Q)
J
| -
QD
o O
J %B
VI S8 §
— @ 2 27
B = ET ZE
= = S &
S = 2t ST:
Ww m D|nuu_Wua%m
< 2| L£=&
w O
L] UJ

Essential Computer
Science

A Programmer’s Guide to
Foundational Concepts

Paul D. Crutcher
Neeraj Kumar Singh
Peter Tiegs
Apress:

Essential Computer Science: A Programmer’s Guide to Foundational

Concepts

Paul D. Crutcher Neeraj Kumar Singh
Welches, OR, USA Bangalore, Karnataka, India
Peter Tiegs

Hillsboro, OR, USA

ISBN-13 (pbk): 978-1-4842-7106-3 ISBN-13 (electronic): 978-1-4842-7107-0
https://doi.org/10.1007/978-1-4842-7107-0

Copyright © 2021 by Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484271063. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7107-0

To my wife, Lisa, for her unending support and
encouragement; to my sons currently studying
computer science, Kyle and Cameron, may this be
a bit of inspiration for their journey in life; and to the
memory of my father, Edwin Lee Crutcher, who passed
away while I worked on this book. I love you, Dad!

—Paul
To my wife, Shilpi, for her unwavering support.
—Neeraj

To Karen, Jane, Josephine, Henri, and
Jeanette, my family, for all of their support,
patience, and encouragement.

—Peter

Table of Contents

About the AUthOrS.....ccciusssmmmmmssssssnmmssssssnmmssssssnssssssssnssssssnsnsssssnnnnssssnnns XV
About the Contributorsccccrssmrmssnnmsssmsmsssssssssssssssssssssnssessnnsessans Xvii
About the Technical REVIEWErccurusssmssssssssssssssssssnsssssssnsssssssssnnnsssss Xix
Acknowledgmentsccccuuseemmmssssnnnmmssssssnsessssssssesssssnnsessssnnnssssssnnnnssss XXi
Introductionccccvissemmmnisssnnnmnssssnnnsss s Xxiii
Chapter 1: Fundamentals of a Computer Systemcccusveeenrnsssnnnnsnns 1
von Neumann ArchiteCture........coo s 1
CPU: Fetch, Decode, Execute, and STOre........cccceveveerverreeneriersersee e rer s seesaesennens 3
FELCN. e —————————— 4
Decode, Execute, and STOreccecevverreerercersersee s s e s s e s s 10
Controlling the FIOW ... s 13

TRE STACK..... e e e 15
Instruction Pipeling.........ccoovcrcrnn s 21
FIYNN’S TAXONOMYvcireiiccsrr et 22

Main Memory and Secondary STOrage.........cccorererrnererneneresesessesessesessesesessesenns 24
Input and OUEPUL (1/0)....ccerecererererererese s e 26
SUMMANY....ceitierirerere e e e p e e 27
References and Further Readingccccvverrevvnensensenenssensenesssessesessesessessessens 28

TABLE OF CONTENTS

Chapter 2: Programmingccccseusssnssssssnnnnss 29
Programming Language Fundamentals.........c.cccccvvrinninvninnnnnsnicsesssensennens 30
Hello, WOrIA! ...t n e s 31
Compile, LinK, and LOAU.........ccveerererrersererenensersesessssessessesssssssessessessssssessees 32
High-Level LaNQUAQJES.......ccccvverrerreererierseessesesesseessessessessssssessessessssssessessennes 35
Programming Paradigmscccvvrernnnnninnnsnsssese s ssessssessesnens 38
Imperative Programming........ccccocvvnnnnnnnsnssness s sessessessesssssssesse s 39
Declarative Programming.........ccccocevninrnininnnsnsninsnsessessess s ssssessessesnes 40
Object-Oriented Programming..........cccvrernnnnnsniesnssnsessesesessesesessssessesse s 42
Interpreted Programmingc.ccocvvvniniennsnsensesne s s se s 45
Parallel Programming...........coccvvviennnniniennsnsesse s sesseses s e ssssessessesnes 47
Machine Learning.........cccvvevrrnienennsinsessess s se s s s s ssssesssssesnes 49
SUMIMANY.....eeeeeeeeree e e e r e e e e e s re e e e e 50
References and Further Readingccocvvenrenrnnennenesesessseseseses s 50
Chapter 3: Algorithm and Data Structure..........cccccvsseemrrnssnnnnsnsssnnnns 53
What IS an Algorithm.........coevririnerrsrrr e 53
Good and Not So Good AlGOIItNIM.........cccuvrrererenrerseresse s s s s ssesesessesees 54
Time/SPace COMPIEXITY......ccivrvrerrerererrerreressssersesessesessese e sassessessessssessessens 54
Asymptotic NOtationcccceceririninnnrr e 55
Fundamental Data Structures and Algorithms.......c.ccocvvvrvrrevnrnrensesesessensenens 57
Store (Data SrUCTUIE).....evvveererererrerrere v srens 57
Problem Solving TEChNIQUESccociererirrrerr e 66
(2= L0] o] T 67
Divide and CONQUETccccovrrrcrierern s e 68
BrULE FOICE......ceeeeeececereec e 70
Greedy AlgOritNMS ... e 70

