AIChE[®] Equipment Testing Procedure

TRAYED AND PACKED COLUMNS

A Guide to Performance Evaluation

Third Edition

Prepared by the Equipment Testing Procedures Committee of the

American Institute of Chemical Engineers

WILEY

AIChE Equipment Testing Procedure Trayed and Packed Columns

AIChE Equipment Testing Procedure Trayed and Packed Columns

A Guide to Performance Evaluation

Third Edition

Equipment Testing Procedures Committee of the American Institute of Chemical Engineers

Cover and book design: Lois Anne DeLong

It is sincerely hoped that the information presented in this document will lead to an even more impressive performance by the chemical processing and related industries. However, the American Institute of Chemical Engineers, its employees and consultants, its officers and directors, Equipment Testing Procedures Committee members, their employers, and their employers' officers and directors disclaim making or giving any warranties or representations, express or implied, including with respect to fitness, intended purpose, use or merchantability and/or correctness or accuracy of the content of the information presented in this document. Company affiliations are shown for information only and do not imply approval of the procedure by the companies listed. As between (1) the American Institute of Chemical Engineers, its employees and consultants, its officers and directors, Equipment Testing Procedures Committee members, their employers, and their employees and consultants, its officers and directors, Equipment Testing Procedures Committee members, their employers, and their employers, and directors, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequences of its use or misuse.

Copyright © 2014 by American Institute of Chemical Engineers. All rights reserved

A Joint Publication of the Center for Chemical Process Safety of the American Institute of Chemical Engineers and John Wiley & Sons, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

American Institute of Chemical Engineers

AIChE Equipment Testing Procedure : Trayed and packed columns / a guide to performance evaluation, third edition.

p. cm. Includes index. ISBN 978-1-118-62771-6 (paper)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Trayed and Packed Columns

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS EQUIPMENT TESTING PROCEDURES COMMITTEE

Chair: Becky Starkweather, P.E. Scientex L.C.

Vice Chair: Prashant D. Agrawal, P.E. Consultant

> Past Chair: James Fisher, P.E. Amgen, Inc.

TRAYED & PACKED COLUMNS PROCEDURE REVISION SUBCOMMITTEE

Chair: **Zhanping Xu** UOP LLC, A Honeywell Company Co-Chair: **Daniel R. Summers** Sulzer Chemtech USA, Inc

General Committee Liaison: **Prashant D. Agrawal, P.E.** Consultant

WORKING COMMITTEE

Tony Cai Fractionation Research, Inc. **Bruce Holden** Dow Chemical **Ron Olsson** Celanese Corp.

Lowell Pless Tracerco Michael Schultes Raschig GmbH **Frank Seibert** University of Texas

Simon X. Xu Technip

CONTRIBUTING REVIEWERS

Greg Cantley Marathon Oil Brad Fleming Raschig USA Joe Flowers DuPont Dennis Maloney CB&I Lummus

Todd Marut ExxonMobil **Paul Morehead** Koch-Glitsch Zarko Olujic Univ. of Delft, NL Toshiro Wakabayashi Toyo Engineering, JP

Tim Zygula BASF

> Company affiliations are shown for information only and do not imply Procedure approval by the company listed.

Acknowledgement: This procedure draws heavily on the AIChE Tray Distillation Columns Testing Procedure, 2nd Edition, 1987 and Packed Columns Testing Procedure, 2nd Edition, 1990.

Second Edition

Packed Columns: Officially approved for publication by AIChE Council in 1990 *Tray Distillation Columns*: Officially approved for publication by AIChE Council in 1987

First Edition

Packed Columns: Officially approved for publication by AIChE Council in 1965 *Tray Distillation Columns:* Officially approved for publication by AIChE Council in 1962

Members Participating in the Second Edition

Packed Columns

J.W. Drew, L.O. Frescoln, T.L. Holmes, C-L. Hsieh, H.Z. Kister, G.J. Kunesh, T.P. Ognisty

Tray Columns

M.L. Becker, R.M. Bellinger, O. Frank, R. Harrison, J.L. Humphrey, E.J. Lemieux, E.J. Noelke, M. Sakata, V.C. Smith

Members Participating in the First Edition

Packed Columns

C.S. Brown, R.S. Eagle, T. Liggett, O.W. Ridout, H.L. Shulman

Tray Distillation Columns

K.L. Birk, G.K. Connolly, L.H. Corn, R.S. Eagle, J.A. Gerster, E.W. Grohse, J.E. Jubin, E.T. Merrill, M.P. Nelson, R.F. Romell, E.H. Ten Eyek, T.J. Walsh

The rewrite committee would like to acknowledge Henry Kister for his contribution to a major portion of this work. Even though he was not officially on the re-write committee, his wording on test procedure from the second edition of AIChE's Packed Columns Equipment Testing Procedure were retained nearly word for word, as can be exemplified in pages 388-419 of his 1990 book Distillation Operation. When combining both the Tray Distillation Columns and Packed Columns testing procedures, the re-write committee purposefully retained the words generated by Henry Kister in Section 500.0 from "Packed Columns" because of its extensive content and clarity.

