
EDIZIONI
DELLA
NORMALE

On Some Applications
of Diophantine
Approximations
(a translation of Carl Ludwig Siegel’s Über einige
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Preface

In 1929 Carl Ludwig Siegel published the paper Über einige Anwendungen di-
ophantischer Approximationen (appeared in Abh. Preuß. Akad. Wissen. Phys.-
math. Klasse, 1929 and reproduced in Siegel’s collected papers Ges. Abh. Bd. I,
Springer-Verlag 1966, 209-266). It was devoted to Diophantine Approximation
and applications of it, and became a landmark work, also concerning a number
of related subjects. Siegel’s paper was written in German and this volume is
devoted to a translation of it into English (including also the original version in
German).

Siegel’s paper introduced simultaneously many new methods and ideas. To
comment on this in some detail would occupy a further paper (or several papers),
and here we just limit ourselves to a brief discussion. The paper is, roughly,
divided into two parts:

(a) The first part was devoted to proving transcendence of numbers obtained
as values (at algebraic points) of certain special functions (including hypergeo-
metric functions and Bessel functions). In this realm, Siegel’s paper system-
atically developed ideas introduced originally by Hermite in dealing with the
exponential function; a main point is to approximate with rational functions
a function expressed by a power series, and to draw by specialisation numer-
ical approximations to its values. These numerical approximations, if accurate
enough, allow, through standard comparison estimates, to prove the irrationality
(or transcendence) of the values of the function in question.
Siegel exploited and extended this principle in great depth, obtaining results

which were (and are) spectacularly general in the topic, especially at that time.
Probably this was the first paper giving to transcendence theory some coher-

ence.
This study also introduced related concepts, like the one of ‘E-function’ and

of ‘G-function’ (cf. [1,8]), and led naturally to algebraical and arithmetical stud-
ies on systems of linear differential equations (with polynomial coefficients),
which eventually inspired several different directions of research, all important
and deep.

(b) The second part was devoted to diophantine equations, more precisely
to the study of integral points o algebraic curves. In this realm too, the paper
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introduced several further new ideas, also with respect to previous important
papers of Siegel.1 Some instances for the new ideas contained in the second part
are:

– The paper used the embedding of a curve (of positive genus) into its Jac-
obian, and the finite generation of the rational points in this last variety
(which had been proved by L. J. Mordell for elliptic curves and by A. Weil
in general); this provided a basic instance of the intimate connection of di-
ophantine analysis with algebraic geometry and complex analysis, which
became unavoidable since that time.

– It used and developed the concept of ‘height’ of algebraic points and its
properties related to rational transformations, especially on algebraic curves;
this went sometimes beyond results by A. Weil, who had introduced the
concept and had also pointed out transformation properties.
Again, this represented one of the very first examples of how the link between
arithmetic and geometry can be used most efficiently, leading to profound
results.

– It exploited to a new extent the diophantine approximation to algebraic num-
bers. This had been used by A. Thue around 1909 in the context of the special
curves defined by the so-called ‘Thue equations’. For general curves, the di-
ophantine approximation drawn from integer solutions is not sharp enough to
provide directly the sought information, hence Siegel had to go much deeper
into this. By taking covers of the curve (inside its Jacobian) he improved the
Diophantine approximation; then he was able to conclude through a suitable
refinement of Thue’s theorem, also proved in the paper. This refinement was
not as strong as K.F. Roth’s theorem (proved only in 1955), creating further
complications to the proof; Siegel had to use simultaneous approximations
to several numbers to get a sharp enough estimate. (For this task, Siegel used
ideas introduced in the first part of the paper.)

