargunj, Delhi, India Gurgaon, Haryana, India
ISBN-13 (pbk): 978-1-4842-6375-4 ISBN-13 (electronic): 978-1-4842-6376-1

https://doi.org/10.1007/978-1-4842-6376-1

Copyright © 2021 by Rahul Sharma, Akshay Mathur

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi

Development Editor: Laura Berendson

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6375-4. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6376-1

To our families, for all the personal time spent on this book

Table of Contents

About the AUtNOrS.....ccciussssmmmmmssssssnmsssssssnmsssssssnsssssnssnsssssnnnnsssssnnnnnsssnnns ix
About the Technical REVIEWETccuussesrssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss Xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
INtroductionccccumssssennmmssssnnnnsssssnsnnnssssnnnnsssssnnnnssssnnnnnssssnnnnnnssnnnnnnnssn XV
Chapter 1: Introduction to Traefik.......cccussemmmssssmnnmmssssnsnmsssssnnnssssssnnnsess 1
Microservice ArChiteCIUNEuvcrreririsn s 3
AGIIIEY.cucvrereeerrereesrse s s 6
INNOVALION....c.cvicc e ———— 6
RESIIBNCEceerere et se e e e 7
SCAUADIIILY ...ceveerrrerresrre e ————————— 7
Maintain@bilityccorurerenienrrenerne s ———————— 8
N-Tier DEPIOYMENTcve vt r e e 9
Four-Tier DeplOYMENt.........ccovvrverernrerierere e s s e s ssesessesaesaes 12
Gateway CharaCteriStiCSuvvvrrrrererrrerrere s enes 14
Application Layer ProtoCoIS........c.ccuvvveriniennennenienses e sesses s sessessssssessesnas 14
Dynamic Configurationc.ccveevevennensenienssensersese s s e s e ssesesesaesaes 16
ODSEIVADIIILY.....ceverrerererreresersere e se s e e s e s e e s s sr e e s s aesrese e e s e eneees 18

TLS termin@tionccovveennerrnsie s 19
Other FEAtUrES........covicrcr s 20

TABLE OF CONTENTS

TrACTIK vt e 21
INSEANALION.......coviiecce e —————————— 23
Traefik COmMmMAaNM LiNe........ccooriimninrrsssesese s sssenens 24
TrABTIK APt 26
Traefik DashDO@rdccccovrnirnner e 28

1] 4= 7 29

Chapter 2: Configure Traefik......cccussssmmrmsssnnsesssssnnnsssssnnnsesssssnnssssssnnnnss 31

Configuration TOPICS......coveerererererererere e 31

Introduction to Sample Web Service........c.ccvvnvninnnnnnnensssese e 32

Traefik Configuration............ccuvvernesennsesne s 35
ENTrYPOINTS ..o s 36
1010 -] 3SR 43

R =] T 50
MiIAAIBWATE........coerirriiiii s 58

1] 04 7 65

Chapter 3: Load BalanCing........cussssssessssnsssansssassssassssnsssassssassssnsssansssans 67

HTTP Lo@d BaIANCETcoveeerereereerieeresee e 68
(210101 o 20] TR 69
Weighted Round RODINcocovciieniinne s sss e s 77
T 0] 11 o OSSOSO 83

I ST TSR 86
(210101 o 20] T 87
Weighted Round RODIN ..o sessesnens 90

UDP SEIVICE ...cveeeereeerreerreesesese s sessese s ses e sese s sessenenns 92
(210101 o 20 o] T 93
Weighted Round RODINcccoveerierenerssersese e sessesennnnens 96

SUMMANY....eiiirrcsere s e e p e e 97

TABLE OF CONTENTS

Chapter 4: Configure TLSccccvumssnmnnmmssssnsnmsssssssssssssssssssssssssssssssnnnnes 99
QUICK OVErVIEW OF TLScoveeeerererereseseeseese s ssssssssssesssesesesesessssssssasanas 99
TLS Termination at Traefik.........ccoveeerrenerenernrcrnese e 102