[RS R 0 0]0] FJE 71
NP-Complete and NP-Hard Problems...........ccccvirinnnninncnnsnsensesesessenennns 71

TABLE OF CONTENTS

DAtADASEScovicrirci e —————————— 72
Persistence and VOIUME ... 72
Fundamental Requirements: ACIDccoceveververierenensessesessssessesessesessessesaes 72
Brief History of Database System Evolution.........cccocecvvrivnvnvrienenensenienne, 74
Most Prominent Current Database SyStems.........covvvvvrevnrensennenesensensenes 74
Relational Data and SQL...........cccorrneennnnnss e sessseeas 74
1 77

1] 14 7 78

References and Further Readingcccvvviinnininicnnsnscnese e sessesnens 78

Chapter 4: Operating System..........ccconmnnmmmmmmmssssnnmnssssssnmsssssssssssannn 81

What Is an Operating SYStem.........ccccvvvrnrennenmninsesnesese s sesesesssnens 81
LR o TS 84

Why We Need @n 0S........ccovcimenineresrnessss s ssssessssessssssssessssssssnens 85
Purpose of @an 0S.......cccrinninn e 87
Complex and Multiprocessor SYStEMSccccvvrevnrnsnnene s sessessenns 88
Multitasking and Multifunction Softwareccovvvnresniesnnssnsesese e 88
MUIIUSEr SYSTEMS......ceccereecrireseree e 89
Why Is It Important to Know About the 0S?........ccoeervernnnnenenesessesennenens 90

Responsibilities 0f an 0S ... 92

£ T 1 =T L1 1T O 93
Program and ProCess BaSiCS.......c.cuvvrerrerierrnrensersersessnsessessessssessessessssessessenaes 9
ProCeSsS STateS........ccoccvereririrsiire s 94
Process Control BIOCK (PCB).......ccvevrrrervererrnnensensessesessesessessssessessessssessessesas 95
Context SWItChINGccccveveririre s e 97
SChEAUIING...cceiveieerer e s ene s 98
Scheduling Crteria.......c.ouovvrierienrrrer s e 100
Thread CONCEPLS......cvvvrrreriere et se e snennens 101

vii

TABLE OF CONTENTS

Memory Management...........ccoirinnnnninsin s 102
Address BiNAINGccocevirinininnenirsenses s s s sse s sessesssessessessenns 103
Logical vs. Physical Addresscccccocvvrnnneniniense s ssesses e ssesesnas 105
Inter-process COMMUNICALIONccecveereveererreriere s eaes 107

1/0 ManagemeNnt ...t e s 109
1/0 SUDSYSIEM ... 110
Polled vS. INTEITUPE 1/0Scvecercererererrere e se s sae s s s saessesessesnens 114
1/0 @and PErformanceccoverernesseseressssssesesesss s s sesesssssnsas 115
Synchronization CONCEPLS.....ccvevererrerreriereeserre e s s se s saesnes 116

File SYSIEMS.....oecccecerec sttt s 122
LI 0] 1 =]] RSO 123
Directory NameSPaCEccccvvererennsinesie s ssssessesnens 124

AcCesS and ProteCLiONcccoveeerercrrcrere s 126
Rings: User Mode and Kernel Modecccocvvrennnnnnennsensensesessssessensens 126
VIrU@IIZAtION.ceeeeeeeeeee e e 127
0] (= 0] TS 128

User Interface and SHell..........ccooeerrennerrrcrse s 128

S0ME 0S SPECITICS...ccvivrrerirrrirrrr e 129

11T 111 1T o OSSO 130

References and Further Readingcvcvverevvnensenerssensensesesessesessessssessessenes 131

