Advanced
ASP.NET Core 3
Security

Understanding Hacks, Attacks, and
Vulnerabilities to Secure Your Website

Scott Norberg

Apress:

Advanced ASPNET
Core 3 Security

Understanding Hacks,
Attacks, and Vulnerabilities
to Secure Your Website

Scott Norberg

Apress’

Advanced ASP.NET Core 3 Security: Understanding Hacks, Attacks, and
Vulnerabilities to Secure Your Website

Scott Norberg
Issaquah, WA, USA

ISBN-13 (pbk): 978-1-4842-6016-6 ISBN-13 (electronic): 978-1-4842-6014-2
https://doi.org/10.1007/978-1-4842-6014-2

Copyright © 2020 by Scott Norberg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260166. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6014-2

Table of Contents

About the AUROKccuvcmmimmienminmssssas s annas Xi
About the Technical ReVIEWETccsssssnsssassssassssnsssassssassssassssnsssasssssssssnsssansssannsas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: Introducing ASP.NET COre........ccuummsssssmssnnssssssssssssssssssssssssssssssssnnsssssssssnss 1
UNAerstanding SEIVICES.......c.ouvviirerinerrnesrsesese s e sa s e pe e nrnnanens 1
HOW Services Are Created..........cuverrnsesrnessssse s s ssssssssss s sssssssssssnssssesesssssns 2

HOW SErviCeS Are USEAccccorrenmrrierrnisnnessss e s sse s s s sn s sesssssssssnssssessssssnnns 7
KeSTrel @nd IIS.........oooviiiiriiii s s 17
MVG VS. RAZOF PAQESccevereerreirierseseseesesessessesessessessessssessessessssessessesasssssessessesssnssnessessensnsensesaes 17
IVMIVC ..ttt R R E e e e 18
3TV 0] gl o T - OSSO 23
{08 LT 07 o 27
Core vs. Framework vS. STandard............cooeoreirnrrnneeresess e 28
SUIMIMAIY....eteereeereee s s e e e e se e e e e e e e Re e e e se e e e e Re e e sa e ne e e e nsnnnns 29
Chapter 2: General Security CONCEPSccerrrvssmmmmmssssnnnmmssssnnnmsssssnnsssssssnnnssssssnnnsnsss 31
What Is Security? (CIA THAC)ccoveerrrereresernsesesese s s se e e ss e s s senses 31
CONfIdENTIANITY.....cccrrreeerrese e s 32
INEEOMTY cvveecreerr e s 32
AVRIADIIILY ...vvvvrvvesesesssessssessssessssesssssesssssesssssesssssesssssesssssesss st st ss st s sesssssesssasesssessssens 34
Definition Of “HACKEI™ ..o e 34

The Anatomy of @n ALLACKccvcerieriniriere e nre 35
RECOMNAISSANCEcuveveuerrisersseessesesrsse s s s s sr s s se s se s s e e re e a e ne s e nne e nsanis 35
PENEIIALE ...t e 36

iii

TABLE OF CONTENTS

0 02 o S 36
Hide EVIAENCE ... e e s 37
Catching Attackers in the ACL..........ccoiirni e 37
Detecting Possible Criminal ACLIVILYcccovvrninninr e 37

3 0] T2) 38
When Are YOu SECUre ENOUGN? ... s e s se s 39
Finding Sensitive INformation.............cccnnrnnnnininsr e 41
User Experience and SECUNLYccccvcviiicnini e snens 42
Third-Party COMPONENTSc.ccrrrerererere s se s ne e nenns 42
P (T T - T 43
THreat MOUEIINGcccvreerrerer s p e e e s ne e nrn s 43
03] 01010140 SR 44

BE= U] 02 1 T SRS 44
RePUIALION ... b e e e e e s 44
INfOrmation DISCIOSUIEcccvererereerese s e 44
DL T L R T= e R 47
Elevation Of PriVIIEgEc.cccoeeeer e 48
Defining SECUMLY TEIMScccviiereerrererese e 49
Brute FOrCE AHACKScccerrererreerese s e s s s se s s nss s 49
ALEACK SUIMACEciercerrrceriee s ne e ne e nnnnn e 49
Security DY ODSCUNLYcccvveeerircrirese e e 50
Man-in-the-Middle (MITM) ATEACKSccoererrererrnsesrssnerssesessesesssse s sessessssssessssssessssssssssnsnnes 51
Fail Open vs. Fail CIOSEU..........ccuerininiinire s s e 52
Separation Of DULIEScccvvrerirn e e e 54

T 271 o P 54
Phishing and Spear PRiSNING.........ccouoirenrennrrrese e 55
SUMIMAIY ...ttt n e R e e e e e e R e e e R e sea e e e Re e Re e nrn e e nnnnnns 56
Chapter 3: Cryptographyccccvusseesmmsssssnssmssssssssssssssssssssssnsssssssssnssessssnnnsssssnnnnssnss 57
SYMMELriCc ENCIYPHION.....coe e e e 57
Symmetric ENCryption TYPESceuecevrcrrcrirr st s se s e ses e 58
Symmetric Encryption Algorithms........cccccicrrnncr e 59