On combining all of this, Siegel produced his theorem on integral points on
curves, which may be seen as a final result in this direction. At that time, this
was especially impressive, since Diophantine equations were often treated by
ad hoc methods, with little possibility of embracing whole families. (One of the
few exceptions occurred with Thue’s methods, alluded to above.)
The theorem also bears a marked geometrical content: an affine curve may

have infinitely many integral points only if it has non-negative Euler character-
istic. (This is defined as 2− 2g − s where g is the genus of a smooth projective
model of the curve and where s is the number of points at infinity, namely those

1For instance, Siegel had written (chronologically) right before another remarkable paper on in-
tegral points by proving their finiteness for hyperelliptic equations y2 = f (x) under appropriate
assumptions (this result was extracted from a letter to Mordell and was published under the pseud-
onym X in [47]).



ix Preface

missing on the affine curve with respect to a smooth complete model.) Con-
versely, this condition becomes sufficient (for the existence of infinitely many
integral points) if we allow a sufficiently large number field and a sufficiently
large (fixed) denominator for the coordinates.2

Each of the numerous results and ideas that we have mentioned would have
represented at that time a major advance in itself. Hence it is difficult to overes-
timate the importance of this paper and its influence, even thinking of contem-
porary mathematics.
The paper, however, being written in German, is not accessible for a direct

reading to all mathematicians. There are of course modern good or excellent
expositions in English of some of the results, however we believe it may be of
interest for many to go through the original source for a precise understanding
of some principles, as really conceived by Siegel. In addition, we think that this
paper is a model also from the viewpoint of exposition; the ideas and methods
are presented in a limpid and simultaneously precise way.
All of this led the second author to the idea of translating the paper into Eng-

lish, and of publishing the result by the ‘Edizioni della Normale’. After some
partial attempts for a translation, this was finally carried out by the first author,
and here is the output. The translation was made literally and keeping the style
used by Siegel as far as possible, instead of rephrasing the text in more modern
style. (In particular, Siegel is not using the engaging ‘we’ but instead uses the
comprehensive ‘one’. The reader should have this in mind when reading the
translation.)

It has been eventually possible also to include the original text in this volume,
which provides additional information.

We have also added to the translated text a small number of footnotes (marked
as “FOOTNOTE BY THE EDITORS”) to highlight a few points that we think are
worth noting for the convenience of the reader. Further, after the translation, we
have included into this publication an article by the two of us, describing some
developments in the topic of integral points, and three modern proofs of Siegel’s
theorem (two of them being versions of the original argument). We have also
inserted a few references to other work arising from the paper of Siegel.

ACKNOWLEDGEMENTS. We thank the Edizioni della Normale for having wel-
come this project. We especially thank Mrs. Luisa Ferrini of the ‘Centro Ediz-
ioni’, whose great care and attention have made it possible to reach the sought
goal.

Clemens Fuchs and Umberto Zannier

2Note that affine implies s > 0; however, in view of Faltings’ theorem - see 2.1 below - all of
this remains true also for projective curves, i.e. when s = 0.



On some applications
of Diophantine approximations*

Clemens Fuchs

Essays of the Prussian Academy of Sciences.
Physical-Mathematical Class 1929, No. 1

The well-known simple deduction rule according to which for any distribution of
more than n objects to n drawers at least one drawer contains at least two objects,
gives rise to a generalization of the Euclidean algorithm, which by investigations
due to DIRICHLET, HERMITE and MINKOWSKI turned out to be the source of
important arithmetic laws. In particular it implies a statement on how precisely
the number 0 can be at least approximated by a linear combination

L = h0ω0 + · · · + hrωr

of suitable rational integers h0, . . . , hr , which in absolute value are
bounded by a given natural number H and do not vanish simultaneously, and of
given numbers ω0, . . . , ωr ; in fact for the best approximation it certainly holds

|L| ≤ (|ω0| + · · · + |ωr |)H−r ,

an assertion that does not depend on deeper arithmetic properties of the numbers
ω0, . . . , ωr .
The expression L is called an approximation form. If one then asks, how

precisely the number 0 can at best be approximated by the approximation form
h0ω0 + · · · + hrωr , then obviously any non-trivial answer will certainly depend
on the arithmetic properties of the given numbers ω0, . . . , ωr .
This question particularly contains the problem to investigate whether a given