Chapter 5: Computer Networks and Distributed Systems................ 133

History and Evolution of Networks and the Internet ... 133

Protocols: Stateful and Stateless...........cccvvvrrnvrnnennns s 139

Internet Protocol (IP): TCP @and UDP........cccccvvvennenmnnsesnsesenesesssesesesessesessanes 139
Host, IP Address, MAGC Address, Port, SOCKEL...........ccccvverveeneriensenseenesenens 143
DNS and DHCP.......covvieiririririreresese s ss s s ns 145
Proxy, Firewall, ROULINGccccveerererinenircse s sessenens 147

viii

TABLE OF CONTENTS

Distributed Systems: Prominent ArchiteCturescoovvvvrierievenserserseressessensenes 150
(01T 1T 150
PEEI 10 PR ... 151
L T =T S 152

Distributed System EXAmPIESccvceveverrrrerernserseressesessesessessssessessesssssssessenes 153
o ISP TTR TP 153
The World Wide WED ... 155

Case Study: Web Application.........cocovvninininnnnine e 158
System ArchiteCture ... ———— 158
HTML, CSS, and JavaSCripl.......c.ccceuvrrerierierensemsersesssssssesessessssessessessssessessens 159
FIONEENG ... 160
372 T = 1 o TS 162

SUMIMANY....eeeereecreree e se e e e e re e ne e e s 163

References and Further Readingccooeervvnnnenenescsnseseseses e 164

Chapter 6: Computer SeCUrityc.ccccrmmnssemnmmsssssnnsmsssssnssssssssnsssssssnns 165

ACCESS CONTIOL ... 166
Confidentiality........ccccvierierenrrere s 167
11) R 169
AVAIADITILY ... 170
Symmetric Key Cryptographycccvievennvnieniesessensessessesessessesessssessessenes 170
Asymmetric Key Cryptographycccccvvvrnnierennsnnsensessessssessessessssessessessens 171
Digital SIgNAtUESccvcererrrirrerere e naens 172
Digital CertifiCateScvrririrririere e e 172
Certificate ChaiNScocccvvverniesnes s 173
Salts and NONCES.......ccccvrrererrierine e 173
Random NUMDEIS.........correr e 174
Security in Client Computing SyStEmSccccovvevniennes s 175

ix

TABLE OF CONTENTS

Malware, the Bad Apples of SOftWare..........ccccveeriernrenrenserenensensesesessensensens 175
Trusted Execution Environments and Virtual Machines.............c.cceeervenne. 181
Communication Security: Security of Data in Motion.........cccccccvvvvinivnnccnnne, 185
Transport Layer SECUNLY........ccvvevrirrnic s 186
Virtual Private Network..........ccvrirrnrnreserecrsce s 188

IP SECUMLY ..euvueeeeeeeeeese s ssnas 189
Writing Secure Programs: Where Do We Start?cccccvvvncncninccnscnennn, 189
SUMMANY ... s se e e s s e nen e s 192
References and Further Readingccocuernvennnenmniesesnsesneses s 192
Chapter 7: Cloud Computing.....ccccuuseenmmssssssnnmsssssnsssssssssssssssssnsssssssnns 195
Cloud Computing MOGEIScceeriererinrirrerereressere e s s se e ssessssessessens 196
188S..... e ——————————————————— 197
PGS ... —————————— 198
SBIVEIESS.....ccucecerirrrce s 199
SAAS ... —————————————————————— 200
Comparison of Cloud Computing Modelsccccoevvrrririennnnsnsenenensensenes 200
Benefits of Cloud COMPULINGcccceverrererreriererissersese s sessessessesessessessees 201
0L 201
T2 P11 O 202
L1121 o SRS 203
Reliability and Availability.........ccccoovvrininiennsnr e sesennens 203
ProAUCTIVITY.....ccviereerrerere s sr e nne e 203
PeIfOrMANCE ...t 204
Ease of Use and Maintenance.............ccocovmmnnsnesennsnsnssssesessssssse s 204
Cloud Deployment Configurations..........cceevreverenserierenessessessesssessessessessssessessens 204
Private CloUd ... s 205
PUDIC CIOU.......coeeiiiireseseee e 205