iv

TABLE OF CONTENTS

Problems with BIOCK ENCIYPLION........ccccviiririrircin s se s s see s s sneas 60
Symmetric ENCryption in .NETccvcrieriirire s s sessesessessesesessessessssessessesssssssessesees 64
HASRING ... e 79
USES TOr HASNING ...cccvccccccircce st p e e sr e s 80
HASH SIS ... s 81
Hash AIGOFTIMS ..o e a e s s n 83
Hashing and SEAICRES..........ccvvvrerererrrrere e s sa e s saesae s s e naesaeses e snesaees 85
Lo 1110 T = 87
ASymmMEtric ENCIYPLION ... s s 92
Digital SIgNALUIEScovecceereire e e e e e e np s 93
Asymmetric EnCryplion in (NET ..o 94
LCE S (0] 2T TR 99
Don’t Create Your Own AlGOrithmsS........ccovcorererererser e 100
Common Mistakes With ENCIYPLON ..o s 100
£ 1] 1134 R 101
Chapter 4: Web Security CONCeptsccuuvemrrmssssnnnmsssssnnnmsssssnssssssssssssssssssssssssssnnnss 103
MaKing @ CONNECHION ..ot sp e e 103
HTTPS, SSL, QN0 TLS........ccoeeeeereeessssssssssssssssssssssess e e ss s s s s sssssssssssssnsssssssnsnsnenes 103
CONNECLION PrOCESSviviveueeeresssssseesesesss s se e sa s sr s sas s se s nnaes 104
Anatomy 0f @ REQUEST.........ccocir e e 106
ANAtomY Of @ RESPONSEcoueerrecrireriree s s e nr s 110
RESPONSE COUBSceierericriiirere st e bbb e e s a e e 110
L2 T T TS 115
Cross-Request Data ST0rage.........ccvvevrenmrenmrnsesnesese s s ses s sessssssenns 121
COOKIS ..vuvuereserensesesseesssseses e s e e ss e s e s e se e e a e sesse e be e e n e nenRe e R e neeae e nRe e e b e e e e e nennnnn e e nns 122
LT (0 I (0] - T - OSSPSR 125
HIdden FIelds........covererrenerneseseses s s ses s sssss s s e nenses 126
o (0] = Vo T TS 128
Cross-Request Data Storage SUMMArYccovevrenmrenesnsesess s ssssesennes 128
Insecure Direct Object REfErenCes........couvvvermrisrnssnesr s 129
5Ty ST OSSN 129

TABLE OF CONTENTS

OWASP TOP TEIN weveruerrerersensersessssssessessessssessessesssssssessessessssessessesssssssessesssssssessesssssssessessessessnsensens 137
DN 0 A] 1< o o] S 137
A2: 2017 — Broken Authenticationcccvennennnn s 137
A3: 2017 — Sensitive Data EXPOSUIE........ccvvererererserseressesessessessessssessessessessssessessesssssssessesses 138
A4: 2017 — XML External ENtities (XXE)cocovrerersssssrsrnrnsnsnssenesesesesesesesesssssssssssssssssssssanas 138
A5:2017 — Broken ACCESS CONTIOcceerererermseesese s sesssssssssesens 139
A6: 2017 — Security MiSCONTIQUIALIONc.ccvcerevirieriere s eees 139
A7: 2017 — Cross-Site SCrPtiNg (XSS)....cccvrrrerrerrrerreriernsensersesessssessessessessssessessesssssssessesaes 140
A8: 2017 — Insecure Deserialization ... 140
A9: 2017 — Using Components with Known Vulnerabilitiescccccvvrrrevnvrieniennsenseniennn, 140
A10: 2017 - Insufficient Logging and Monitoring.........cccecvvrreriennnensensenesessessessessssessessenees 14

£ 1134 7P 141

Chapter 5: Understanding Common AHackS.......cccussmmnnmsssssnnnsssssssssssssssssssssssnnnnss 143

SQL INJECTION.....cvivreeeecereresrse e sss e e a s ne e e e s e e e nn s 144
LU0 T2 - o T 147
o g 572 TS T TS 149
B00lean-Based BIINGcccorenerenernrcrererese e s neens 150
TIME-Based BIING ..o 154
LT eT0] o 0 (o 155
SQL INJection SUMMANYccoeiiiiiricress s rs e s saesrs e snens 155

Cross-Site SCHPLING (XSS) .evvuererererrrrererereseressesese e ses s s ses e e sssesessssessssesessssenns 156
XSS and Value ShadoWiNg.........ccvreermrenmrenernsesesese e sesse s e sessesessesessssessssesesssssssenens 158
BypassSing XSS DEfENSES.......cccvrererrererrrsesesesessese s sessesessese e sessesessssessssessssesssssnssssssssnnes 158
ConSeqUENCES OF XSS.....coi e 166

Cross-Site Request FOrgery (CSRF)ccovveernenrnesmsesesessesssssessssesesssesssssssssssessssssssssssssssenns 167
Bypassing Anti-CSRF DEFENSESccorvrerrmsermrresersssesessesesssessssessssssessssessssesssssssssssssssssssnses 168

Operating SYSIEM ISSUESc.veviiererise s s 169
DireCtory TraVerSal.........cuoueeenerrneserese s s se s sr s nra e 169
Remote and Local File INCIUSION.........ccovcevnermnenernse s e s senses 171
0S CommaNd INJECHONcoveeverecereserer e 171

TABLE OF CONTENTS

File Uploads and File Managementcccvvrrenmnininneniensessnssesessessesssessessessesssessessenns 172
Other INJECLION TYPES.....civierircrirr et e e 173
{08 T T T OSSPSR 173
Unvalidated REdIreCESccvrerereeresc e 173
LTSS (0] A I 5 [T (L oSSR 174
Security Issues Mostly Fixed in ASP.INET..........cccrrernnnnmienenssnssesessssessessessessssessessessssessessesses 175

L1 L= 0T 10 T=T T O 176

ReSPONSE SPITING.....ccvceriviririre e e 176

Parameter POHULION...........ccoieeiiciercse e 177
BUSINESS LOGIC ADUSEuevuerrerreiereressessssessessesssssssessesssssssessessessssessessesssssssessesssssssessessesssssnsensens 177
£ 1§14 7P 178

Chapter 6: Processing User INput..........ccccoccmmnsmmmsssnsmsssssmssssssssssssssssssssssssssssnssssas 179
Validation AHFDULESccceeec e nne e 179