Exposing MongoDB Route on TLS.........cccocvinvnnnnncne s sesennens 103
Let’s Encrypt Automatic Certificate Provisioning...........cccoevvnvniernnensenienne, 107
Provisioning TLS Certificates for Public TCP Endpoints...........cccoeevviniennens 108
Secure Traefik Dashboard oVer TLS..........cocovrirereneresc e 114
Traefik for TLS FOrwarding.........coouecevererenernsesessesessesesessesesesessssessesesessssesssnens 121
SUMMANY....ceivierieesesese e r e e pe e e 125
Chapter 5: Logs, Request Tracing, and Metricscccennmsssnnnnnsssanns 127
PrerEQUISITES ...evrerererirer st e e e 129
Traefik Configurationccccve v 133
L TET 12 00 S 135
ACCESS LOGS.....eiieeriririe st rre e r e s s e s sn e s s n e e 137
[T J 310 1110 R 143
3] T 413 (13 RO 145
L0 ey [T o 147
113 P2 |74] 4 148
INtegrate ZipKinccccvveverierirse s 150
Traefik MEIIICScoeeeeerceere s 154
Configure PrometheuS.........cccoreeereccrnce st 155
SUMIMANY....eeeerercreree e re e e s s e e ne e e 158

Chapter 6: Traefik for MiCroS@rvicescccsrmsssmnnnmssssannssssssnnnnssssnnns 159

Pet-Clinic APPliCation........cccccvevririenernsere s 162
Application Configurationcccvvrininninn e 164
Consul SErvice REGISIIYccovrerrresernsmsrssesessse s sessesssssessnses 165

vii

TABLE OF CONTENTS

DEPIOY PET-ClINIC ...ccvecererrererierrereresessesessessssessessesassesessesasssssessessessssensessens 167
PE-ClINIC Ul......ovreiriririrrrerisesesese s 171
Configure GALBWAY.........cccvvererirernierire st s 173
Service Details.........ccoviieinnr e ———— 177
CIrCUIL BrE@KETceerererrerereseressss s se s ses s 179
REIMIES ... 182
11 (0] 1o SR 185
Canary DeployMENTScocvcvvererererrerere s s saeses e saesaes 188
SUMMAIY....citiiiire e bbb b e s ae e e e e nne s 190
Chapter 7: Traefik as Kubernetes INgress.....ccuuuseeeemmmsrsssssssssssssnnnnnas 191
Traefik as Kubernetes Ingress CONtroller.........c.uovveeernserensenesesessssesessesessnnens 191
Installation of Traefik on KUDEINELesccovernenmnesernsennesen e 194
Installing the bookinfo Applicationc.ccccvvririnnsnsne e 204
Installing Traefik With Helm..........ccocrivrrrcnrr e 209
Exploring Traefik Helm Chartccoccvvrevninini e sesennens 211
Local InStallation ... 217
Exposing the bookinfo ReVIEWS SEIVICE.........ccvierrrerrerieresensensenesessensenaens 222
Configure Request Tracing With JABJETcccvververiererersersereressessesessesessessensens 228
Setup Traefik on DigitalOcean Kubernetes Cloud...........ccveerverrrerreriererensensensens 234
TLS Termination on Kubernetes via Let’s Encrypt Certificates...........ceernens 237
TLS Certificate Limitations with Multiple Traefik Instances..........ccoceeveernns 243
SUMMAIY..c..citiirire e s e e e b s p e e R r e e e nne s 245
11 - 247

viii

About the Authors

Rahul Sharma is a seasoned Java developer
with over 15 years of industry experience.

In his career, he has worked with companies
of various sizes, from enterprises to start-
ups. During this time, he has developed and
managed microservices on the cloud (AWS/
GCE/DigitalOcean) using open source

software. He is an open-source enthusiast and
shares his experience at local meetups.
He has co-authored Java Unit Testing with JUnit 5 (Apress, 2017) and
Getting Started with Istio Service Mesh (Apress, 2019).

