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Preface

My interest in mechanics was stimulated by my Scout Master Henry Layton when I
was a Boy Scout. Henry was a mechanical engineer and a patent examiner who
helped us build mini-bikes using bicycle parts and lawn mower engines. During my
teenage years I bought a Craftsmen tool set at Sears and Roebuck, which I used to
work on my cars and motorcycles. At the University of Colorado in Boulder, where
I did my undergraduate degree in Mechanical Engineering, I learned that mathe-
matics, vectors and tensors are the tools that I needed to truly understand the
fundamentals of mechanics. Fortunately at Boulder, Prof. Frank Essenburg and
Prof. William Wainwright helped me develop analytical skills and physical thinking
needed to deepen my knowledge. They both encouraged me to continue my studies
for a Ph.D. in applied mechanics after I graduated in December 1972.

I applied to the University of California at Berkeley and was accepted in the
Department of Mechanical Engineering as a graduate student in applied mechanics.
During my last semester at Boulder I took a course in continuum mechanics from a
fluid mechanics professor who, unfortunately, really couldn’t explain the deep
physics of continuum mechanics. This caused me to change my major to bio-
engineering when I arrived at Berkeley for the fall quarter of 1973. However, I
enrolled in a continuum mechanics course taught by Prof. Paul Naghdi who was
clear, rigorous and explained the physical foundations. I thought then that if I
studied bioengineering I would not know enough biology to formulate a problem
and I would not know enough engineering to solve it. Consequently, I returned to
applied mechanics and was truly fortunate to have Paul as a thesis advisor. Through
my research, I have continued my interest in bioengineering. In my opinion, this
interdisciplenary field requires experts from different fields to communicate and
interact to make real progress.

Paul was a critical thinker who had the unique ability to read something that he
had written as if he were an objective expert reading it for the first time. This talent
helped him identify flaws in traditional approaches and create new ideas and for-
mulations. My numerous discussions with Paul, both as a graduate student and as a
colleague, challenged me and helped me develop as an independent researcher. I am
immensely indebted to Paul for investing so much time to inspire and shape me as a
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researcher in continuum mechanics. Later I learned that both Frank Essenburg and
William Wainwright were students of Paul so it is not surprising that I was attracted
to Paul’s lectures at Berkeley.

In August of 1979 I began work as a research engineer at SRI International.
During my job interview I was told that as a theoretician I have to be willing to do
experiments. At SRI, I was aided by a team of excellent technicians who taught me
about many experimental problems as I acted as the supervisor of experiments. This
exposure gave me a great appreciation for the difficulties of doing a good experi-
ment, which has helped put a more physical perspective on my research over the
years.

In October 1982 I moved to Israel with my wife Laurel to join the Faculty of
Mechanical Engineering at Techion—Israel Institute of Technology, where I have
spent my entire academic career, retiring as a Professor Emeritus in October 2019.
I developed a friendship and working relationship with my senior colleague Prof.
Sol Bodner, who was an experienced engineer with interests in both theory and
experiments. My numerous discussions with Sol exposed me to the field of vis-
coplasticity and taught me how to think more physically about material response.
I am also very much indebted to Sol for investing so much time in my development.

I have been teaching the course Introduction to Continuum Mechanics at
Technion since the spring semester of 1983. The course and this book are based on
the lecture notes of Paul Naghdi at Berkeley. Details of the presentation of this
material have changed over the years as my understanding of continuum mechanics
evolved due to my research and interactions with students, graduate students and
colleagues, especially Prof. Eli Altus, with whom I had many discussions. During
the first meeting of this course, I tell the students that continuum mechanics is a
deep subject and that I am still learning after having been an active researcher in
continuum mechanics for over 40 years. In my opinion, continuum mechanics is a
theoretical umbrella for almost all of engineering because the thermomechanical
theory applies to a broad range of solid materials (elastic, elastic–inelastic, elastic–
viscoelastic) and fluid materials (gases, inviscid, viscous and viscoelastic liquids).
Continuum mechanics provides a theoretical framework to ensure that we don’t
make fundamental blunders. However, the true beauty of the field is that we will
always be challenged to use our theoretical expertise and physical intuition to
synthesize experimental data to propose functional forms for constitutive equations
that describe new important features of material response that needs to be modeled.