TABLE OF CONTENTS

HYDIFA ClOUovceiicicicecese s 206
Ideal Cloud Deployment Configurationccceeevreverserierevssensesseressessensenses 206
Cloud Configuration Interface/Mechanism...........ccocuvvernvenneseninnernsesesesenenes 207
Cloud Service ProVIAErS.........ccococreeererererenereeeresese s se e snenes 209
Considerations in Choosing @ CSP........c..cccuccvvrininnnnnness s sessesnes 209
Motivation for SWitching CSPSccccvrinrinininnrnne s 210
Considerations for Developing Portable and Interoperable Cloud Solutions.....212
Interoperability vs. Portability...........ccoverrnenrenernscrresesese s 213
Containers, Docker, and KUDEINEtes........cccverververreereriersenseessessersesssessessenns 216
The Way FOrWardccccoveemrenernesesesssese s sesse e s sessssssssssssssesessssssssnens 221
ReCOmMMENUAtiONS........ccovererenerrnreresesese s s 222
SUMMANY....ctitiierinerirese e e e nr e 223
References and Further Readingccccvverievvrensenienenensensese s sesessesessessessenns 223
Chapter 8: Machine Learningccucecssessssssnsssssssnsssssssssssssssssssssssssnns 225
Brief History of Machine Learningccccocevvvnnniennsnsnseniesssessesessssessessens 226
Artificial Intelligence, Machine Learning, and Deep Learning............cccueceerenns 228
Fundamental Tenets of Machine Learning.......c.cccovrvnrnsnenenesssesssesesesenennes 229
MOUEIS ... 230

L U011 S 231
Prediction (INFErENCE)ccovrererrercrerere s 232
Categories of Machine 1earning..........ccuccvvrererenrnsesnsessssesessse s s senns 232
Supervised Learning.........couovvenerenernsssessesesensssssessssssssssssssssssessssssssssssnnes 232
Unsupervised Learning.........ccoveeerenernsmsensesssssssssessssessssssssssssessssssssssssnnes 234
Semi-supervised LEarningc.cucuernemressesesenessssessssessssssessssssessesssssssssnnes 234
Reinforcement Learning.........ccovveerneseresesnsssnsesesssessssesessesessssesessessssenens 234
Machine Learning in PractiCeccouruvrvrernsesnnesnnnse s sessesessens 235
Leading Machine Learning Frameworkscoucvnenennsesnsesensesenesensnns 235

TABLE OF CONTENTS

Machine Learning and Cloud COMPULINGccovevrerernrensenseriesessensesesessessessees 236
The Way FOrward ... s s s sssssssesnesnes 237
SUMMAIY..c..citiiiire e bbb b e R r s e e nne s 239
RETEIBNCEScoveeeeeeer e 240
Appendix A: Software Development Lifecycleccccuusuemmrrnsssnnnssnans 241
PlANNINGcoveceeineireseree e s 242
ANAIYSIS ... vierrerrerirrere et re e e e e e aennn 243
Architecture and DeSigN........ccvirrireninirsr e 244
IMplementation ... ———————— 244
2] SRR 245
DL o) [0 ST 246
MaINTENANCEcceereerrce s 247
Appendix B: Software Engineering PractiCescccussesmsssssssssanssssanss 249
Planning and Management Practices: Agile........cccvverrrrrrierienensensesenessensensens 249
LT 1] 11 OSSOSO 249
Kanban ... 251
Analysis and DESIGNccucerrerererrerieriere e e s s sss s e s saesessessessens 252
Scaling Agile PraCtiCeS......ccvervrrrrieriernrersere s sessessessessesessessessessssessesneees 252
DOCUMENTALION......ccoviricccrere s 253
Requirements, Design, and ArchiteCtureccooevvververierenessersesenessensennens 253
Comments and COUEccccvererermreerisiresses e sees 254
L= N 254
L33 1] o S 254
Phases and Categories of Testing and Goals..........c.ccvverrerererrerierienessensenens 255
Test-Driven Developmentcovvvrienenininsin e ssessenns 256

xii

TABLE OF CONTENTS

Developing for DEDUQ.......cccvveriirine e 256
Asserts and EXCEPLIONScccvvvrerierinsis e se s sse s e s ssesaenns 257
Logging and TraCingccccerervrierneniensensie s sses e ssessee s s sesssessessesns 257

Source Control Management ... 258
Purpose and MeChaniSm.........cccoververvrinneriensessee e sesses e s e e see e ssesnees 258
L0103 260

Build Optimizations and TOOISc.ccccevrrriniennnnnn s 261
Purpose and Mechanism. ... s sesesnens 261
L0103 SRS 262

Continuous Integration and Continuous Delivery..........ccoccvvernesernsesenesensnnes 264
Purpose and MechaniSm...........cccuevvennenennsesnesesnsse s sesssseens 264
TOOIS ...t ———————————————— 266

Appendix C: ACPI System Statescccermmsmnnnmmssssnsnmssssssssssssssnsssnns 269

Global and System States ... ———— 270

DEVICE STALESceeeeereecrerere e 273

ProCeSSOr STALES......ccvvererererrese s 274

Appendix D: System Boot FIOW.........ccounnmmmmmmmmmmmmssssssssssssnnssssssssssnnnns 277
INA@X.ueeeiisnnnsssnnnsssanssssannsssansnssanssssannsssansssssnsssssnnssssnnssssnnsnssnnnsssnnnssnns 281

xiii

About the Authors

Paul D. Crutcher is a senior principal
engineer at Intel Corporation, managing
the Platform Software Architecture team in
the Client Computing Group (CCG). Paul
has worked at Intel for more than 25 years
and has also worked at two smaller software
companies. Paul has a degree in computer
science, with expertise spanning software
development, architecture, integration, and
validation based on systems engineering
best practices in multiple areas. He holds
several patents and has multiple papers and
presentations to his credit.