Akshay Mathur is a software engineer with
N 15 years of experience, mostly in Java and web
technologies. Most of his career has been spent
building B2B platforms for enterprises, dealing
with concerns like scalability, configurability,
multitenancy, and cloud engineering. He has
hands-on experience implementing and
operating microservices and Kubernetes in
these ecosystems. Currently, he enjoys public

speaking and blogging on new cloud-native

technologies (especially plain Kubernetes) and

effective engineering culture.

ix

About the Technical Reviewer

Brijesh is currently working as a lead
consultant. He has more than ten years of
experience in software development and
providing IT solutions to clients for their
on-premise or cloud-based applications,
spanning from monoliths to microservice-

based architecture.

Acknowledgments

This book would not have been possible without the support of many
people. Iwould like to take this opportunity and express my gratitude to
each of them.

I'would like to thank Divya Modi for believing in the project and
making it work. She has been instrumental in starting the project.
Moreover, during the project, her editorial support provided a constant
push throughout the process. It would have been difficult to deliver the
project without your support.

I'would like to thank Celestin Suresh John for providing me this
wonderful opportunity. Your guidance made sure that we got the correct
path outlined from the start.

I'would like to thank Brijesh Pant and Laura C. Berendson for sharing
valuable feedback. Your advice has helped to deliver the ideas in a better
manner.

I'would also like to thank my co-author Akshay Mathur for his
knowledge and support. Your experience and willingness have made this
a successful project. The brainstorming sessions we had helped to express
the ideas.

I wish to thank my parents, my loving and supportive wife, Swati,
and my son, Rudra. They are a constant source of encouragement and
inspiration. Thanks for providing the time and listening to my gibberish
when things were not working according to the plan.

Lastly, I would like to thank my friends, who have been my source
of knowledge. The discussion we had often helped me to deliberate on
various topics. Often our debates have provided the testbed for evaluations.

—Rahul Sharma

xiii

ACKNOWLEDGMENTS

I'd like to express my gratitude to my co-author Rahul Sharma for
bringing me on board this project. While we had discussed the possibility,
the actual opportunity still came suddenly, and I'd like to thank him for
his guidance through the process. It was as fun and nerve-wracking as I'd
envisioned, and he had my back the whole way as I channeled my inner
Douglas Adams and (to borrow from a great man) enjoyed the sound of
deadlines whooshing by.

Divya Modi was a constant source of support and encouragement.
She gently helped us stay on track and was a picture of calm and
confidence, helping us get to completion. And still entertained multiple
last-minute requests as I kept tweaking the title.

To our reviewers, Brijesh Pant and Laura C. Berendson, thank you for
all the constructive feedback in making this book better.

I'd also like to thank my ever-patient family, especially my mother, my
wife, Neha, and my daughter, Inara, who kept wondering when I would
actually be done and free to talk to them, as I kept fiddling till the last
minute and repeating, “Almost there!”

I'm grateful to the two mentors who pulled me up to the level of
authoring a book—Aditya Kalia and Shekhar Gulati.

Finally, our gratitude to the Traefik team for releasing an excellent
product to the community. We hope this book helps in any small way to
drive further adoption.

—Akshay Mathur

Xiv

Introduction

Microservice architecture has brought dynamism to the application
ecosystem. New services are built and deployed while older ones are
deprecated and removed from the enterprise application estate. But
front-end load balancers haven’t been able to adapt to the components
in the enterprise architecture. Most current load balancers have a static
configuration. They require configuration updates as the application
landscape changes. Thus, there are operational complexities when
working with microservices. These are a few of the challenges of getting
a microservices-based solution to work. The dynamic nature of the
ecosystem requires dynamic tools that can autoconfigure themselves.

Traefik bases its foundations on the dynamic nature of the
Microservice architecture. It has built first-class support for service
discovery, telemetry, and resiliency. It is a modern HTTP reverse proxy
and load balancer that eases microservices deployment. Its integration has
been great, with many existing tools.

The book covers Traefik setup, basic workings, and integration with
microservices. It is intended for developers, project managers, and DevOps
personnel interested in solutions for their operational challenges.