My experience has also been enriched by having been a regular Visiting Faculty
at Lawrence Livermore National Laboratory (LLNL) since 1985. Dr. Lewis Glenn
and Dr. Willy Moss were my first boss and colleague, respectively, at LLNL. Over
the years I have had the opportunity to work with a number of very talented
researchers at LLNL who have contributed to some of the constitutive equations
presented in this book. At LLNL, I was exposed to the field of shock physics in
geological materials which challenged me to develop specific functional forms for
strongly coupled thermomechanical response that can be used to match experi-
mental data. The exposure to real problems and the ability to work with excellent
computational mechanics people at LLNL has enriched my ability to think
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physically. Often I would have a number of ideas why the simulations using the
constitutive equations for a particular material do not match experimental data. In
working with my colleagues at LLNL I realized that it is important to find the
simplest way to “hack” the computer code to test an idea to see if it really makes a
difference. Once the ideal that makes a difference has been identified, then it is
necessary to develop the constitutive equations rigorously. It remains a challenge to
ensure that the “hack” is removed and the rigorous equations have been programed.

In addition, at LLNL I learned the importance of numerical algorithms. This has
particular relevance for the development of constitutive equations. Theoreticians
can often propose different functional forms which model the same limiting cases.
When working with computational mechanics it is important to choose those
functional forms for modeling a specific material response which have the correct
limits but also simplify the numerical algorithm.

I am also indebted to my colleague and friend Prof. Mahmood Jabareen in the
Faculty of Civil and Environmental Engineering at Technion. His computational
mechanics expertise was essential for the transition of the Cosserat Point Element
(CPE) technology from a theoretical concept that I proposed in 1985 to algorithms
that have been implemented in the commercial computer code LS-DYNA. We also
collaborated on a number of papers which have shaped some of the ideas presented
in this book, especially those on physical orthotropic invariants, the formulation of
constitutive equations with a smooth elastic–inelastic transition and growth of
biological materials. My graduate student and Post-Doctoral Fellow Dr. Mahmoud
Safadi learned computational mechanics from Prof. Jabareen which was essential
for his successful implementation of the constitutive equations for growth in the
commercial computer code Abaqus. His expertise was used for simulations in our
joint papers that highlighted the importance of the Eulerian formulation for growth.
In addition, discussions with Dr. Gal Shmuel and Prof. Reuven Segev helped
improve the presentation of the notions of a uniform material, a homogeneous
material and a uniform material state. Prof. Roger Fosdick and Prof. Albrecht
Bertram provided constructive criticism that improved the presentation of invari-
ance under Superposed Rigid Body Motions, especially for constrained materials.
Also, my wife Laurel proofread this book which helped identify and correct a
number of typographical errors.

I am certain that engineers are essential to the future of Israel. Therefore, I am
honored to be a Professor Emeritus from Technion, which is the best engineering
university in Israel. Having taught at Technion makes me feel that I have con-
tributed to the future of Israel through students who have been influenced by my
teaching. In particular, I derive great satisfaction knowing that some of my graduate
students have made significant contributions to the security and economic devel-
opment of Israel. I am sure that I could not attain such personal satisfaction in my
profession having been a professor anywhere else in the world.

I would also like to acknowledge the German Israel Foundation (GIF), the Israel
Science Foundation (ISF) and my Gerard Swope Chair in Mechanics which pro-
vided financial support over the years.
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My research on large deformation inelasticity and on growth of biological
materials has caused me to develop an Eulerian formulation of constitutive equa-
tions for elastic and inelastic response. The important physical feature of the
Eulerian formulation is that it removes arbitrariness of the choice of: a reference
configuration, an intermediate zero-stress configuration, a total deformation mea-
sure and an inelastic deformation measure. The main new features of this book are
the discussion of the importance of the Eulerian formulation and the demonstration
of how it can be used to develop a broad range of specific constitutive equations in
thermomechanics.

Haifa, Israel M. B. Rubin
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Chapter 1
Introduction

Abstract The objective of this introductory chapter is to present an overview of
the contents of this book and to discuss the importance of Eulerian formulations of
constitutive equations. Specifically, simple one-dimensional examples are used to
identify unphysical arbitrariness in the classical Lagrangian formulations of consti-
tutive equations that can and should be removed.

1.1 Content of the Book

Continuum mechanics is concerned with the fundamental equations that describe
the nonlinear thermomechanical response of all deformable media. Throughout this
book, attention is limited to a simple material whose constitutive response does not
depend on higher order gradients of deformation. Although the constitutive equations
are phenomenological and are proposed to model the macroscopic response of mate-
rials, they are reasonably accurate for many studies of micro- and nano-mechanics
where the typical length scales approach, but are still larger than, those of individ-
ual atoms. In this sense, the general thermomechanical theory provides a theoretical
umbrella for most areas of study in mechanical engineering. In particular, continuum
mechanics includes as special cases theories of: solids (elastic, inelastic, viscoelastic,
etc.), fluids (compressible, incompressible, viscous) and the thermodynamics of heat
conduction including dissipation due to inelastic effects.