Validating File UPIOAUSccoeocrrnerereeree e se e see e sseesnenens 186

User Input and Retrieving Files ... se s s 191
[T Tl o 0] (= 0] TS 193

Extending Anti-CSRF Checks with IAntiforgeryAdditionalDataProvider............c.coceervierenne. 204

CSRF QN0 AJAX ... e sss st e e e ettt 207

When CSRF Tokens Aren’t ENOUQR.........cccoeerrenncsreserneses s 208
Preventing SPam........occveernesnesese e e 208
MaSS ASSIGNIMENT........ccceireerrrirrreserese e r e r e ne e nr s 209

Mass Assignment and Scaffolded COUEcourerirrnresnenennse s 216
Preventing XSS ..o sse s se s s sas e s s e se s e s sae st e se e s s ae e e saesne e e e e e nnens 218

XSS ENCOUING ...veerereereeriesereresresesses e ssesessessessesaeses e ssessessesesaessesaessssessessessssessessesasssssensessens 219

XSS and JavaScript FrameWOIKSccccvvirveriernnesseresessesessesesesessessessessssessessesssssssessessens 224

CSP Headers and Avoiding Inling GOde.........c.ccecerererrrierienensensenesis s sesse e ssessssessessens 225

Ads, Trackers, and XSS ..o 228
Detecting Data TAMPEIING........ccviviirerririe e r e s s r e a e s 228
£ 1134 7 230

vii

TABLE OF CONTENTS

Chapter 7: Authentication and Authorizationcccccccimnnsenninnsssnnmnssssnssnnm. 231
Problems With PASSWOITS...........ccocoeruercrirererererene s 231
Too Many Passwords Are Easy t0 GUESSc.ccccurerriernsesinsenesssessssesessesessssessssesessessssenens 231
Username/Password Forms Are Easy t0 BYPassS........cccvvvvninnnnennsessnnssesssesessesesssessnns 233
Credential REUSEc.coveerererirrrsecse e s 233
Stepping Back — How to Authenticate.........ccccvvrininnininrrrr e 234
Stopping Credential STUTFINGcccvcvieiinnr e 236
Default Authentication in ASPINET ... 237
Default Authentication ProVider...........ccovrrrenrnnsssesesesess s sennes 237
Setting Up Something MOre SECUIEcccoveeerererrcrerese e 248
Implementing Multifactor Authenticationc.ocoeerrncnnrererer e 271
UsSing EXTErnal PrOVIAEYSccooeocrieecrerererese e s 272
Enforcing Authentication fOr ACCESS........cvrererererrrcrrere s 273
Using Session for Authentication..........c.ccocvcvvninnnnn s 276
Stepping Back — AULhOKZING USEIS.........ccoreierercreresereserese s 276
TyPes 0f ACCESS CONTIOL........ccooveerereereere e 276
Role-Based Authorization in ASP.NET ..o e sens 278
Using Claims-Based AUthOrization...........ccccvrevvinrnennninnne s s sessessessssessesaens 279
Implementing Other Types of AUthOrZationccvvvrvnienie s 281
£ 1134 7R 285
Chapter 8: Data Access and STtOrageccorsssssnnrrsssssnnsssssssnnnssssssnnnsssssnnnssssssnnnnss 287
Before Entity FrameWOrKcccveeerisernerneserese e s sesss s 287
ADO.NETueuieucusssesse st ss s ss e e e e e bbb d g e et 288
TRIrd-Party ORIMScovociererereerenesesee s e s ses e sessssesss e sse s sensssnsenens 293
Digging into the Entity FrameWOrKccveiiinnnssncsne s e e 293
Running Ad HOC QUEKIEScovverereerieerissesese e sesse e se s e e e s sesssssssssensnnes 294
Principle of Least Privilege and Deploying Changesccccvvernenenesesenesessesessesessesessnnes 297
SIMPIlifying FIRBINGcoveerieeerec s 300
Easy Data Conversion with the ValugConverterccovvvrrenrnnesnnsesenese s sesesesessese e 309
Other Relational Databasesc.cuevrrererenmrnsessese s seenes 315

viii

TABLE OF CONTENTS

Secure Database DESIGN.......ccccvrrrerererrerierersssesseressessssesse e ssssesessesaesasessesaessssessesaessessssessesaes 316
Use Multiple CONNECHIONSccvevererrerereste s s s se e s s sae e s e ssesnesa e e ssesaees 316
USE SCREBMAS.......ccieriririeece i 316
Don’t Store Secrets With Data ... 317
Avoid Using Built-In Database ENCryptionccccveevreverensensenensssessessessessssessessesssssssessesses 317
Test Database BaCKUPScccvvereririinrie e e s 317

NON-SAL DALA SOUICES......covrerriueeereresrseesisesssssssse e s s e s s e s s sassssssssssssesssssnsaes 318

SUMIMANY ..ttt e e e R e e e e R e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e naennin 319

Chapter 9: Logging and Error Handlingcccoiemmmmmmmnnnnnnssssssssmsmmssssssssssssssnnns 321

New Logging in ASP.NET COIE......ccorerermsmsenesessenssensesessessssssessssssssssssssssssssssssssssssssnssssssssssssnns 322
Where ASP.NET Core Logging Falls SNOrtccovceerinrnnmsnsesesesessse s sessssessenens 326

Building @ Better SYSIEM ..o s 334
Why Are We Logging Potential Security EVENS?ccouevvnennesnnsesnsessnsse s sessessssenens 335
Better Logging in ACHONc.ccceveneresernse e se s sr s e 336