CONTENTS

100.0 PURP	OSE & SCOPE	1
101.0	Purpose	1
102.0	Scope	1
200.0 DEFIN	NITION AND DESCRIPTION OF TERMS	2
201.0	Flow Quantities	2
202.0	Key Components	3
203.0	Mass Transfer Efficiency	4
	203.1 Theoretical Trays or Plates or Stages	4
	203.2 Overall Column Efficiency	4
	203.3 Apparent Murphree Tray Efficiency	4
	203.4 Ideal Murphree Tray Efficiency	4
	203.5 Multiplice Found Enterency 203.6 HETP	4
	203.7 HTU	4
	203.8 NTU	4
204.0	Operating Lines	5
205.0	Pinch	5
206.0	Maximum Throughput	5
	206.1 Maximum Hydraulic Throughput	5
	206.2 Maximum Operational Capacity	5
207.0	206.3 Maximum Efficient Capacity	5
207.0	Minimum Operating Rate	5
208.0	Operating Section	5
209.0	Hardware	6
	209.1 Components of a Trayed Column	6
	209.2 Components of a Packed Column	1
300.0 TEST	PLANNING	9
301.0	Preliminary Preparation	9
	301.1 Safety	10
	301.2 Environmental Considerations	10
	301.3 Test Objectives	10
	301.4 Organizational Resources	10
	301.6 Review of Historic Operating Data	10
302.0	Column Control and Instrumentation	10
303.0	Peripheral Equipment	11
304.0	Pre-test Calculations	11
20110	304.1 Process Simulation	11
	304.2 Dry Run	11
	•	

AIChE Equipment Testing Procedure

305.0. Types of Tests	12
305.1 Performance Tests	12
305.2 Accentance Tests	12
306.0. Specific Areas of Interest	12
306.1 Packing Efficiencies	12
306.2 Tray Efficiencies	12
306.3 Overall Column Efficiency	13
306.4 Capacity Limitations	13
307.0 Energy Consumption	14
308.0 Pressure Drop Restrictions	15
309.0 Data Collection Requirements	15
309.1 Process Operating Data	15
309.2 Gamma Scan Data	15
310.0 Conditions of External Streams	18
310.1 Overall and Component Material Balances	18
310.2 Overall Enthalpy Balances	18
311.0 Internal Temperatures	18
311.1 Heat Balances	18
311.2 Internal Profiles	18
312.0 Internal Samples	20
312.1 Internal Samples for Efficiency Checks	20
312.2 Internal Samples for Overall Performance	20
313.0 Pressure Profiles	20
314.0 Data Requirements-Physical Properties	20
314.1 Test Mixtures	20
314.2 Essential Data	21
315.0 Auxiliary Data	21
316.0 Test Procedure Documentation	21
400.0 METHODS OF MEASUREMENT AND SAMPLING	22
401.0. System Controls and Operating Stability	22
402.0 M	22
402.0 Measurement of Temperatures	22
402.1 Accuracy	22
402.0 Maximum and a f Flow Pater	22
403.0 Measurement of Flow Rates	24
403.2 Rotameters	24
403.3 Vortex Flow Meters	25
403.4 Coriolis Flow Meters	25
403.5 Magnetic Flow Meters	25
403.6 Pitot Tube (or Annubar)	25
403.7 Direct Volume or Weight Measurement	26
404.0 Measurement of Column Pressure Drop	26
404.1 Instrument	26
404.2 Pressure Taps	26
404.3 Seal Pots	33