A number of books have been written which discuss the fundamentals of contin-
uum mechanics [5, 7, 9, 11], the theory of elasticity [1, 12], the theory of plasticity
[2, 3] as well as the thermomechanical theory [18]. The new aspect of this book is its
emphasis on an Eulerian formulation of constitutive equations for elastic materials,
elastic–inelastic materials and growing biological tissues. The standard Lagrangian
formulation of constitutive equations and the need for an Eulerian formulationwill be
discussed in detail from a physical point of view and specific constitutive equations
will be described for different classes of materials.

Apart from this introduction, the material in this book on continuum mechan-
ics is divided into five chapters. Chapter2 develops a basic knowledge of tensor
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2 1 Introduction

analysis using both indicial notation and direct notation. Although tensor opera-
tions in general curvilinear coordinates are needed to express spatial derivatives like
those in the gradient and divergence operators, these special operations required to
translate quantities in direct notation to component forms in special coordinate sys-
tems are merely mathematical in nature. Moreover, details of general curvilinear
tensor analysis unnecessarily complicate the presentation of the fundamental physi-
cal issues in continuum mechanics. Consequently, here attention is mainly restricted
to tensors expressed in terms of constant rectangular Cartesian base vectors to sim-
plify the discussion of spatial derivatives and to concentrate on the main physical
issues. However, an introduction to tensors with respect to curvilinear coordinates is
presented in AppendixF.

Chapter3 develops tools to analyze nonlinear deformation andmotion of continua.
Specifically, measures of deformation and their rates are introduced. Also, the group
of Superposed Rigid Body Motions (SRBM) is introduced for later fundamental
analysis of invariance of constitutive equations under SRBM.

Chapter4 develops the balance laws that are applicable for simple continua, which
are characterized by local measures of deformation. The notion of the stress tensor
and its relationship to the traction vector is developed. Local forms of the equations
of motion are derived from the global forms of the balance laws. Referential forms
of the equations of motion are discussed and the relationships between different
stress measures are developed for completeness, but they are not used in the Eulerian
formulation of constitutive equations. Also, invariance under SRBM of the balance
laws and the kinetic quantities are discussed.

Chapter5 presents an introduction to constitutive theory. Although there is gen-
eral consensus on the kinematics of continua, the notion of constitutive equations for
special materials remains an active area of research in continuummechanics. Specifi-
cally, in these sections the theoretical structure of constitutive equations for nonlinear
anisotropic elastic solids, isotropic elastic solids, viscous and inviscid fluids, viscous
dissipation, elastic–inelastic solids and viscoelastic solids are discussed.

Chapter6 describes thermomechanical processes and the fundamental balance
laws and restrictions of second laws of thermomechanics that control these pro-
cesses. In addition, specific constitutive equations for: thermoelastic materials,
thermoelastic–inelastic materials, orthotropic thermoelastic–inelastic materials,
shock waves, porous materials and growing biological tissues are discussed. Also,
jump conditions for the thermomechanical balance laws are developed.

1.2 Comparison of the Lagrangian and Eulerian
Formulations

Unphysical arbitrariness of the choices of: the reference configuration; a zero-stress
intermediate configuration; a total deformation measure and a plastic deformation
measure has been discussed in a series of papers [15–17]. To simplify the discussion



1.2 Comparison of the Lagrangian and Eulerian Formulations 3

A

B

Fig. 1.1 Response of a homogeneous nonlinear elastic material to homogeneous proportional
loading in shear from a uniform zero-stress material state A to a uniform loaded material state B
with unloading along the same path back to the same uniform zero-stress material state A

= 0

BA = 0

Fig. 1.2 Sketch of the deformation of a homogeneous nonlinear elastic material subjected to
homogenous proportional loading in shear from a uniform zero-stress material state A to a uniform
loaded material state B with unloading along the same path back to the same uniform zero-stress
material state A

of these issues, here attention is limited to the purely mechanical theory at constant
zero-stress reference temperature.

Figure1.1 shows the shear stress τ versus the total shear strain γ for a homo-
geneous nonlinear elastic material subjected to homogeneous proportional loading
from a uniform zero-stress material state A to a uniform loaded material state B
with unloading along the same path to the same uniform zero-stress material state
A. Figure1.2 shows a sketch of the associated deformations.

These figures exhibit the property that a homogeneous nonlinear elastic material
in a uniform zero-stress material state, which is loaded to a deformed state, will
return to its zero-stress shape and volume when unloaded. In this sense the nonlinear
elastic material remembers its zero-stress shape and density. This also suggests that
the response of a homogeneous nonlinear elastic material can be characterized by a
Lagrangian formulation of the constitutive equation in terms of a Lagrangian strain
that measures deformations from a reference configuration with a uniform stress-free
material state and vanishes in this reference configuration.