Using Logging in Your ACtiVE DEfENSEScverrverierernsinrese s sese e ssssesse s ssssessessessessssessesaens 342
Blocking Credential Stuffing with LOGQINGccccvrevviriniennrinrene s ses s sessessesnes 342
HONBYPOLS.eieiiece et r e s s e e s r e s ae e e n e ne e nenan 347

Proper Error HANAINGcccceevvienienieresensesese s sesse e ssssessessessesessessessessssessessesssssssessessesssssssesnens 348
(02 o 1T N = (0 O 352

£ 11134 7R 353

Chapter 10: Setup and Configurationccccurcmmssmsmssmnmsssssssssssssssssssssessnsenes 355

Setting Up YOUr ENVIFONMENT ..o 356
WED SEIVEr SECUMLYveucereeereecrerereree e se s see e e s e nnenens 356
Keep Servers Separated. ..o 357
STOMNY SBCIEIS ...eiiiicc e ——————— 359

RS I OO SRR 360
Allow Only TLS 1.2 @N0 TLS 1.3 ... s e s ssssesesssessenens 360
Setting UP HSTS .. 361

Setting UP HEAUEIScoveeeereereer et 362
Setting Up Page-Specific HEAUErSccovervrerncnmnese s 365

ix

TABLE OF CONTENTS

Third-Party COMPONENTSccverererirrereresesessere e s e s sse s sressssessesaesaesessessesaesesssssesseses 367
Monitoring VUINErabilities........c.ccveiiiinien i 368
INTEYIItY HASNES... .. e 368

Secure Your Test ENVIFONMENT ... sesssssnsaes 369

Web Application FireWallS.........cccoeirinininnnnsn s ssssesse s 370

£ TS 371

Chapter 11: Secure Application Life Cycle Management.........ccccceuvrrnssssssnnnnnnnnnnas 373

TESHING TOOIS ...vveuerrseresresesree s e e b e b e e e e e R e p e nennenrnne e 374
DAST TOOISeiveuereresrrreserrese s s s s e re e s s s e s e b e e e e e R e R e e e e e e se e na e nrn s 375
SAST TOOISveerrrrererreserree s s r R e r e ne e e R e R e e e nrnRe e nr e 379
SCATOOIS ..eveuerrrsesrrrese s s e e s e b e e e e R e R e e e e e e R e R e e e nn R nr e 385
1 I 0] OSSO 386
2T 0T GO 387

Integrating ToOIS iNt0 YOUr CI/CD PrOCESSevtvverrereriesensesessessssessessesssssssessesssssssessessesssssssesaens 388
CI/CD With DAST SCANNEIScovrviriuiiirsssssssssssss s sss s s s sasssssssss 389
CI/CD With SAST SCANNEISccceveerrierrrseserresersssessssese e s sesssssse s ssssesssssssssssessssesssssssssanes 390
CI/CD With IAST SCANNEIS......ccveerrierrnsesesrasersssessssessssesessssessssssessssessssesssssssssssessssesssssnsssanes 390

Catching Problems ManUAILYcccovverierreriennsensesesessssersesesssssssessesssssssessessessssessessesssssssessesses 390
Code Reviews and Refactoring.......c.ccvcererrnenseriereninnersese s sesse e sss s s s sessessessesssssssesaees 391
Hiring @ Penetration TESTENccccvivvrvriererirrere s s e sae s s enes 391

When 10 FiX PrODIBMS ..o s s s 393

LEArNING IMOFE..... oo s e s e e e e r e e e e s ae e Re e e e e e nne 395

SUMIMANY ..t e e s b E e e b b e e e R e R e e e e e Re e Re R e e e e e Re R e e e e nRenrs 396

INO@X . uueniissnnnsssnnnsssnnnsssanssssanssssanssssanssssannssssnsssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 397

About the Author

Scott Norberg is a web security specialist with almost 15 years of experience in various
technology and programming roles, focusing on developing and securing websites
built with ASP.NET. As a security consultant, he specializes on blue team (defensive)
techniques such as Dynamic Application Security Testing (DAST), code reviews, and
manual penetration testing. He also has an interest in building plug-and-play software
libraries that developers can use to secure their sites with little to no extra effort. As a
developer, Scott has primarily built websites with C# and various versions of ASP.NET,
and he has also built several tools and components using F#, VB.NET, Python, R, Java,
and Pascal.

He holds several certifications, including Microsoft Certified Technology Specialist
(MCTS) certifications for ASP.NET and SQL Server, and a Certified Information Systems
Security Professional (CISSP) certification. He also has an MBA from Indiana University.

Scott is currently working as a contractor and consultant through his business,
Norberg Consulting Group, LLC. You can see his latest ideas and projects at
https://scottnorberg.com.

xi

https://scottnorberg.com

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer
using Microsoft technologies. He works for NuovoIMAIE (www.nuovoimaie.it). He is

a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application
Developer for .NET, a Microsoft Certified Professional, and a prolific author and
technical reviewer. Over the past 10 years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer

topics.

xiii

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.nuovoimaie.it&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=D-8-eRY3IO0OZqEecDoFroWwrtjChrdCAWZ_VhBDl98&s=u2mONVTAGhOVglQSx0NdiVo5Gvg3Z2Vc0CpJn1iiuOY&e=

Acknowledgments

It would be impossible to truly acknowledge everyone who had a hand, directly or
indirectly, in this book. I owe a lot to Pat Emmons and Mat Agee at Adage Technologies,
who not only gave me my first programming job but also gave me the freedom to
learn and grow to become the programmer I am today. Before that, I owe a lot to the
professors and teachers who taught me how to write well, especially Karen Cherewatuk
at St. Olaf College. I also learned quite a bit from my first career in band instrument
repair, especially from my instructors, John Huth and Ken Cance, about the importance
of always doing the right thing, but doing it in a way that is not too expensive for your
customer. And of course, I also want to thank my editors at Apress, Laura Berendson, Jill
Balzano, and especially Joan Murray, without whom this book wouldn’t be possible.
But most of all, I owe a lot to my wife, Kristin. She was my editor during my blogging
days, and patiently waited while I chased one business idea after another, two of which
became the backbone of this book. This book would not have been written without her
support.