Neeraj Kumar Singh is a principal engineer
at Intel with more than 15 years of system
software and platform design experience.
His areas of expertise are hardware/software
(HW/SW) codesign, system/platform
architecture, and system software design and
development. Neeraj is the lead author of
two other books, System on Chip Interfaces

' for Low Power Design and Industrial System
Engineering for Drones: A Guide with Best
Practices for Designing, in addition to many
other papers and presentations.

ABOUT THE AUTHORS

Peter Tiegs is a principal engineer at Intel
with around 20 years of software experience.
Inside Intel, he often consults on DevOps
topics such as build automation and source
code branching. Over the last decade, Peter
evangelized continuous integration and
delivery as well as agile practices at Intel.
Peter has written software at all levels of the
stack from embedded C code to Vue.js. His
programming language of choice is Python.

About the Contributors

Chockalingam Arumugam is a system
software architect with expertise in design,
development, and delivery of software
solutions that work across OSs. He holds a
master’s degree in software systems from
Birla Institute of Technology and a bachelor’s
degree in electronics and communications
from Anna University. He is a hands-on
technologist on OS-agnostic software

development and has over 12 years of
experience in the industry. In recent years, he has been specializing in
cloud-based telemetry solutions.

Through his career, he has worked on a broad set of domains,
including device drivers, firmware/platform services, desktop/universal
applications, web applications, and services. He specializes in the areas of
Platform Health Analytics, Windows crash decode, and thermal and power
management debug and has led multiple engagements in these areas.
These solutions are used extensively in the industry for client platform
validation and debug. He is currently based out of Bangalore, India, and
works at Intel Corporation.

xvii

ABOUT THE CONTRIBUTORS

xviii

Prashant Dewan is a principal engineer at
Intel and is very passionate about computer
security. At Intel, he has worked on multiple
security technologies and has filed 100+
patents in the area of computer security. He
has a master’s and doctorate in computer
science from Arizona State University.

About the Technical Reviewer

Kenneth Knowlson is a senior principal
engineer in the Client Computing Group
(CCQG) division at Intel. He leads a group

of principal engineers in the Analytics and
DevOps subgroup, within CCG, leading the
organization’s strategic and technical direction
in these dynamic areas. Prior to joining CCG,
Ken invented the processes and procedures
for “pre-silicon” (Pre-Si) software and system
development at Intel. The Pre-Si initiative is
focused on accelerating time to market by
shifting SW and FW development “left,” before

Siis available, enabling products to come to market much faster than they

would otherwise. Pre-Si uses technologies like Virtual Platform, FPGA, and

System-Level Emulation to approximate the final Si-based product. Ken

also has a long history at Intel creating and delivering consumer-connected

media products streaming media space.

Ken holds bachelor’s degrees in mathematics and physics from the

University of California Santa Cruz. Ken enjoys swimming and running
and also holds black belts in taekwondo and hapkido, although he no

longer practices.

Xix

Acknowledgments

We would like to express gratitude to the people who helped us through
this book, some of them directly and many others indirectly. It's impossible
to not risk missing someone, but we will attempt anyway.

First and foremost, we would like to sincerely thank our technical
reviewer, Ken Knowlson, for meticulous reviews; it helped the book
significantly. Thank you, Ken!

We would like to acknowledge Prashant Dewan for writing Chapter 6
and Chockalingam A. for his help on Chapter 4 of the book.

Thank you so much Rita Fernando, Susan McDermott, and all of the
Apress publishing team for the outstanding work, help, guidance, and
support; you have gone the extra mile to make the book what it is.

Above all, we thank our family and friends for their understanding and
support and for being continuous sources of encouragement.

Introduction

According to code.org, there are 500,000 open programming positions
available in the United States alone - compared to an annual crop of just
50,000 graduating computer science majors. The US Department of Labor
predicted there will be 1.4 million computer science jobs by 2020, however,
only enough people to fill roughly 30% of these jobs. To bridge the gap,
many people not formally trained in computer science are employed in
programming jobs. While they are able to start programming and coding
quickly, it often takes them time to acquire the necessary understanding
and gain the requisite skills to become an efficient computer engineer or
advanced developer.