Figure1.3 shows the shear stress τ versus the total shear strain γ for a homo-
geneous nonlinear elastic–plastic material subjected to homogeneous proportional



4 1 Introduction

Fig. 1.3 Response of a
homogeneous nonlinear
elastic–plastic material to
homogeneous proportional
loading in shear from a
uniform zero-stress material
state A to a uniform loaded
material state B with
unloading along a different
path to a uniform zero-stress
material state C with a
residual total strain γp A

B

C
p

loading from a uniform zero-stress material state A to a uniform loaded material
state B with unloading along a different path to a uniform zero-stress material state
C with a residual total strain γp. Figure1.4 shows a sketch of the associated deforma-
tions. Motivated by the Lagrangian formulation of elastic response, in addition to the
Lagrangian total strain from the reference configuration, it is common to introduce a
plastic deformation (see γp in Fig. 1.3) measured from the reference configuration to
the uniform zero-stress intermediate configuration (see state C in Fig. 1.3). Also, it
is common to define an elastic deformation measure in terms of the total and plastic
deformation measures. In this sense, the plastic deformation measure is a history-
dependent variable that is determined by integrating an evolution equation for its
time rate of change.

Onat [13] discussed physical restrictions on internal state variables. This dis-
cussion proposed that internal state variables, which are determined by integrating
evolution equations over time, are specified to measure properties of the material
response that define the current state of the material. Moreover, since these evolu-
tion equations need initial conditions it is necessary that the values of the internal
state variables be, in principle, measurable directly or indirectly by experiments on
multiple identical samples of the material in its current material state. In this sense,
the material state must be characterized by internal state variables whose values are
measurable in the current state.

From this perspective, it is necessary to ask if the deformation measures that are
used to characterize material response are acceptable internal state variables. For
a homogeneous elastic material, it is common to define the deformation gradient
tensor F from a uniform stress-free reference configuration to the current deformed
configuration to characterize the constitutive equation of the elastic material. For
this elastic material, it follows that since the volume and shape of the material are
unique in any zero-stress material state, F is only known to within an arbitrary proper
orthogonal rotation tensor R in any zero-stress material state. This means that the
zero-stress value of F has arbitrariness due to three orientation angles associated
withR which cannot be determined by experiments on identical samples of the same
material in the current configuration. Consequently, F is not an acceptable internal
state variable in the sense discussed by Onat [13]. For this reason, F should not
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Fig. 1.4 Sketch of the deformation of a homogeneous nonlinear elastic–plasticmaterial subjected to
homogenous proportional loading in shear from a uniform zero-stress material state A to a uniform
loaded material state B with unloading along a different path to a uniform zero-stress material state
C (dashed lines) with a different shape from that in the uniform zero-stress material state A

appear in any constitutive equation for material response, even for nonlinear elastic
materials. However, for the solution of a specific problem it is often convenient
to parameterize the solution using the total deformation gradient F from a known
specified reference configuration. In this sense, it is important to distinguish between
a tensorial measure of elastic deformation from a zero-stress material state and the
total deformation gradient from a specified reference configuration.

The use of F in constitutive equations for elastic–plastic materials is even more
problematic physically. Even if plastic deformations are isochoric, a homogeneous
elastic–plastic material that is loaded from a uniform zero-stress material state has
no unique shape in another uniform zero-stress material state (see the initial state A
and the intermediate state C in Fig. 1.4). This means that only the volumetric part of
F can be determined in a uniform zero-stress material state so there are eight degrees
of arbitrariness in F, three associated with orientation changes and five associated
with distortional deformations. The following statement by Gilman in the discussion
section in [8] refers to this physical arbitrariness.

It seems very unfortunate to me that the theory of plasticity was ever cast into the mold
of stress–strain relations because ‘strain’ in the plastic case has no physical meaning that
is related to the material of the body in question. It is rather like trying to deduce some
properties of a liquid from the shape of the container that holds it. The plastic behavior of
a body depends on its structure (crystalline and defect) and on the system of stresses that
is applied to it. The structure will vary with plastic strain, but not in a unique fashion. The
variation will also depend on the initial structure, the values of whatever stresses are applied,
and on time (some recovery occurs in almost any material at any temperature).