Introduction

A lot of resources exist if you want to learn how to use the security features built into ASP.
NET Core. Features like checking for authorization, Cross-Site Request Forgery (CSRF)
prevention, and Cross-Site Scripting (XSS) prevention are either well documented or
hard to get wrong. But what if you need to secure your system beyond what comes

with the default implementation? If you need to encrypt data, how do you choose

an algorithm and store your keys? If you need to make changes to the default login
functionality to add password history and IP address verification, how would you go
about doing so? How would you implement PCI- or HIPAA-compliant logs?

Perhaps most importantly, what else do you need to know to be sure your website is
secure?

This book will certainly cover the former concepts, i.e., it will cover best practices
with ASP.NET Core security that you can find elsewhere. But the true value of this book is
to provide you the information you won'’t find in such sources. In addition to explaining
security-related features available in the framework, it will cover security-related topics
not covered often in development textbooks and training, sometimes digging deep
into the ASP.NET Core source code explaining how something works (or how to fix a
problem).

In short, this is meant to be a book about web security that just happens to use ASP.
NET Core as its framework, not a book about ASP.NET Core that just happens to cover
security.

Who Should Read This Book

If you're a software developer who has some experience creating websites in some
flavor of ASP.NET and you want to know more about making your website secure from
hackers, you should find this book useful. You should already know the basics of web
technologies like HTML, JavaScript, and CSS, how to create a website, and how to read
and write C#. If you are brand new to web development, though, you may find that some
of the concepts are too in depth for you, so you should consider reading some books on
website development before tackling advanced security.

xvii

INTRODUCTION

You do not need to have much previous knowledge of security concepts, even those
that are often covered under other materials that attempt to teach you ASP.NET Core.

In order to ensure everyone has a similar understanding of security, this book starts by
going over general concepts from a security perspective, then going over web-related
security concepts, and then finally applying those concepts directly to ASP.NET Core.

If your background is in security and you are working with a development team that
uses ASP.NET Core at least part of the time, you may find it useful to read the book to
understand what attacks are easy to prevent in the framework as it is intended to be used
and which are hard.

An Overview of This Book

This book is intended to be read in order, and each chapter builds on the previous ones.
It starts with general concepts, applies them to real-world problems, and then finishes by
diving into web-specific security concepts that may be new material to you as a software
developer.

Chapter 1 - Introducing ASP.NET Core

Chapters 1-5 cover topics that serve as a foundation to all subsequent chapters.
Chapter 1 covers much of what makes each version of ASP.NET Core, Razor Pages and
MVC, different from its predecessors, ASP.NET Web Forms and ASP.NET MVC. It focuses
on areas that you will need to know about in creating a secure website, such as knowing
how to set up services properly and how to replace them as needed.

Chapter 2 - General Security Concepts

This chapter covers concepts that full-time security professionals worry about that
don’t get covered in most programming courses or textbooks but are important to know
for excellent application development security. I will start by describing what security
is (beyond just stopping hackers) so we have a baseline for discussions and move into
concepts that will help you design more secure software.

Chapter 3 - Cryptography

Cryptography is an extremely important concept in building secure systems but
is not covered in depth in most programming textbooks and courses. At least in my
experience, that results in an uneven knowledge of how to properly apply cryptography
in software. You will learn about the differences between symmetric and asymmetric
cryptography, what hashing is and where it’s useful, and how to securely store the keys
necessary to keep your data secure.

xviii

INTRODUCTION

Chapter 4 - Web Security Concepts

After discussing security in general, it will be time to cover security-related topics
specific to web. Most of the topics in this chapter should look familiar to you as a web
developer, but the goal is to dive deeper into each topic than is needed to program most
websites in order to better understand where your website might be vulnerable. This
chapter also introduces Burp Suite, a popular software product used by penetration
testers around the world, which you can use to perform basic penetration tests on your
own.

Chapter 5 - Understanding Common Attacks

The idea behind this chapter is to show you most of the common types of attacks to
which ASP.NET Core websites can be vulnerable. It will not only cover the most basic
forms of each attack that occur in other textbooks but also show you more advanced
versions that real hackers use to get around common defenses.

Chapter 6 - Processing User Input

Chapter 6 is the start of the chapters that dive more deeply into ASP.NET Core itself.
Chapters 6-8 will cover implementing existing best practices, as well as extending the
framework to meet advanced security needs.

Perhaps the biggest challenge to keeping websites secure is that the vast majority of
websites must accept user input in some way. Validating that input in a way that allows
all legitimate traffic but blocks malicious traffic is more difficult than it seems. Removing
apostrophes can help stop many types of SQL injection attacks, but then adding the
business name “Joe’s Deli” becomes impossible. Preventing XSS is much harder if you
need to display HTML content that incorporates user input. This chapter will cover ways
in which you can (more) safely accept and process user input in your ASP.NET Core
website.

Chapter 7 - Authentication and Authorization

This is the aspect of security that seems to be the best documented in ASP.NET Core
materials. This is for good reason - knowing who is accessing your site and keeping
them from accessing the wrong places is vital to your security. However, I believe that
the built-in username and password tracking in a default ASP.NET Core site is easily
the most insecure part of the default site. Stealing user credentials on an ASP.NET Core
website with a reasonable number of users is trivial. This chapter will cover the issues

that exist even in a well-implemented solution and how to fix them.