number ω is transcendental or not; one just has to choose ω0 = 1, ω1 =
ω, . . . , ωr = ωr , H = 1, 2, 3, . . . , r = 1, 2, 3, . . .. The additional assump-
tion, to come up even with a non-zero lower bound for |L| as a function in H
and r , gives a positive turnaround to the transcendence problem.
Also, the upper bound for the number of lattice points on an algebraic curve,

thus in particular the study of the finiteness of this number, leads, as will turn
out later, to the determination of a positive lower bound for the absolute value
of a certain approximation form.
Analogous to the arithmetic problems of bounding |L| from above and from

below is an algebraic question. Let ω0(x), . . . , ωr (x) be series in powers of a

∗CARL LUDWIG SIEGEL, Über einige Anwendungen diophantischer Approximationen, In:
“Gesammelte Abhandlungen”, Band I, Springer-Verlag, Berlin-Heidelberg-New York, 1966, 209–
266.
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variable x and let h0(x), . . . , hr (x) be polynomials of degree at most H , not all
identically zero and having the property that the power series expansion of the
approximation form

L(x) = h0(x)ω0(x)+ · · · + hr (x)ωr (x)

starts with a fairly large power of x ; the goal is to get a lower and an upper bound
for the exponent of this power of x . The algebraic problem is of easier nature
than the arithmetic one; it leads to the determination of the rank of a system of
linear equations.
These two problems, the algebraic and the arithmetic one, are connected by

choosing for x a special rational number ξ from the common region of con-
vergence of the power series and by assuming that the coefficients of these
power series are rational numbers. Then in turn also the coefficients of the poly-
nomials h0(x), . . . , hr (x) can chosen to be rational; and on multiplying with
the common denominator of the rational numbers h0(ξ), . . . , hr (ξ) the algeb-
raic approximation form L(x) turns into an arithmetic one, unless the numbers
h0(ξ), . . . , hr (ξ) are all equal to zero. However, in general the best algebraic
approximation will not be turned into the best arithmetic approximation in this
way.
To bound the expression |h0ω0 + · · · + hrωr | from below under the condi-

tions |h0| ≤ H, . . . , |hr | ≤ H there is the following possibility:
Let the numbers ω0, . . . , ωr be not all equal to zero. The r+1 approximation

forms

Lk = hk0ω0 + · · · + hkrωr , (k = 0, . . . , r)

shall be considered with coefficients that are rational integers and bounded in
absolute value by H . Let the value of the determinant |hkl | be different from
zero and denote by M the maximum of the r + 1 numbers |Lk |. Let L be a
further approximation form and let h be the largest among the absolute values
of its coefficients. Since the r + 1 forms L0, . . . , Lr are linearly independent,
one can choose r of them, say L1, . . . , Lr , which are linearly independent with
L . Let (λkl) be the inverse of the matrix of the coefficients of L , L1, . . . , Lr ;
then the following estimates for the absolute value of the elements λkl hold

|λk0| ≤ r !Hr (k = 0, . . . , r)

|λkl | ≤ r !hHr−1. (k = 0, . . . , r; l = 1, . . . , r)

From the equalities

ωk = λk0L + λk1L1 + · · · + λkr Lr , (k = 0, . . . , r)(1)

it follows that

(2) |L| ≥ |ωk |
r !Hr

− rMh

H
.
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If now for growing H the number M, which depends on H, is approaching 0
faster than H1−r , then (2) gives a positive lower bound for |L|. This condition
is therefore sufficient for the linear independence of the quantities ω0, . . . , ωr
over the field of rational numbers.
An analogous criterion holds for the linear independence of power series over

the field of rational functions. In fact, let ω0(x), . . . , ωr (x) be power series, not
all identically zero; let