The Eulerian formulation of constitutive equations discussed in this book and
in [15–17] is motivated by the work of Eckart [4] for elastic–inelastic solids, by
Leonov [10] for polymeric liquids and is based on the work in [14]. This Eulerian
formulation uses evolution equations for the material time derivative of internal state
variables. More specifically, the formulation is considered to be Eulerian because
the evolution equations depend only on quantities that can, in principle, be measured
in the current state of the material. It will be shown that this Eulerian formulation
removes arbitrariness of the choice of: the reference configuration; an intermediate
configuration; a total deformation measure and an inelastic deformation measure.
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Table 1.1 Comparison of the Lagrangian (Classical) and Eulerian (Eckart) formulations

Lagrangian
(Classical)

Eulerian
(Eckart)

σ = Eεe σ = Eεe

ε̇ = ∂v/∂x
ε̇p = �

E σ

εe = ε − εp

ε̇e = ∂v/∂x − � εe

ε(0) = ?
εp(0) = ?

εe(0) = σ(0)
E

Table1.1 records the basic equations needed to compare the differences between
the Lagrangian (Classical) formulation and the Eulerian (Eckart) formulation for
inelasticity using a simple one-dimensional model. In this model the strains are
small so the notion of Lagrangian is used for quantities that are referred to a reference
configuration. Specifically, the axial stress σ is determined by the axial elastic strain
εe using Young’s modulus of elasticity E in both formulations. However, in the
Lagrangian formulation, it is necessary to define the total axial strain ε, the plastic
or inelastic axial strain εp, as well as the axial elastic strain εe. Specifically, the total
strain ε is determined by integrating an evolution equation in terms of the velocity
gradient ∂v/∂x . The inelastic strain εp is determined by integrating an evolution
equation in terms of the stress σ and a non-negative function � that controls inelastic
deformation rate, and the elastic strain εe is defined by the difference between the
total strain and the inelastic strain. In contrast, in the Eulerian formulation the elastic
strain εe is determined directly by integrating an evolution equation in terms of the
velocity gradient ∂v/∂x , the elastic strain εe and the function �.

The Eulerian evolution equation for elastic strain εe is consistentwith the equation
in the Lagrangian formulation and can be obtained by taking the time derivative (̇ ) of
the algebraic expression for εe and replacing ε̇ and ε̇p with their evolution equations.
However, the physics of these two formulations are different. In the Lagrangian
formulation it is necessary to specify the initial values ε(0) and εp(0). But these
quantities are both referred to an arbitrary choice of the reference configuration.
This can be made explicit by noting that the same initial value εe(0) of elastic strain
can be obtained by changing the reference configuration using the arbitrary value A,
such that

εe(0) = ε(0) − εp(0) = [ε(0) − A] − [εp(0) − A] , (1.2.1)

where the scalar A in this one-dimensional model characterizes the influence of the
arbitrariness of the reference configuration in a similar manner to the tensor A in the
nonlinear three-dimensional theory discussed in (5.11.24). This arbitrariness means
that the individual initial values ε(0) and εp(0) needed to integrate the evolution
equations for ε and εp cannot be measured independently. Consequently, ε and εp

are not internal state variables in the sense of Onat [13].
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In contrast to the Lagrangian formulation, in the Eulerian formulation the elastic
strain εe is introduced directly through an evolution equation for its rate and the initial
value εe(0) needed to integrate this equation can be determined by the measuring
the initial value σ(0) of stress. Consequently, the elastic strain εe is an internal state
variable in the sense of Onat [13] since it is measurable. Moreover, the arbitrariness
associated with the orientation of the body in a zero-stress intermediate configuration
in the three-dimensional theory discussed in (5.11.25) cannot be analyzed using the
simple one-dimensional model.

Following the work of Eckart [4] and Leonov [10], an Eulerian formulation for
elastically isotropic inelastic materials introduces a symmetric positive-definite elas-
tic deformation tensor Be through an evolution equation for its material time deriva-
tive. Moreover, using the work of Flory [6], Be is expressed in terms of the elas-
tic dilatation Je and the symmetric positive-definite unimodular elastic distortional
deformation tensor B′

e defined by

Je = √
detBe , B′

e = J−2/3
e Be , detB′

e = 1 . (1.2.2)

Then, for elastically isotropic thermoelastic–inelastic materials evolution equations
are proposed directly for Je and B′

e, and the Helmholtz free energy ψ per unit mass
and the Cauchy stress T are specified by constitutive equations which depend on
Je,B′

e and the absolute temperature θ in the forms

ψ = ψ(Je,B′
e, θ) , T = T(Je,B′

e, θ) . (1.2.3)

This constitutive equation for stress is restricted to be invertible with Je and B′
e

admitting the representations

Je = Je(T, θ) , B′
e = B′

e(T, θ) . (1.2.4)

The constitutive equation for stress is further restricted so that a zero-stress material
state at zero-stress reference temperature θz requires

Je(0, θz) = 1 , B′
e(0, θz) = I , (1.2.5)

where I is the second-order identity tensor. These restrictions ensure that Je and B′
e

are internal state variables in the sense of Onat [13] since their initial values required
to integrate their evolution equations can be determined by the measured values of
T and θ in the initial state of the material.