The goal of the book is to provide the essential computer science
concepts and skills necessary to develop a sound understanding of the
field. It focuses on the foundational and fundamental concepts upon
which expertise in specific areas can be developed, including computer
architecture, programming language, algorithm and data structure,
operating systems, computer networks, distributed systems, security, and
more.

This is a must-read for computer programmers lacking formal
education in computer science. Secondarily, it is a refresher for all,
including people having formal education in computer science as well as
anyone looking to develop a general understanding of computer science
fundamentals.

Overall, we authors have attempted to make it as lucid as possible, so
people with limited or even no background in computer science can pick
up the book and go through the journey to develop a good understanding
of computer science. We're excited to have you on board.

xxiii

CHAPTER 1

Fundamentals of a
Computer System

There are many resources online to get you started programming,

but if you don’t have training in computer science, there are certain
fundamental concepts that you may not have learned yet that will help
you avoid getting frustrated, such as choosing the wrong programming
language for the task at hand or feeling overwhelmed. We wrote this book
to help you understand computer science basics, whether you already
started programming or you are just getting started. We will touch on the
topics someone with a computer science degree learns above and beyond
the semantics and syntax of a programming language. In this first chapter,
we will cover a brief history and evolution of a computer system and the
fundamentals of how it operates. We will cover some low-level computer
architecture and programming concepts in this chapter, but subsequent
chapters will cover higher-level programming concepts that make it much
easier to program the computer.

von Neumann Architecture

You've probably heard stories about computers the size of an entire
room in the 1940s into the 1970s, built with thousands of vacuum tubes,
relays, resistors, capacitors, and other components. Using these various

© Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs 2021
P.D. Crutcher et al., Essential Computer Science,
https://doi.org/10.1007/978-1-4842-7107-0_1

https://doi.org/10.1007/978-1-4842-7107-0_1#DOI

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

components, scientists invented the concept of gates, buffers, and
flip-flops, the standard building blocks of electronic circuits today. In the
1970s, Intel invented the first general-purpose microprocessor, called

the 8088, that IBM used to make the first PC that was small enough for
personal use. Despite the continuous advancements that have made it
possible to shrink the microprocessor, as you'll see, the core elements of
today’s desktop or laptop computer are consistent with the first computers
designed in the 1940s!

In 1945, John von Neumann documented the primary elements of a
computer in the “First Draft of a Report on the EDVAC” based on the work
he was doing for the government. EDVAC stands for Electronic Discrete
Variable Automatic Computer, which was the successor to the Electronic
Numerical Integrator and Computer (ENIAC), the first general-purpose
computer developed during World War II to compute ballistic firing tables.
EDVAC was designed to do more general calculations than calculating
ballistic firing tables. As depicted in Figure 1-1, von Neumann described
five subdivisions of the system: central arithmetic and central control (C),
main memory (M), input (I), output (O), and recording medium (R). These
five components and how they interact is still the standard architecture of
most computers today.

Memory
Input
npu Central Recording
Control Medium
Output

Figure 1-1. Primary Architecture Elements of a Computer

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

In his paper, von Neumann called the central arithmetic and control
unit the central control organ and the combination of central control
and main memory as corresponding to associative neurons. Even today,
people refer to the central processing unit, or CPU, as the “brain” of the
computer. Don’t be fooled, though, because a computer based on this
architecture does exactly what it is programmed to do, nothing more and
nothing less. Most often the difficulties we encounter when programming
computers are due to the complex nature of how your code depends on
code written by other people (e.g., the operating system), combined with
your ability to understand the nuances of the programming language
you're using. Despite what a lot of people might think, there’s no magic to
how a computer works, but it can be complicated!

CPU: Fetch, Decode, Execute, and Store

The CPU's job is to fetch, decode, execute, and store the results of
instructions. There are many improvements that have been invented to
do it as efficiently as possible, but in the end, the CPU repeats this cycle
over and over until you tell it to stop or remove power. How this cycle
works is important to understand as it will help you debug multi-threaded
programs and code for multicore or multiprocessor systems.

Note Threads are a mechanism used to simulate executing a set of
instructions in parallel (at the same time), whereas multiple cores in
the same system actually do execute instructions in parallel.

The basic blocks of a CPU are shown in Figure 1-2. The CPU needs a
clock that sends an electric pulse at a regular interval, called a frequency.
The frequency of the clock dictates how fast the CPU can execute its
internal logic. The control unit drives the fetch, decode, execute, and store

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

function of the processor. The arithmetic and logic unit, or ALU, performs
math operations and digital logic operations like AND, OR, XOR, and so
on. The CPU has an internal memory unit for registers and one or more
high-speed memory caches to store data proactively pulled in from main
memory.