Lk(x) = hk0(x)ω0(x)+ · · · + hkr (x)ωr (x), (k = 0, . . . , r)

be r + 1 approximation forms with polynomial coefficients hkl(x) of degree H
and let M be the smallest exponent which really appears in the power series
expansions of L0, . . . , Lr . Assume that the determinant |hkl(x)| is not identic-
ally zero. Let L(x) be a further approximation form with coefficients of de-
gree h. Let μ and μk be the smallest exponents in the power series L(x) and
ωk(x), k = 0, . . . , r. On observing that the determinant |hkl | (x) has degree
r H + h, then the estimate

r H + h + μk ≥ min (μ,M) (k = 0, . . . , r)(3)

follows from an equality similar to (1).
If now the difference M−r H diverges for growing H , then (3) gives an upper

bound for μ. In particular, this is sufficient for the linear independence of the
power series ω0(x), . . . , ωr (x) over the field of rational functions.
When applying this criterion the difficulty lies in the claim of the non-van-

ishing of the determinant |hkl(x)|. To get to cases in which this difficulty can be
mastered, from now on the functions dωo(x)

dx , . . . ,
dωr (x)
dx are assumed to be ex-

pressible homogeneously and linearly by the functions ω0(x), . . . , ωr (x) them-
selves and moreover with coefficients that are rational functions in x . It then
holds a homogeneous system of first order linear differential equations

dωk
dx

= ak0ω0 + · · · + akrωr ; (k = 0, . . . , r)(4)

and by differentiating an approximation form L(x) another one is obtained, if
one multiplies by the polynomial that appears as common denominator of the
coefficients of ω0, . . . , ωr . Iterating this r-times, one has in sum r + 1 approx-
imation forms. However, it can happen that the determinant of this system of
r + 1 approximation forms is identically zero; then also the determinant �(x)
of the system of the r + 1 linear forms L , dLdx , . . . ,

dr L
dxr vanishes and vice versa.

The importance of identical vanishing of � follows from the following lemma:
Let

ωk = c0ωk0 + · · · + crωkr , (k = 0, . . . , r)

where c0, . . . , cr are arbitrary constants, be the general solution of the sys-
tem (4). The determinant of the system of the r + 1 linear forms L(x) =
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h0(x)ω0(x) + · · · + hr (x)ωr (x),
dL
dx , . . . ,

dr L
dxr of ω0, . . . , ωr vanishes identic-

ally if and only if the r + 1 functions

fl = h0ω0l + · · · + hrωrl (l = 0, . . . , r)

are related by a homogeneous linear equation with constant coefficients.
If

dk L

dxk
= bk0ω0 + · · · + bkrωr , (k = 0, . . . , r)

with b0l = hl , bk+1,l = dbkl
dx + bk0a0l + · · · + bkrarl for k = 0, . . . , r − 1 and

l = 0, . . . , r , then from the assumption of |bkl | = � vanishing identically one
gets an equation

g0
ds L

dxs
+ g1

ds−1L
dxs−1

+ · · · + gs L = 0,

where s ≤ r and g0, . . . , gs denote certain sub-determinants of �(x) from
which g0 does not vanish identically. The function

L =
r∑

k=0
hkωk =

r∑
k=0

hk
r∑
l=0

clωkl =
r∑
l=0

cl fl ,

satisfies this linear differential equation of order s, so do any of the r + 1 func-
tions f0, . . . , fr ; since their number is bigger than s, they are related by a homo-
geneous linear equation with constant coefficients. Conversely, it follows from

such a relation by differentiating r-times, that the determinant
∣∣∣ dk fldxk

∣∣∣ is identic-
ally zero, and from the matrix relation(

dk fl
dxk

)
= (bkl)(ωkl)

one obtains the equation |bkl | = � = 0, if one takes into account that the values
of the solutions ω0l , . . . , ωrl , l = 0, . . . , r in a regular point can be chosen so
that the determinant |ωkl | in this point is not 0 and hence is not identically zero.
An example is given by taking ωk = ekx , so ωkl = ekxekl , where (ekl) de-