Another specific example where it is clear that it is not sufficient to formulate con-
stitutive equations in terms of a Lagrangian deformation measure is an anisotropic
elastic material with a quadratic strain energy function. Specifically, let E be a
Lagrangian total strain measure from a reference configuration with a uniform
zero-stress material state and consider the quadratic strain energy function 
 per
unit mass specified by
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ρz
 = 1

2
K · E ⊗ E , (1.2.6)

where ρz is a constant zero-stress mass density,K is a constant fourth-order stiffness
tensor, ⊗ is the tensor product operator and ( · ) is the inner product between two
tensors of any order. Referring these tensors to an arbitrary rectangular Cartesian
orthonormal triad of vectors ei in the reference configuration yields the expression

ρz
 = 1

2
Ki jkl Ei j Ekl . (1.2.7)

For a general anisotropic elastic material Ki jkl has the symmetries

K jikl = Ki jlk = Kkli j = Ki jkl , (1.2.8)

so it is characterized by 21 independent material constants. Although this quadratic
strain energy function can model general anisotropic elastic response, the represen-
tation is incomplete since it is necessary to connect the components Ki jkl of the
stiffnesses tensor with identifiable material directions.

Following the work in [14], the elastic deformations and material orientations in
the Eulerian formulation for elastically anisotropic materials discussed in this book
are characterized by a right-handed triad of linearly independent microstructural
vectors mi with the elastic dilatation Je defined by

Je = m1 × m2 · m3 > 0 . (1.2.9)

Also, the elastic metric mi j is defined by

mi j = mi · m j . (1.2.10)

Then, for elastically anisotropic thermoelastic–inelastic materials evolution equa-
tions are proposed directly for mi , and the Helmholtz free energy ψ per unit mass
and the Cauchy stress T are specified by constitutive equations which depend onmi

and the absolute temperature θ in the forms

ψ = ψ(mi j , θ) , T = T(mi , θ) . (1.2.11)

This constitutive equation for stress is restricted to be invertible with mi admitting
the representations

mi = mi (T, θ) . (1.2.12)

The constitutive equation for stress is further restricted so that a zero-stress material
state at zero-stress reference temperature θz requires

mi j (0, θz) = mi (0, θz) · m j (0, θz) = δi j , Je(0, θz) = 1 , (1.2.13)
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where δi j is the Kronecker delta and mi have been defined to be orthonormal in
this zero-stress material state at zero-stress reference temperature. These restrictions
ensure thatmi are internal state variables in the sense of Onat [13] since their initial
values required to integrate their evolution equations can be determined by the mea-
sured values of T and θ in the initial state of the material. Depending on the material
being modeled it may be necessary to consider the response of identical samples
of the material in its current state to different loading paths to determine the values
of mi in the current state. Further in this regard, it is noted that symmetries of the
material response characterized by the Helmholtz free energy ψ make the response
of the material insensitive to any indeterminacy in the inversion (1.2.12) for mi .

This representation has the advantage that the indices i = 1, 2, 3 of these vectors
characterize specific material directions. It will be shown that these microstructural
vectors can be used tomodel elastic deformations for anisotropic elasticmaterials and
for the rate-independent and rate-dependent response of anisotropic elastic–inelastic
materials.

Details of fundamental aspects of the Eulerian formulation of constitutive equa-
tions can be found in Sects. 3.11, 3.14, 5.2, 5.3, 5.4, 5.11, 5.12 and in Chap.6 for
thermomechanical response.
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Chapter 2
Basic Tensor Analysis

Abstract Tensors are mathematical objects which ensure that mathematical equa-
tions characterizing physics are insensitive to arbitrary choices of a coordinate sys-
tem. The objective of this chapter is to present a review of tensor analysis using both
index and direct notations. To simplify the presentation of tensor calculus, attention
is limited to tensors expressed relative to fixed rectangular Cartesian base vectors.
(Some of the content in this chapter has been adapted from Rubin (Cosserat theo-
ries: shells, rods and points. Springer Science & Business Media, Berlin, 2000) with
permission.)