The book is not specific to any programming language, even though all
the examples use Java or Python.

CHAPTER 1

Introduction to Traefik

Over the last couple of years, microservices have become a mainstream
architecture paradigm for enterprise application development. They have
replaced the monolithic architecture of application development, which
was mainstream for the past couple of decades. Monolithic applications
are developed in a modular architecture. This means that discrete logic
components, called modules, are created to segregate components based
on their responsibility. Even though an application consisted of discrete
components, they were packaged and deployed as a single executable.
Overall, the application has very tight coupling. Changes to each of these
modules can’t be released independently. You are required to release a
complete application each time.

A monolithic architecture is well suited when you are building
an application with unknowns. In such cases, you often need quick
prototyping for every feature. Monolithic architecture helps in this case,
as the application has a unified code base. The architecture offers the
following benefits.

e Simple to develop.

o Simple to test. For example, you can implement end-
to-end testing by launching the application and testing
the UI with Selenium.

e Simple to deploy. You only have to copy the packaged
application to a server.

© Rahul Sharma, Akshay Mathur 2021
R. Sharma and A. Mathuy, Traefik API Gateway for Microservices,
https://doi.org/10.1007/978-1-4842-6376-1_1

https://doi.org/10.1007/978-1-4842-6376-1_1#DOI

CHAPTER 1 INTRODUCTION TO TRAEFIK

o Simple to scale horizontally by running multiple copies
behind a load balancer.

In summary, you can deliver the complete application quickly in these
early stages. But as the application grows organically, the gains erode. In
the later stages, the application becomes harder to maintain and operate.
Most of the subcomponents get more responsibility and become large
subsystems. Each of these subsystems needs a team of developers for its
maintenance. As a result, the complete application is usually maintained
by multiple development teams. But the application has high coupling,
so development teams are interdependent while making new features
available. Due to a single binary, the organization faces the following set of

issues.

e Quarterly releases: Application features take more
time to release. Most of the time, an application feature
needs to be handled across various subsystems. Each
team can do their development, but deployment
requires the entire set of components. Thus, teams can
seldom work independently. Releases are often a big
coordinated effort across different teams, which can be
done only a couple of times per period.

o Deprecated technology: Often, when you work with
technology, you must upgrade it periodically. The
upgrades make sure all vulnerabilities are covered.
Application libraries often require frequent upgrades
as they add new features as well. But upgrading the
libraries in a monolith is difficult. A team can try to use
the latest version, but often needs to make sure that the
upgrade does not break other subsystems. In certain
situations, an upgrade can even lead to a complete
rewrite of subsystems, which is a very risky undertaking
for the business.

CHAPTER 1 INTRODUCTION TO TRAEFIK

o Steep learning curve: Monolithic applications often
have alarge code base. But the individual developers
are often working on a very small subset of the
codebase. At first glance, the lines of code create a
psychological bottleneck for developers. Moreover,
since the application is tightly coupled, developers
usually need to know how others invoke the code.
Thus, the overall onboarding time for a new developer
islarge. Even the experienced developers find it
hard to make changes to modules that have not been
maintained well. This creates a knowledge gap that
widens over time.

e Application scaling: Typically, a monolithic
application can only be scaled vertically. It is possible
to scale the application horizontally, but you need to
determine how each subsystem maintains its internal
state. In any case, the application requires resources for
all subsystems. Resources can’t be selectively provided
to subsystems under load. Thus, it is an all-or-nothing
scenario with a monolithic application. This is often a
costly affair.

When faced with challenges, organizations look for alternative
architectures to address these issues.

Microservice Architecture

Microservice architecture is an alternative to the monolithic architecture
(see Figure 1-1). It converts the single application to a distributed system
with the following characteristics.

CHAPTER 1

INTRODUCTION TO TRAEFIK

Services: Microservices are developed as services that
can work independently and provide a set of business
capabilities. A service may depend on other services

to perform the required functionality. Independent
teams can develop each of these services. The teams
are free to select and upgrade the technology they need
for their service. An organization often delegates full
responsibility for the services to their respective teams.
The teams must ensure that their respective service
runs as per the agreed availability and meets the agreed
quality metrics.