notes the identity matrix. Then fl = hl(x)elx and there is no homogeneous
linear equation with constant coefficients relating f0, . . . , fr , since ex is not an
algebraic function. Thus the determinant � does not vanish identically in this
case.
Now suppose again that the power series ω0(x), . . . , ωr (x) have only rational

coefficients and that ξ is a rational number. Then one obtains from the system of
the algebraic approximation forms for the functions ω0(x), . . . , ωr (x) a system
of arithmetic approximation forms for the numbers ω0(ξ), . . . , ωr (ξ). The most
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important point of all these investigations is now the construction of approxim-
ation forms for which for the number �(ξ) �= 0 holds. For this one uses the
following consideration, which was already used in a special case by THUE.
Let γ be the smallest exponent in the power series expansion of the approx-

imation form L . Multiplying by the common denominator N (x) of the rational
functions akl from (4) one obtains from d L

dx an approximation form L1, whose
power series does not contain powers in x smaller than γ−1. One now considers
the determinant D(x) of the r+1 approximation forms L , N d L

dx = L1, N
d L1
dx =

L2, . . . , N
d Lr−1
dx = Lr . If ν is an upper bound for the degree of the (r + 1)2+ 1

polynomials N , Nakl , and if the coefficients of the form L have degree H , then
D(x) has degree H + (H + ν) + · · · + (H + rν) = (r + 1)H + r(r+1)

2 ν. On
the other hand, it is possible to express D(x)ωk(x) linearly homogeneously in
L , L1, . . . , Lr , say

Dωk = �k0L +�k1L1 + · · · +�kr Lr , (k = 0, . . . , r)(5)

and moreover with coefficients �kl , which are polynomials in x . Therefore
the function D(x)ωk(x) vanishes at x = 0 with order at least γ − r . If one
supposes that not all the power series ω0, . . . , ωr are divisible by x , which oth-
erwise could be eliminated by division, then it follows that D(x) vanishes at
a non-zero value x = ξ with order at most (r + 1)H + r(r+1)

2 ν + r − γ ,
unless D(x) is identically equal to zero. Now, through a suitable choice of
L , it is possible to obtain γ ≥ (r + 1)h + r ; in fact the r + 1 polynomi-
als h0(x), . . . , hr (x) of degree H contain (r + 1)(H + 1) numbers as coef-
ficients, which necessarily satisfy γ homogeneous linear equations. But then
D(x) vanishes at x = ξ with order s, which is below the H -independent bound
r(r+1)
2 ν, and the sth derivative of D(x) is not zero at x = ξ . Moreover, equation

(5) holds identically in ω0, . . . , ωr ; differentiating it s-times and using (4) to
eliminate the derivatives of ω0, . . . , ωr , then the resulting equation also holds
identically in ω0, . . . , ωr . Putting also N

d Lr
dx = Lr+1, . . . , d Lr+s−1dx = Lr+s ,

then by (5) the expression Ns(ξ)D(s)(ξ)ωk ia a homogeneous linear relation
of L(ξ), L1(ξ), . . . , Lr+s(ξ) identically in ω0, . . . , ωr . Assuming further that
N (ξ) �= 0, i.e. that ξ is different from the singular points of the system (4), then
one obtains ω0, . . . , ωr as linear relation of L(ξ), L1(ξ), . . . , Lr+s(ξ); among
the r + s + 1 forms L(ξ), . . . , Lr+s(ξ) there are hence r + 1 which are linearly
independent. In this way one finds r + 1 arithmetic approximation forms for the
numbers ω0(ξ), . . . , ωr (ξ) with determinant �= 0.
For applications in number theory it is still necessary that the approximation