2.1 Vector Algebra

Tensors, tensor algebra and tensor calculus are needed to formulate physical equa-
tions in continuum mechanics which are insensitive to arbitrary choices of coordi-
nates. To understand the mathematics of tensors it is desirable to start with the use
of a language called indicial notation which develops simple rules governing these
tensor manipulations. For the purposes of describing this language it is convenient to
introduce a fixed right-handed triad of orthonormal rectangular Cartesian base vec-
tors denoted by (e1, e2, e3). From the study of linear vector spaces, it is recalled that
vectors satisfy certain laws of addition and multiplication by a scalar. Specifically,
if a and b are vectors then the quantity

c = a + b (2.1.1)

is a vector defined by the parallelogram law of addition. Furthermore, recall that the
operations
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a + b = b + a (commutative law) ,

(a + b) + c = a + (b + c) (associative law) ,

αa = aα (multiplicative law) ,

a · b = b · a (commutative law) ,

a · (b + c) = a · b + a · c (distributive law) ,

α(a · b) = (αa) · b (distributive law) ,

a × b = −b × a (lack of commutativity) ,

a × (b + c) = a × b + a × c (distributive law) ,

α(a × b) = (αa) × b (associative law)

(2.1.2)

are satisfied for all vectors a,b and c and all real numbers α, where a · b denotes
the scalar product (or dot product) and a × b denotes the vector product (or cross
product) between the vectors a and b.

The Scalar Triple Product
The scalar triple product of the vectors a,b and c has the property that the dot and
cross products can be interchanged

a × b · c = a · b × c . (2.1.3)

Moreover, using the results

a × b · c = −b × a · c = −b · a × c = b · c × a = c × a · b , (2.1.4)

it follows that the order of the vectors in the scalar triple product can be permuted

a × b · c = c × a · b = b × c · a . (2.1.5)

The Vector Triple Product
The vector triple product of the vectors a,b and c can be expanded to obtain

a × (b × c) = (a · c)b − (a · b)c . (2.1.6)

To prove this result it is noted that this vector must be perpendicular to both a and
b × c. But b × c is perpendicular to the plane containing b and c so the vector triple
product must be a vector in the plane of b and c. Moreover, the vector triple product is
linear in the vectors a,b and c. The expression (2.1.6) can be checked by considering
the special case of a = e1,b = e3 and c = e1.
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2.2 Indicial Notation

Quantities written in indicial notation have a finite number of indices attached to
them. Since the number of indices can be zero, a quantity with no index can also
be considered to be written in indicial notation. The language of indicial notation is
quite simple because only two types of indices can appear in any term. Either the
index is a free index or it is a repeated index. Also, a simple summation convention
is defined which applies only to repeated indices. These two types of indices and the
summation convention are defined as follows.

Free Indices:
Indices that appear only once in a given term are known as free indices. In this regard,
a term in an equation is a quantity that is separated by a plus, minus or equal sign.
Here, each of these free indices will take the values (1, 2, 3). For example, i is a free
index in each of the following expressions

(x1, x2, x3) = xi (i = 1, 2, 3) , (2.2.1a)

(e1, e2, e3) = ei (i = 1, 2, 3) . (2.2.1b)

Repeated Index:
Indices that appear twice in a given term are known as a repeated index. For example,
i and j are free indices andm and n are repeated indices in the following expressions

aib j cmTmndn , Aimmjnn , Aimn B jmn . (2.2.2)

It is important to emphasize that in the language of indicial notation an index can
never appear more than twice in any term.

Einstein Summation Convention:
When an index appears as a repeated index in a term that index is understood to take
on the values (1, 2, 3) and the resulting terms are summed. Thus, for example,

xiei = x1e1 + x2e2 + x3e3 . (2.2.3)

Because of this summation convention, a repeated index is also known as a dummy
index since its replacement by any other letter not appearing as a free index and also
not appearing as another repeated index does not change the meaning of the term in
which it occurs. For examples,

xiei = x je j , aibmcm = aib j c j . (2.2.4)

It is important to emphasize that the same free indices must appear in each term in
an equation so that for example the free index i in (2.2.4)2 must appear on each side
of the equality.
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Kronecker Delta:
The Kronecker delta δi j is defined by

δi j = ei · e j =
[
1 for i = j
0 for i �= j

]
. (2.2.5)

Since theKronecker delta δi j vanishes unless i = j it exhibits the following exchange
property

δi j x j = (δi1x1, δi2x2, δi3x3) = (x1, x2, x3) = xi . (2.2.6)

Notice that the Kronecker delta can be removed by replacing the repeated index j in
(2.2.6) by the free index i .