Control Unit Clocking

Arithmetic and Logic
Unit (ALU)

Internal Memory for

Memory Cache
Registers y

Figure 1-2. Basic Blocks Inside a CPU

Fetch

The CPU fetches instructions from memory using addresses. Consider
your home’s mailbox; it has an address and, if it’s anything like my
mailbox, contains junk mail and a letter from my mom, if I'm lucky. Like
the mail in your mailbox, instructions sit in memory at a specific address.
Your mailbox is probably not much bigger than a shoebox, so it has a limit
to how much mail the mail carrier can put into it. Computer memory

is similar in that each address location has a specific size. This is an
important concept to grasp because much of computer programming has

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

to do with data and instructions stored at an address in memory, the size
of the memory location, and so on.

When the CPU turns on, it starts executing instructions from a specific
location as specified by the default value of its instruction pointer. The
instruction pointer is a special memory location, called a register, that
stores the memory address of the next instruction.

Here’s a simple example of instructions in memory that add two
numbers together:

Address Instruction Human-Readable Instruction
200 B80A0O00000 MOV EAX,10
205 BBOA000000 MOV EBX,10
20A 01D8 ADD EAX,EBX

The first column is the address in memory where the instruction is
stored, the second column is the instruction itself, and the third column
is the human-readable version of the instruction. The address and
instruction numbers are in hexadecimal format. Hexadecimal is a base
16 number system, which means a digit can be 0-F, not just 0-9 as with
the decimal system. The address of the first instruction is 200, and the
instruction is “mov eax, 10,” which means “move the number 10 into the
EAX register” B8 represents “move something into EAX,” and 0A000000 is the
value. Hexadecimal digit A is a 10 in decimal, but you might wonder why
it’s in that particular position.

It turns out that CPUs work with ones and zeros, which we call
binary. The number 10 in binary is 1010. B8 is 10111000 in binary, so the
instruction BEOA0O00000 in binary would be 1011 1000 0000 1010 0000
0000 0000 0000 0000 0000.Can you imagine having to read binary
numbers? Yikes!

In this binary format, a single digit is called a “bit” A group of 8 bits is
called a “byte.” This means the maximum value of a byte would be 1111
1111, which is 255 in decimal and FF in hexadecimal. A word is 2 bytes,
which is 16 bits. In this example, the “MOV EAX” instruction uses a byte for

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

the instruction and then 4 words for the data. If you do the math, 4 words
is 8 bytes, which is 32 bits. But if you are specifying the number 10 (or 0A
in hexadecimal) to be moved into the EAX register, why is it 0AO00000?
Wouldn't that be 167,772,160 in decimal? It would, but it turns out
processors don’t expect numbers to be stored in memory that way.

bit 0ori1

byte 8 bits

word 2 bytes = 16 bits

dword 2 words = 4 bytes = 32 bits

Most CPUs expect the lower byte of the word to be before the upper
byte of the word in memory. A human would write the number 10 as a
hexadecimal word like this: 000A. The first byte, 00, would be considered
the most significant byte; and the second byte, 0A, would be the least
significant. The first byte is more significant than the second byte because
it's the larger part of the number. For example, in the hexadecimal
word 0102, the first byte 01 is the “most significant” byte. In this case, it
represents the number 256 (0100 in hexadecimal is 256). The second
02 byte represents the number 2, so the decimal value of the hexadecimal
word 0102 is 258. Now, let’s look at the “MOV EAX, 10” instruction as a
stream of bytes in memory:

200: B8 <- Instruction (MOV EAX)

201: OA <- Least significant byte of 1st word
202: 00 <- Most significant byte of 1st word
203: 00 <- Least significant byte of 2nd word
204: 00 <- Most significant byte of 2nd word
205: ?? <- Start of next instruction

The instruction is a single byte, and then it expects 4 bytes for the data,
or 2 words, also called a “double word” (programmers use DWORD for
short). A double word, then, is 32 bits. If you are adding a hexadecimal
number that requires 32 bits, like 0DOCOBOA, it will be in this order in

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

memory: 0AOBOCOD. This is called “little-endian.” If the most significant
byte is first, it’s called “big-endian.” Most CPUs use “little-endian,” but
in some cases data may be written in “big-endian” byte order when sent
between devices, for instance, over a network, so it’s good to understand
the byte order you're dealing with.

For this example, the CPU’s instruction pointer starts at address 200.
The CPU will fetch the instruction from address 200 and advance the
instruction pointer to the location of the next instruction, which in this
case is address 205.