Business context: A service is often created around

a business domain. This makes sure that it is not too
fine-grained or too big. A service needs to answer

first if it is the owner of the said business function or
the consumer of the function. A function owner must
maintain all the corresponding function data. If it
needs some more supporting function, it may consume
the same from another service. Thus determining
business context boundaries helps keep a check on

the service dependencies. Microservices aim to build

a system with loose coupling and high cohesion
attributes. Aggregating all logically related functionality
makes the service an independent product.

Application governance: In enterprise systems,
governance plays an important role. You rarely want
to make systems that are difficult to run. Due to this,
a governance group keeps check on the technologies
used by developers so that the operations team can
still run the system. But microservice architecture
provides the complete ownership to the respective

CHAPTER 1 INTRODUCTION TO TRAEFIK

teams. The ownership is not limited to development.

It also delegates service operations. Due to this, most
organizations must adopt DevOps practices. These
practices enable the development teams to operate and
govern a service efficiently.

e Automation: Automation plays an important role in
microservices. It applies to all forms like infrastructure
automation, test automation, and release automation.
Teams need to operate efficiently. They need to test
more often and release quickly. This is only possible
if they rely more on machines and less on manual
intervention. Post-development manual testing is a
major bottleneck. Thus, teams often automate their
testing in numerous ways like API testing, smoke
testing, nightly tests, and so forth. They often perform
exploratory testing manually to validate the build.
Release and infrastructure preparation is often
automated by using DevOps practices.

Monolith

Architecture Microservices Architecture

Figure 1-1. Monolith vs. microservices

CHAPTER 1 INTRODUCTION TO TRAEFIK

In summary, a monolith has a centralized operating model. This
means that all code resides in one place; everyone uses the same
library, releases happen simultaneously, and so forth. But on the other
end, microservices is a completely decentralized approach. Teams
are empowered to make the best decisions with complete ownership.
Adopting such an architecture not only asks for a change in software
design, but it also asks for a change in organizational interaction.
Organizations reap the following benefits of such application design.

Agility

This is one of the biggest driving factors for an organization adopting the
microservices architecture. Organizations become more adaptive, and
they can respond more quickly to changing business needs. The loose
coupling offered by the architecture allows accelerated development.
Small, loosely coupled services can be built, modified, and tested
individually before deploying them in production. The model dictates
small independent development teams working within their defined
boundaries. These teams are responsible for maintaining high levels of
software quality and service availability.

Innovation

The microservice architecture promotes independent small development
teams supporting each service. Each team has ownership within their
service boundary. They are not only responsible for development but also
for operating the service. The teams thus adopt a lot of automation and
tools to help them deliver these goals. These high-level goals drive the
engineering culture within the organization.

CHAPTER 1 INTRODUCTION TO TRAEFIK

Moreover, development teams are usually well aware of the
shortcomings of their services. Such teams can address these issues using
their autonomous decision-making capability. They can fix the issues and
improve service quality frequently. Here again, teams are fully empowered
to select appropriate tools and frameworks for their purpose. It ultimately
leads to the improved technical quality of the overall product.

Resilience

Fault isolation is the act of limiting the impact of a failure to a limited
subsystem/component. This principle allows a subsystem to fail as long
as it does not impact the complete application. The distributed nature of
microservice architecture offers fault isolation, a principal requirement
to build resilient systems. Any service which is experiencing failures
can be handled independently. Developers can fix issues and deploy
new versions while the rest of the application continues to function
independently.

Resilience, or fault tolerance, is often defined as the application’s
ability to function properly in the event of a failure of some parts.
Distributed systems like microservices are based on various tenets
like circuit breaking, throttling to handle fault propagation. This is an
important aspect; if done right, it offers the benefits of a resilient system.
But if this is left unhandled, it leads to frequent downtime due to failures
cascading. Resilience also improves business agility as developers can
release new services without worrying about system outages.