Recalling that an arbitrary vector a in Euclidean 3-Space can be expressed as a
linear combination of the base vectors ei it can be expressed in the form

a = aiei . (2.2.7)

Consequently, it follows that the components ai of a can be calculated using the
Kronecker delta

ai = ei · a = ei · (amem) = (ei · em)am = δimam = ai . (2.2.8)

Notice that when the expression (2.2.7) for a is substituted into (2.2.8) it is necessary
to change the repeated index i in (2.2.7) to another letterm because the letter i already
appears in (2.2.8) as a free index. It also follows that the Kronecker delta can be used
to calculate the dot product between two vectors a and b with components ai and bi ,
respectively, by

a · b = (aiei ) · (b je j ) = ai (ei · e j )b j = aiδi j b j = aibi . (2.2.9)

Permutation Symbol:
The permutation symbol εi jk is defined by

εi jk = ei × e j · ek =
⎡
⎣ 1 if (i, j, k) are an even permutation of (1, 2, 3)

− 1 if (i, j, k) are an odd permutation of (1,2,3)
0 if at least two of (i, j, k) have the same value

⎤
⎦ .

(2.2.10)
This definition suggests that the permutation symbol can be used to calculate the
vector product between two vectors. To this end, it will be shown that

ei × e j = εi jkek . (2.2.11)
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Proof Since ei × e j is a vector in Euclidean 3-Space for each choice of the indices i
and j , it follows that it can be represented as a linear combination of the base vectors
ek such that

ei × e j = Ai jkek , (2.2.12)

where the components Ai jk need to be determined. In particular, taking the dot
product of (2.2.12) with ek and using the definition (2.2.10) yields

εi jk = ei × e j · ek = Ai jmem · ek = Ai jmδmk = Ai jk , (2.2.13)

which proves the result (2.2.11).Nowusing (2.2.11), it follows that the vector product
between the vectors a and b can be represented in the form

a × b = (aiei ) × (b je j ) = (ei × e j )aib j = εi jkai b jek . (2.2.14)

Additional Properties of the Permutation Symbol:
Using (2.1.3) and (2.1.6) it can be shown that

εi jkεrsk = (ei × e j ) · (er × es) = ei · [e j × (er × es)] = δirδ js − δisδ jr ,

εi jkεr jk = 2δir , εi jkεi jk = 6 .
(2.2.15)

Also, recall that the determinant of a matrix Mi j can be expressed in the forms

det(Mmn) = εi jkMi1Mj2Mk3 ,

εrst det(Mmn) = εi jkMir M jsMkt ,

det(Mmn) = 1

6
εi jkεrst Mir M jsMkt .

(2.2.16)

Contraction:
Contraction is the process of replacing two free indices in a given expression with
the same index together with the implied summation convention. For example, con-
traction on the free indices i, j in δi j yields

δi i = δ11 + δ22 + δ33 = 3 . (2.2.17)

Note that contraction on the set of 9 = 32 quantities Ti j can be performed by multi-
plying Ti j by δi j to obtain

Ti jδi j = Tii . (2.2.18)
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2.3 Direct Notation (Special Case)

A scalar is sometimes referred to as a zero-order tensor and a vector is sometimes
referred to as a first-order tensor. Higher order tensors are defined inductively starting
with the notion of a first-order tensor or vector. Specifically, since a second-order
tensor is a linear operator whose domain is the space of all vectors and whose range
is the space of all vectors it is possible to define the second-order tensor inductively
using vector spaces.

Tensor of Order M:
The quantity T is called a tensor of order M (M ≥ 2) if it is a linear operator whose
domain is the space of all vectors v and whose range Tv or vT is a tensor of order
M − 1. Since T is a linear operator it satisfies the following rules

T(v + w) = Tv + Tw , (2.3.1a)

α(Tv) = (αT)v = T(αv) , (2.3.1b)

(v + w)T = vT + wT , (2.3.1c)

α(vT) = (αv)T = (vT)α , (2.3.1d)

where v andw are arbitrary vectors and α is an arbitrary real number. Notice that the
tensor T can operate on its right [e.g., (2.3.1a), (2.3.1b)] or on its left [e.g., (2.3.1c),
(2.3.1d)] and that, in general, operation on the right and the left is not commutative

Tv �= vT Lack of commutativity . (2.3.2)

Zero Tensor of Order M :
The zero tensor of orderM is denoted by 0(M) and is a linear operator whose domain
is the space of all vectors v and whose range 0(M − 1) is the zero tensor of order
M − 1

0(M)v = v 0(M) = 0(M − 1) . (2.3.3)

Notice that these tensors are defined inductively starting with the known properties
of the real number 0 which is the zero tensor 0(0) of order 0.

Addition and Subtraction:
The usual rules of addition and subtraction of two tensors A and B apply when the
two tensors have the same order. It is emphasized that tensors of different orders
cannot be added or subtracted.

To define the operations of tensor product, dot product and juxtaposition for gen-
eral tensors it is convenient to first consider the definitions of these properties for the
special case of the tensor product of a string of M (M ≥ 2) vectors (a1, a2, . . . , aM).
Also, it is necessary to define the left transpose and right transpose of the tensor
product of a string of vectors.