The examples we've been studying so far have been using decimal,
binary, and hexadecimal number conventions. Sometimes it is hard to
tell what type of number is being used. For example, 10 in decimal is 2 in
binary and 16 in hexadecimal. We need to use a mechanism so that it is
easy to tell which number system is being used. The rest of this book will
use the following notation:

Decimal: No modifier. Example: 10

Hexadecimal: Starts with Ox or ends in h. Example:
0x10 or 10h

Binary: Ends in b. Example: 10b

Instruction Set Architecture

Instructions are defined per a specification, called instruction set
architecture, or ISA. There are two primary approaches to instruction set
architecture that have evolved over time: complex instruction sets and
reduced instruction sets. A system built with a complex instruction set is
called a complex instruction set computer, abbreviated as CISC. Conversely,
a system built with a reduced instruction set is referred to as a reduced
instruction set computer, abbreviated as RISC. A reduced instruction set is
an optimized set of instructions that the CPU can execute quickly, maybe in
a single cycle, and typically involves fewer memory accesses.

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

Complex instructions will do more work in a single instruction and
take as much time to execute as needed. These are used as guiding
principles when designing the instruction set, but they also have a
profound impact on the microarchitecture of the CPU. Microarchitecture
is how the instruction set is implemented. There are multiple
microarchitectures that support the same ISA, for example, both Intel and
AMD (Advanced Micro Devices) make processors that support the x86 ISA,
but they have a different implementation, or microarchitecture. Because
they implement the same ISA, the CPU can run the exact same programs
as they were compiled and assembled into binary format. If the ISA isn’t
the same, you have to recompile and assemble your program to use it on a
different CPU.

Note A compiler and an assembler are special programs that take
code written by humans and convert it into instructions for a CPU that
supports a specific instruction set architecture (ISA).

Whether it is complex or reduced, the instruction set will have
instructions for doing arithmetic, moving data between memory locations
(registers or main memory), controlling the flow of execution, and more.
We will use examples based on the x86 ISA to understand how the CPU
decodes and executes instructions in the following sections.

Registers

CPUs have special memory locations called registers. Registers are used to
store values in the CPU that help it execute instructions without having to
refer back to main memory. The CPU will also store results of operations in
registers. This enables you to instruct the CPU to do calculations between
registers and avoid excess memory accesses. Table 1-1 is the original x86
ISA base register set.

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

Table 1-1. x86 Base Register Set

64 bits 32 hits 16 bits(8086)
(x86_64) (x86) 8 bits 8 bits
Accumulator RAX EAX AX
AH AL
Base register RBX EBX BX
BH BL
Counter RCX ECX CX
CH CL
Data RDX EDX DX
DH DL
Base pointer RBP EBP BP
BPL
Source index RSI ESI SI
SIL
Destination index RDI EDI DI
DIL
Stack pointer RSP ESP SP
SPL
General purpose R8-R15 R8D-R15D R8W-R15W
R8B-R15B

It's important to understand how the registers are used by the CPU
for the given ISA. For example, the 32-bit counter, in this case ECX, will be
automatically decremented by the loop instruction. Another example is the
stack pointer where you can directly manipulate it, but it's modified by many
other instructions (we will explore the concept of a stack later in this chapter).

CHAPTER 1 FUNDAMENTALS OF A COMPUTER SYSTEM

The x86 register set has evolved over time and is meant to be backward
compatible with older versions of x86 CPUs. You can see the progression
from the original 16-bit processor to 32-bit and the now more common
64-bit memory address sizes. As the memory address size increased, so
did the register size, and new names were given to allow using the different
register sizes with the appropriate instructions. Even when in 64-bit mode,
the 32-bit register names enable programs written for 32 bits to run on
64-bit machines.

A typical ISA will have multiple register sets. For example, x86 has a
floating-point register set and another register set for handling large data
sets. The popular ARM architecture also has multiple register sets. The
register set and the ISA go hand in hand!

Decode, Execute, and Store

Decoding is when the CPU interprets the instruction and transfers the data
needed to execute the instruction into the CPU to prepare to execute the
instruction.

Instructions are formatted in a particular way to enable efficient
decoding. The instruction format specifies the opcode (the operation to be
performed), the operands (the registers or data needed for the operation),
and the addressing mode. The number and order of the operands depends
on the instruction addressing mode as follows:

Register Direct: Both operands are registers:

ADD EAX, EAX

Register Indirect: Both operands are registers, but one contains the
address where the operand is stored in memory:

MOV ECX, [EBX]

10