Scalability

Scalability is defined as the capability of a system to handle the growth
of work. In a monolith, it is easy to quantify the system scalability.

In a monolithic system, as the load increases, not all subsystems get
proportionally increased traffic. It is often the case that some parts of the

CHAPTER 1 INTRODUCTION TO TRAEFIK

system get more traffic than others. Thus, the overall system performance
is determined by a subset of the services. It is easier to scale a monolithic
system by adding more hardware. But at times, this can also be difficult as
different modules may have conflicting resource requirements. Overall an
overgrown monolith underutilizes the hardware. It often exhibits degraded
system performance.

The decoupling offered by microservices enables the organization
to understand the traffic that each microservice is serving. The
divide and conquer principle helps in improving the overall system
performance. Developers can adopt appropriate task parallelization
or clustering techniques for each service to improve the system
throughput. They can adopt appropriate programming languages and
frameworks, fine-tuned with the best possible configuration. Lastly,
hardware can be allocated by looking into service demand rather than
scaling the entire ecosystem.

Maintainability

Technical debt is a major issue with monolithic systems. Overgrown
monoliths often have parts that are not well understood by the complete
team. Addressing technical debt in a monolith is difficult as people often
fear of breaking any of the working features. There have been cases where
unwanted dead code was made alive by addressing technical debt on a
particular monolith.

Microservice architecture helps to mitigate the problem by following
the principle of divide and conquer. The benefits can be correlated with
an object-oriented application design where the system is broken into
objects. Each object has a defined contract and thus leads to improved
maintenance of the overall system. Developers can unit test each of
the objects being refactored to validate the correctness. Similarly,
microservices created around a business context have a defined contract.
These loosely coupled services can be refactored and tested individually.

CHAPTER 1 INTRODUCTION TO TRAEFIK

Developers can address the technical debt of the service while validating
the service contract. Adopting microservices is often referred to as a
monolith’s technical debt payment.

You have looked at the advantages of Microservice architecture. But
the architecture also brings a lot of challenges. Some challenges are due to
the distributed nature of the systems, while others are caused by diversity
in the application landscape. Services can be implemented in different
technologies and scaled differently. There can be multiple versions of the
same service serving different needs. Teams should strategize to overcome
these challenges during application design and not as an afterthought.
Application deployment is one such important aspect. Monoliths have
been deployed on a three-tier model. But the same model does not work
well with microservices. The next section discusses the changes required
in the deployment model.

n-Tier Deployment

n-tier deployment is a design implementation where web applications

are segregated into application presentation, application processing, and
data management functions. These functions are served by independent
components known as tiers. The application tiers allow segregation of
duties. All communication is linear across the tiers. Each tier is managed
by its own software subsystem. The n-tier deployment offers the benefit of
improved scalability of the application. Monolithic applications are usually
deployed as three-tiers (see Figure 1-2) applications.

o Presentation tier: This tier is responsible for serving
all static content of the application. It is usually
managed by using web servers like Apache, Nginx, and
IIS. These web servers not only serve applications static
Ul components but also handle dynamic content by
routing requests to the application tier. Web servers

CHAPTER 1

10

INTRODUCTION TO TRAEFIK

are optimized to handle many requests for static

data. Thus, under load, they perform well. Some of
these servers also provide different load balancing
mechanisms. These mechanisms can support multiple
nodes of the application tier.

Application tier: This tier is responsible for providing
all processing functions. It contains the business
processing logic to deliver the core capabilities of an
application. The development team is responsible for
building this in a suitable technology stack like Java,
Python, and .NET. This tier is capable of serving a

user request and generating an appropriate dynamic
response. It receives requests from the presentation
tier. To serve the request, the application tier may need
additional data to interact with the data tier.

Data tier: This tier provides capabilities of data storage
and data retrieval. These data management functions
are outside the scope of the application. Thus, an
application uses a database to fulfill these needs. The
data tier provides data manipulation functions using an
API. The application tier invokes this API.