Xix

INTRODUCTION

Chapter 8 - Data Access and Storage

The solution to solving security issues around data access - using parameterized
queries for every call to the database - has been well established for well over a decade
now. Yet these issues still crop up in the wild, even in my experience evaluating ASP.NET
Core-based sites. What parameterized queries are, why they’re so important, and how
the ASP.NET Core framework uses them by default are covered in this chapter. I will also
show you some techniques to create easily reusable ways to filter your Entity Framework
(EF) query results to only items your users should see.

Chapter 9 - Logging and Error Handling

Chapters 9-11 cover additional topics that, in my opinion, every developer needs to
know about security in order to be considered knowledgeable about the topic.

Many readers will be tempted to skip Chapter 9 because logging is one of the least
exciting topics here. It also may be one of the most important in detecting (and therefore
stopping) potential criminals. Logging is much improved in ASP.NET Core over previous
versions, but unfortunately that logging framework is built for finding programming
problems, not finding potentially malicious activity. This chapter is about how logging
works in ASP.NET Core, where its weaknesses are, and how to build something better.

Chapter 10 - Setup and Configuration

With the introduction of Kestrel, an intermediate layer in between the web server
and the web framework, more of the responsibility for keeping the website secure on a
server level falls into the developer’s sphere of responsibility. Even if you're a developer
in a larger shop with another team that is responsible for configuring web servers, you
should be aware of most of the content in this chapter.

Chapter 11 - Secure Application Life Cycle Management

Building software and then trying to secure it afterward almost never works. Building
secure software requires that you incorporate security into every phase of your process,
from planning to development to testing to deployment to support. If you're relatively
new to mature security, though, starting such processes might be daunting. This chapter
covers tools and concepts that help you verify that your website is reasonably secure and
helps you keep it that way.

Contacting the Author

If you have any questions about any of this content, or if you want to inquire about hiring
me for a project, please reach out to me at consulting@scottnorberg.com.

XX

https://consulting@scottnorberg.com

CHAPTER 1

Introducing ASPNET Core

The writing is on the wall: if you're a .NET developer, it’s time to move to ASP.NET Core
sooner rather than later (if you haven’t already, of course). While it’s still unclear when
Microsoft will officially end its support for the existing ASP.NET Framework, there will

be no new version, and the next version of ASP.NET Core will just be “ASP.NET 5”. Luckily
for developers weary of learning new technologies, Microsoft generally did a good job
making Core look and feel extremely similar to the older framework. Under the covers,
though, there are a number of significant differences.

To best understand it in a way that’s most useful for us as those concerned about
security, let’s start by delving into how an ASP.NET Core site works and is structured.
Since ASP.NET Core is open source, we can dive into the framework's source code
itself to understand how it works. If you are new to ASP.NET Core, this will be a good
introduction for you to understand how this framework is different from its predecessors.
If you've worked with ASP.NET Core before, this is a chance for you to dive into the
source code to see how everything is put together.

Note When | include Microsoft’s source code, | will nearly always remove the
Microsoft team’s comments, and replace code that’s irrelevant to the point I'm
trying to make and replace them with comments of my own. | will always give you
a link to the code I’'m using so you can see the original for yourself.

Understanding Services

Instead of a large monolithic framework, ASP.NET Core runs hundreds of somewhat-
related services. To see how those services work and interact with each other, let’s first
look at how they’re set up in code.

© Scott Norberg 2020
S. Norberg, Advanced ASP.NET Core 3 Security, https://doi.org/10.1007/978-1-4842-6014-2_1

https://doi.org/10.1007/978-1-4842-6014-2_1#DOI

CHAPTER 1 INTRODUCING ASP.NET CORE

How Services Are Created

When you create a brand-new website using the templates that come with Visual Studio,
you should notice two files, Program.cs and Startup.cs. Let’s start by looking at Program.cs.

Listing 1-1. Default Program.cs in a new website

public class Program

{

public static void Main(string[] args)

{
CreateHostBuilder(args).Build().Run();

}

public static IHostBuilder CreateHostBuilder J
(string[] args) =>
Host.CreateDefaultBuilder(args)

.ConfigurelWebHostDefaults(webBuilder =>

{
webBuilder.UseStartup<Startup>();

};

There’s not much to see in Listing 1-1 from a security perspective, other than the
class Startup being specified in webBuilder.UseStartup<Startup> (). We'll crack open
this code in a bit. But first, there’s one concept to understand right off the bat: ASP.NET
Core uses dependency injection heavily. Instead of directly instantiating objects, you
define services, which are then passed into objects in the constructor. There are multiple
advantages to this approach:

o [tis easier to create unit tests, since you can swap out environment-
specific services (like database access) with little effort.

o [Itis easier to add new functionality, such as adding a new
authentication method, without refactoring existing code.

o Itis easier to change existing functionality by removing an existing
service and adding a new (and presumably better) one.

CHAPTER 1 INTRODUCING ASP.NET CORE

To see how dependency injection is set up and used, let’s crack open the Startup

class in Startup.cs.

Listing 1-2. Default Startup.cs in a new website (comments removed)

public class Startup

{

public Startup(IConfiguration configuration)
{

Configuration = configuration;
}

public IConfiguration Configuration { get; }

public void ConfigureServices(IServiceCollection services)
{
services.AddDbContext<ApplicationDbContext>(options =>
options.UseSqlServer(
Configuration.GetConnectionString J
("DefaultConnection™)));
services.AddDefaultIdentity<IdentityUser>(options => J
options.SignIn.RequireConfirmedAccount = true)
.AddEntityFrameworkStores<ApplicationDbContext>();
services.AddControllersWithViews();
services.AddRazorPages();

}

public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)

{
//Code we’ll talk about later

There are two lines of code to call out in Listing 1-2. First, in the constructor,

an object of type IConfiguration was passed in. An object that conforms to the

IConfiguration interface was defined elsewhere in code, added as a service to the

CHAPTER 1 INTRODUCING ASP.NET CORE

framework, and then the dependency injection framework knows to add the object to
the constructor when the Startup class asks for it. You will see this approach over and
over again in the framework and throughout this book.