Trayed and Packed Columns

404.4 Leakage Check	33
404.5 Accuracy	33
405.0 Sampling Procedure	34
405.1 General	34
405.2 Selection of Sampling Points	34
405.3 Sample Connections	35
405.4 Containers	35
405.5 Sampling of High Boiling Materials	36
405.6 Sampling of Intermediate Boiling Materials	37
405.7 Sampling of Materials Having Boiling Points Below - 50 F (-46 C)	40
405.8 Leakage Check	41
405.9 Labeling and Handling the Samples	41
500.0 TEST PROCEDURE	43
501.0 Preliminary	43
502.0 Test Procedure for Maximum Hydraulic Throughput	43
502.1 Flood Symptoms	44
502.2 Performing Capacity Tests	45
502.3 Optional Test Technique – Gamma Scanning	48
503.0 Considerations Affecting Efficiency Test Procedure	48
503.1 Rigorous Versus Shortcut Efficiency Tests	48
503.2 Strategy of Efficiency Testing	49
503.3 Early Preparation for Efficiency Tests	50
503.4 Last-minute Preparations for Efficiency Tests	53
503.5 Establishment of Steady State Conditions	55
503.6 The Test Day	56
503.7 Concluding Test	56
600.0 COMPUTATION OF RESULTS	
601.0 Verification of Test Data and Simulation Models	58
602.0 Material Balance	59
602.1 End Effects	59
603.0 Enthalpy Balance	59
603.1 Overall Balance	59
603.2 Internal Flow Rates	60
604.0 Hydraulic Performance	60
604.1 Traved Column	60
604.2 Packed Column	61
605.0 Efficiency Performance	61
605.1 Traved Column	62
605.2 Packed Column	69
700.0 INTERPRETATION OF RESULTS	76
701.0 Sources of Experimental Error	76
701.1 Material and Enthalpy Balances	77

AIChE Equipment Testing Procedure

702.0 Effects of Experimental Error	78
703.0 Design versus Performance	78
703.1 Mechanical/Tower Equipment	78
703.2 Process Conditions	78
704.0 Hydraulic Performance	79
704.1 Mechanical/Tower Equipment	79
704.2 Tray	79
704.3 Packing	80
704.4 Process Conditions	80
705.0 Mass Transfer Performance	81
705.1 Mechanical/Tower Equipment	81
705.2 Tray	81
705.3 Packing	82
705.4 Maldistribution	82
705.5 Process	84
706.0 Test Troubleshooting	85
706.1 Analysis Procedure	85
706.2 Sampling	85
706.3 Equilibrium Data	85
706.4 Temperature Measurements	85
706.5 Heat and Material Balances	86
706.6 Fluctuation of Process Conditions	86
706.7 Pressure Drop Measurements	86
706.8 Incorrect Prediction of Pressure Drop	86
706.9 Errors in Assumptions in Modeling Mass Transfer	86
706.10 Multicomponent Systems Deviate from Binary Data	87
706.11 High Purity Separation	87
706.12 Test and Design Conditions	87
800.0 APPENDIX	88
801.0 Notation	88
801.1 Greek Symbols	90
802.0 Sample Calculations	90
802.1 General Analysis of Test Data	90
802.2 Packed Column	91
802.3 Trayed Column	107
803.0 References	126

List of Tables

Table 1.	Comparison of Dynamic Pressure Drop and Static Head	33
Table 2.	Example of Data Acquisition Table for Heat-Pumped C ₃ Splitter	54
Table 3.	Packing Factors for Random Packings (Typical)	63
Table 4.	Packing Factors for Typical Structured Packings	64
Table 5.	Packed Column Arrangement-O/P-Xylene Distillation (Eng Units)	91
Table 6.	Process Simulation of O/P-Xylene Distillation (Eng Units)	93
Table 7.	Summary of Measured and Calculated Pressure Drop (Eng Units)	95
Table 8.	Pressure Drop Estimations Using Data from Figures 13 and 15	96
Table 9.	Estimated Percent of Flood for Each Bed Using Data from Figures 13 and 15 (Eng Units)	97
Table 10.	Estimated Mass Transfer Efficiency of Each Bed (Eng Units)	97
Table 11.	Values of Stripping Factors, λ (Eng Units)	98
Table 12.	Process Computer Simulation O/P-Xylene Distillation (SI Units)	100
Table 13.	Pressure Drop Calculation Using Figures 13 and 15 (SI Units)	103
Table 14.	Estimated Mass Transfer Efficiencies of Each Bed (SI Units)	104
Table 15.	HTU Method Values of Stripping Factors, λ (SI Units)	106
Table 16.	Computer Simulation of Methanol/Water Distillation (Eng Units)	112
Table 17.	Computer Simulation of Methanol/Water Distillation (SI Units)	124