CHAPTER 1 INTRODUCTION TO TRAEFIK

1

l

Presentation Tier

|
l l

Application Application
Tier Tier

Figure 1-2. Three-tier

There are many benefits to using a three-layer architecture, including
scalability, performance, and availability. You can deploy the tiers on
different machines and can use the available resources in an optimized
manner. The application tier delivers most of the processing capability.
Thus, it needs more resources. On the other hand, the web servers serve
static content and do not need many resources. This deployment model
improves application availability by having different replication strategies
for each tier.

11

CHAPTER 1 INTRODUCTION TO TRAEFIK

Four-Tier Deployment

The three-tier deployment works in line with monolith applications.

The monolith is usually the application tier. But with microservices, the
monolith is converted into several services. Thus the three-tier deployment
model is not good enough to handle microservice architecture. It needs
the following four-tier deployment model (see Figure 1-3).

o Content delivery tier: This tier is responsible for
delivering the content to the end user. A client can use
an application in a web browser or on a mobile app. It
often asks for making different user interfaces targeted
across different platforms. The content delivery tier is
responsible for ensuring that the application Ul is working
well on these different platforms. This tier also abstracts
the services tier and allows developers to quickly develop
new services for the changing business needs.

o Gateway tier: This tier has two roles.

¢ Dynamically discover the deployed services and
correlate them with the user request

« Route requests to services and send responses

For each request, the gateway layer receives data from all
the underlying services and sends back a single aggregated
response. It has to handle different scenarios like role-based
access, delayed responses, and error responses. These
behaviors make it easier for the service tier. The service tier
can focus only on the business requirements.

o Services tier: This tier is responsible for providing all
business capabilities. The services tier is designed for
a microservices approach. This tier provides data to its
clients without concern for how it is consumed. The

12

CHAPTER 1 INTRODUCTION TO TRAEFIK

clients can be other services or application UI. Each of
the services can be scaled based on their requests load
pattern. The clients have the responsibility to determine
the new instances. All of this enables a pluggable
approach to the application ecosystem. New services
can be built by consuming existing services. They can
be readily integrated into the enterprise landscape.

o Data tier: This tier provides capabilities of data storage
and data retrieval. Data management capabilities are
still beyond the application scope. But each service has
an exclusive data management infrastructure. It can be
DBMS like MySQL or a document store like Mongo.

]
1 9

Gateway Tier

Service 1 i‘ Service 2 E‘ Service 3 i‘ Service 4 i‘

i Data Tier i Data Tier a

Figure 1-3. Four-tier

13

CHAPTER 1 INTRODUCTION TO TRAEFIK

The four-tier architecture (see Figure 1-3) was pioneered by early
microservices adopters like Netflix, Amazon, and Twitter. At the center
of the paradigm, the gateway tier is responsible for binding together
the complete solution. The gateway needs a solution that can link the
remaining tiers together so all of them can communicate, scale, and
deliver. In the three-tier architecture, the presentation tier had webservers
that can be adopted for the gateway tier. But first, you should determine
the characteristics required to be a gateway tier solution.

Gateway Characteristics

A gateway is the point of entry for all user traffic. It is often responsible for
delegating the requests to different services, collate their responses, and
send it back to the user. Under microservice architecture, the gateway must
work with the dynamic nature of the architecture. The following sections
discuss the different characteristics of the gateway component.

Application Layer Protocols

The OSI networking model handles traffic at Layer 4 and Layer 7. Layer 4
offers only low-level connection details. Traffic management at this layer
can only be performed using a protocol (TCP/UDP) and port details. On
the other hand, Layer 7 operates at the application layer. It can perform
traffic routing based on the actual content of each message. HTTP is one of
the most widely used application protocols. You can inspect HTTP headers
and body to perform service routing.

Layer 7 load balancing enables the load balancer to make smarter
load-balancing decisions. It can apply various optimizations like
compressions, connection reuse, and so forth. You can also configure
buffering to offload slow connections from the upstream servers to
improve overall throughput. Lastly, you can apply encryption to secure our
communication.

14