Second, we'll dig into services.AddDefaultIdentity. In my opinion, the identity
and password management is the area in ASP.NET that needs the most attention from
a security perspective, so we’ll dig into this in more detail later in the book. For now,
I just want to use it as an example to show you how services are added. Fortunately,
Microsoft has made the ASP.NET Core code open source, so we can download the source
code, which can be found in their GitHub repository at https://github.com/aspnet/
AspNetCore/, and crack open the method.

Listing 1-3. Source code for services.AddDefaultIdentity()’

public static class IdentityServiceCollectionUIExtensions
{
public static IdentityBuilder AddDefaultIdentity<TUser> J
(this IServiceCollection services) where TUser : class
=> services.AddDefaultIdentity<TUser>(_ => { });

public static IdentityBuilder AddDefaultIdentity<TUser> (J
this IServiceCollection services, J
Action<IdentityOptions> configureOptions) J

where TUser : class

{

services.AddAuthentication(o =>
{
o.DefaultScheme = IdentityConstants.ApplicationScheme;
o.DefaultSignInScheme = J
IdentityConstants.ExternalScheme;

1}
.AddIdentityCookies(o => { });

'https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/UI/sxc/
IdentityServiceCollectionUIExtensions.cs

4

https://github.com/aspnet/AspNetCore/
https://github.com/aspnet/AspNetCore/
https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/UI/src/IdentityServiceCollectionUIExtensions.cs
https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/UI/src/IdentityServiceCollectionUIExtensions.cs

CHAPTER 1 INTRODUCING ASP.NET CORE

return services.AddIdentityCore<TUser>(o =>

{
o.Stores.MaxLengthForKeys = 128;
configureOptions?.Invoke(o);

1)
.AddDefaultUI()
.AddDefaultTokenProviders();

}

}
}

Note This code is the 3.1 version. The .NET team seems to refactor the code that
sets up the initial services fairly often, so it very well may change for .NET 5. | don’t
expect the general idea that this approach of adding services to change, though, so
let’s look at the 3.1 version even if the particulars might change in 5.x.

There are several services being added in Listing 1-3, but that isn’t obvious from this
code. To see the services being added, we need to dig a bit deeper, so let’s take a look at
services.AddIdentityCore().

Listing 1-4. Source for services.AddIdentityCore()?

public static IdentityBuilder AddIdentityCore<TUser>(J
this IServiceCollection services, J
Action<IdentityOptions> setupAction)
where TUser : class

{
services.AddOptions().AddLogging();

services.TryAddScoped<IUserValidator<TUser>, J
UserValidator<TUser>>();

services.TryAddScoped<IPasswordValidator<TUser>, J
PasswordValidator<TUser>>();

*https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Extensions.
Core/src/IdentityServiceCollectionExtensions.cs

https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Extensions.Core/src/IdentityServiceCollectionExtensions.cs
https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Extensions.Core/src/IdentityServiceCollectionExtensions.cs

CHAPTER 1 INTRODUCING ASP.NET CORE

services.TryAddScoped<IPasswordHasher<TUser>, J
PasswordHasher<TUser>>();
services.TryAddScoped<ILookupNormalizer, J
UpperInvariantLookupNormalizer>();
services.TryAddScoped<IUserConfirmation<TUser>, J
DefaultUserConfirmation<TUser>>();
services.TryAddScoped<IdentityErrorDescriber>();

services.TryAddScoped<IUserClaimsPrincipalFactory<TUser>, J
UserClaimsPrincipalFactory<TUser>>();
services.TryAddScoped<UserManager<TUser>>();

if (setupAction != null)
{

services.Configure(setupAction);

}

return new IdentityBuilder(typeof(TUser), services);

You can see eight different services being added in Listing 1-4, all being added with
the TryAddScoped method.

The term “scoped” has to do with the lifetime of the service - a scoped service has
one instance per request. In most cases, the difference between the different lifetimes is
for performance, not security, reasons, but it’s still worth briefly outlining the different
types? here:

« Transient: One instance is created each time it is needed.
e Scoped: One instance is created per request.
o Singleton: One instance is shared among many requests.

We will create services later in the book. For now, though, it’s important to know
that the architecture of ASP.NET Core websites is based on these somewhat-related
services. Most of the actual framework code, and all of the logic we can change, is stored
in one service or another. Knowing this will become useful when we need to replace the
existing Microsoft services with something that’s more secure.

Shttps://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?
view=aspnetcore-3.1

6

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.1

CHAPTER 1 INTRODUCING ASP.NET CORE

How Services Are Used

Now that we’ve seen an example of how services are added, let’s see how they're used by

tracing through the services and methods used to verify a user’s password. The ASP.NET

team has stopped including the default login pages within projects, but at least they have

an easy way to add it back in. To do so, you need to

1.

2.

3.

Right-click your web project.

Hover over “Add”

Click “New Scaffolded Item.”

On the left-hand side, click “Identity.”
Click “Add”

Check “Override all files.”

Select a Data context class.

Click “Add”

Note

I’m sure there are many people out there suggesting that you not do this

for security purposes. If Microsoft needs to add a patch to their templated code

(as they did a few years ago when they forgot to add an anti-CSRF token in one of
the methods in the login section), then you won’t get it if you make this change.
However, there are enough issues with their login code that can only be fixed if you
add these templates that you’ll just have to live without the patches.

Now that you have the source for the default login page in your project, you can look

at an abbreviated and slightly reformatted version of the source in Areas/Identity/Pages/

Account/Login.cshtml.cs.