List of Figures

Figure 1.	Graphic Description of Terms	3
Figure 2.	Packed Column Components	7
Figure 3.	Logic Diagram for Column Troubleshooting	9
Figure 4.	Scan of Trayed Columns (view from above)	16
Figure 5.	Scan of Packed Columns (view from above)	17
Figure 6.	Enthalpy Balance Diagram	19
Figure 7.	Measuring Pressure Drop with Purge Gas Seal	29
Figure 8.	Measuring Pressure Drop with Purge Liquid Seal	30
Figure 9.	Measuring Pressure Drop with Static Liquid Seal	31
Figure 10.	Sampling by Displacement	38
Figure 11.	Sampling Liquids by Purging	39
Figure 12.	Sampling Vapors by Purging	40
Figure 13.	Generalized Pressure Drop Correlation of Eckert as Modified by Strigle [1]	65
Figure 14.	Pressure Drop Curves for Random Packing (Typical Manufacturer's Data for 1" Plastic Slotted Rings)	66
Figure 15.	Pressure Drop Curves for Structured Packing (Typical Manufacturer's Data for No. 2 Corrugated Sheet Metal Packing)	67
Figure 16.	FCC Stabilizer Component Recovery Plot	68
Figure 17.	Packed Column Distillation Process Flow Diagram for O/P-Xylene Distillation (Eng Units)	92
Figure 18.	Packed Column Distillation Process Flow Diagram for O/P-Xyelene Distillation (SI Units)	101
Figure 19.	Trayed Column Distillation Process Flow Diagram for Methanol/Water Distillation (Eng Units)	108
Figure 20.	Fair's Entrainment Flooding Correlation for Columns with Crossflow Trays [164]	113
Figure 21.	Tray Efficiency using O'Connell Plot [165, reprinted from 166]	119
Figure 22.	Trayed Column Distillation Process Flow Diagram for Methanol/Water Distillation (SI Units)	120

100.0 PURPOSE AND SCOPE

101.0 Purpose

This testing procedure offers methods of conducting and interpreting performance tests on trayed and packed distillation columns. Such tests are intended to accumulate reliable data in one or more of the following areas of interest: mass transfer efficiency, capacity, energy consumption and pressure drop. It is intended to be used as a guideline for a column performance test and not as a substitute for a vendor's acceptance test.

Possible uses of such data include:

- Troubleshooting performance problems
- Identifying capacity bottlenecks
- Determining if column performance meets vendor guarantees ("acceptance test")
- Developing basic data for new designs
- Developing correlations
- Determining the operating range of a column
- Defining optimum operating conditions
- Calibrating computer simulations for use in optimizing, debottlenecking and design studies.

102.0 Scope

Rather than compulsory directions, this book offers a collection of techniques presented to guide the user, and emphasis is placed on principles, rather than on specific steps. It applies to columns that operate either at steady state or at total reflux. It does not apply to batch columns in which compositions are changing with time unless they are operated at total reflux or with distillate returned to the still pot during the test.

The procedure applies to both trayed and packed columns of any type. The tests determine the composite performance of the trays, packing, and any associated distributors and other auxiliary internals inside the column. It is important to realize that capacity may be restricted by these auxiliaries, particularly for packed towers.

This procedure does not apply to external testing of distributors or other internals.

200.0 DEFINITION AND DESCRIPTION OF TERMS

201.0 Flow Quantities (Refer to Figure 1)

201.1 *Feed* is the material to be separated, including multiple feed streams.

201.2 *Bottoms* describes the high-boiling product leaving the bottom of the column (or the reboiler).

201.3 *Distillate* is the product distilled overhead. It may leave the distillation system as a vapor, liquid, or a combination of both.

201.4 *Side-stream Product* is product withdrawn from an intermediate section of the column.

201.5 *Overhead Vapor* designates the vapor from the top of the column and includes material to be condensed for reflux. It is the combined distillate and external reflux.

201.6 *Reflux* is used to designate the quantity of liquid returned to the column.

201.6.1 *External (Overhead) Reflux* is the quantity of liquid returned to the top of the column. External reflux may be subcooled, which can result in increased internal reflux.

201.6.2 *Internal Reflux* is the calculated quantity of liquid leaving the top theoretical stage inside the tower. The internal reflux is different from the external reflux in that it is in thermal equilibrium with the top theoretical stage inside the tower.

201.6.3 *Pumparound* is the quantity of liquid withdrawn from, and returned to, the column after being cooled. A pumparound can be subcooled, and then returned to the tower at a location other than the top. A pumparound is sometimes called *Circulating Reflux*.

201.6.4 *Reflux Ratio* is the ratio of the external reflux flow to the distillate. Some applications may use the ratio of external reflux flow to feed to represent the reflux ratio.

201.7 *Throughput* refers to the combined liquid and vapor traffic passing through a cross section of the column.

201.7.1 *Internal Liquid* is the calculated quantity of liquid flowing from point to point in the column.

201.7.2 *Internal Vapor* is the calculated quantity of vapor passing from point to point in the column.

201.7.3 *Entrainment* is the liquid carried upward by the vapor stream from one point to another.

201.7.4 *Weeping* is the liquid that flows downward through the deck openings in trayed towers.