Listing 1-5. Source for default login page code-behind

[AllowAnonymous]
public class LoginModel : PageModel

{

private readonly UserManager<IdentityUser> userManager;

private readonly SignInManager<IdentityUser»> _signInManager;

CHAPTER 1 INTRODUCING ASP.NET CORE
private readonly ILogger<LoginModel> _logger;

public LoginModel(SignInManager<IdentityUser> signInManager,
ILogger<LoginModel> logger,
UserManager<IdentityUser> userManager)

_userManager = userManager;
_signInManager = signInManager;
_logger = logger;

}

//Binding object removed here for brevity

public async Task OnGetAsync(string returnUrl = null)

{
//Not important right now

}

public async Task<IActionResult> OnPostAsync(
string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");

if (ModelState.IsValid)
{
var result = await _signInManager.PasswordSignInAsync(J
Input.Email, J
Input.Password, J
Input.RememberMe, J
lockoutOnFailure: false);

if (result.Succeeded)

{
_logger.LogInformation("User logged in.");

return LocalRedirect(returnUrl);

}

CHAPTER 1 INTRODUCING ASP.NET CORE

if (result.RequiresTwoFactor)
{
return RedirectToPage("./LoginWith2fa", new { J
ReturnUrl = returnUrl, J
RememberMe = Input.RememberMe J

D;
}
if (result.IsLockedOut)
{

_logger.LogWarning("User account locked out.");
return RedirectToPage("./Lockout");

}

else
{
ModelState.AddModelError(string.Empty, J
"Invalid login attempt.");
return Page();
}
}

return Page();

}
}

We'll dig into this a bit more later on, but there are two lines of code that are
important to talk about right now in Listing 1-5. The first is the constructor. The
SignInManager is the object defined in the framework that handles most of the
authentication. Although we didn’t explicitly see the code, it was added as a service
when we called services.AddDefaultIdentity earlier, so we can simply ask for it in the
constructor to the LoginModel class and the dependency injection framework provides
it. The second is that we can see that it’s the SignInManager that seems to do the
actual processing of the login. Let’s dig into that further by diving into the source of the
SignInManager class, with irrelevant methods removed and relevant methods reordered
to make more sense to you.

CHAPTER 1 INTRODUCING ASP.NET CORE
Listing 1-6. Simplified source for SignInManager*

public class SignInManager<TUser> where TUser : class

{

private const string LoginProviderKey = "LoginProvider";
private const string XsrfKey = "XsrfId";

public SignInManager(UserManager<TUser»> userManager,
//0ther constructor properties

)
{
//Null checks and local variable assignments

}

//Properties removed for the sake of brevity
public UserManager<TUser> UserManager { get; set; }

public virtual async Task<SignInResult> J
PasswordSignInAsync(string userName, string password,
bool isPersistent, bool lockoutOnFailure)

var user = await UserManager.FindByNameAsync(userName);
if (user == null)
{

return SignInResult.Failed;

}

return await PasswordSignInAsync(user, password, J
isPersistent, lockoutOnFailure);

}

public virtual async Task<SignInResult> J
PasswordSignInAsync(TUser user, string password,
bool isPersistent, bool lockoutOnFailure)

*https://github.com/aspnet/AspNetCore/blob/release/3.1/sxc/Identity/Core/sxrc/
SignInManager.cs

10

https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Core/src/SignInManager.cs
https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Core/src/SignInManager.cs

CHAPTER 1 INTRODUCING ASP.NET CORE

if (user == null)
{

throw new ArgumentNullException(nameof(user));

}

var attempt = await CheckPasswordSignInAsync(user, J
password, lockoutOnFailure);
return attempt.Succeeded
? await SignInOrTwoFactorAsync(user, isPersistent)
. attempt;
}

public virtual async Task<SignInResult> J
CheckPasswordSignInAsync(TUser user, string password, J
bool lockoutOnFailure)

{
if (user == null)
{
throw new ArgumentNullException(nameof(user));
}

var error = await PreSignInCheck(user);
if (error != null)

{

return error;

}

if (await UserManager.CheckPasswordAsync(user, password))

{

var alwayslLockout =
AppContext.TryGetSwitch("Microsoft.AspNetCore.Identity.d
CheckPasswordSignInAlwaysResetLockoutOnSuccess", J
out var enabled) 8& enabled;

if (alwayslLockout || 'await IsTfaEnabled(user))
{

await ResetLockout(user);

}

11

CHAPTER 1 INTRODUCING ASP.NET CORE

return SignInResult.Success;

}

Logger.LogWarning(2, "User {userId} failed to provide J
the correct password.", await J
UserManager.GetUserIdAsync(user));

if (UserManager.SupportsUserLockout &% lockoutOnFailure)
{

await UserManager.AccessFailedAsync(user);

if (await UserManager.IsLockedOutAsync(user))

{

return await LockedOut(user);

}

}

return SignInResult.Failed;

There is a lot to cover in the SignInManager class since there is a lot to be improved
here in Listing 1-6 from a security perspective. For now, let’s just note that the
constructor takes a UserManager instance, and after the user is found (or not found) in
the database in UserManager . FindByName(), the responsibility to check the password is
passed to the UserManager in the CheckPasswordSignInAsync method in UserManager.
CheckPasswordAsync().

Next, let’s look at the UserManager to see what it does.

Listing 1-7. Simplified source for UserManager®

public class UserManager<TUser> : IDisposable where TUser : class
{
public UserManager(IUserStore<TUser> store,
IOptions<IdentityOptions> optionsAccessor,
IPasswordHasher<TUser» passwordHasher,

*https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Extensions.
Core/src/UserManager.cs

12

https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Extensions.Core/src/UserManager.cs
https://github.com/aspnet/AspNetCore/blob/release/3.1/src/Identity/Extensions.Core/src/UserManager.cs