forms, constructed above, lead to favorable arithmetic approximations in the
sense explained earlier, i.e. that the coefficients of L(x), . . . , Lr+s(x) do not
contain “too large” rational integer numbers. Since the number s is below a
bound which does not depend on H , essentially one just needs a good estimate
for the coefficients of the polynomials h0(x), . . . , hr (x) in L = h0ω0 + · · · +
hrωr .
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This can be easily demonstrated in the previously mentioned exampleωk(x)=
ekx , because the coefficients can be expressed explicitly in terms of r and H ; in
this way one obtains a proof of the transcendence of e in the first of HERMITE’s
versions and, at the same time, a positive lower bound for the distance of an
arbitrary algebraic number to e. It should also be noted that from HERMITE’s
formulae one immediately gets the transcendence of π and even a positive lower
bound for the distance of an arbitrary algebraic number to π , when one takes into
account that the norm of a non-zero algebraic integer has absolute value ≥ 1.
Another example, but only in the case r = 1, is given by the well-known

continued fractions for the quotients of hypergeometric series. In particular, the
continued fraction expansion of the function (1− x)α was used by THUE to in-
vestigate the approximation of roots of natural numbers by rational numbers, and
this was the starting point for the discovery of THUE’s theorem on Diophantine
equations.
In other cases one does not find an estimate beyond the trivial one for the nu-

merical coefficients of the algebraically favorable approximation form, whose
power series is divisible by x (r+1)(H+1)−1, and the trivial bound is not suffi-
cient, as one easily sees, in order to apply the arithmetic criterion. Therefore
the strategy, that has led to a system of arithmetic approximation forms for
ω0(ξ), . . . , ωr (ξ) having non-vanishing determinant, has to be slightly modi-
fied. One has to optimize between the two necessities of a good algebraic and
arithmetic approximation to 0 by admitting for the number γ a smaller value
than the one taken earlier, for the number s thus a bigger one, and so one gets
better bounds for the coefficients of h0(x), . . . , hr (x) as a gain. This idea again
was first applied by THUE. The estimate for the coefficients is obtained by using
DIRICHLET’s deduction rule, which was mentioned at the beginning, and which
is here demonstrated in the form of a lemma:
Let

y1 = a11x1 + · · · + a1nxn
...

ym = am1x1 + · · · + amnxn

be m linear forms in n variables with rational integer coefficients. Let n > m.
Let the absolute values of the mn coefficients akl be not bigger than a given
natural number A. Then the homogeneous linear equations y1 = 0, . . . , ym = 0
are solvable in rational integer numbers x1, . . . , xn, which are not all zero, but
are all smaller than 1+ (nA) m

n−m in absolute value.
For the proof let each of the variables x1, . . . , xn independently run through

the values 0,±1, . . . , ±H ; one obtains in sum (2H + 1)n lattice points in the
space given by orthogonal Cartesian coordinates y1, . . . , ym , which however are
not necessarily all different from each other. Each coordinate of each of these
lattice points lies between the values −nAH and +nAH . There are exactly
(2nAH + 1)m different lattice points in the m-dimensional space, whose co-
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ordinate lie between −nAH and +nAH . If now
(6) (2nAH + 1)m < (2H + 1)n,

then two lattice points y1, . . . ,ym belonging to different systems x1, . . . ,xn
coincide; and by subtracting these two systems one obtains a solution of y1 =
0, . . . , ym = 0 in rational integer numbers x1, . . . , xn , which are not all zero and
in absolute value are ≤ 2H . But the condition (6) is satisfied if the even integer
number, which lies in the interval

(nA)
m

n−m − 1 ≤ 2H < (nA)
m

n−m + 1,

is chosen for 2H .
The method, which was sketched before, to determine a positive lower bound

for the expression |h0ω0 + · · · + hrωr | shall be applied in this exposition to two
different problems. The first part mainly deals with the proof of the transcend-
ence of the values of the cylindrical function evaluated at any non-zero algeb-
raic number. The second part is concerned with the task of finding all algebraic
curves which pass through infinitely many lattice points of the plane or, more
generally, of the n-dimensional space; it will be shown that this can only happen
in case of lines and hyperbolas and for certain other curves obtained from these
by easy transformations and having also genus 0.
The motivation to study the problems in the first part came from W. MAIER’s

beautiful investigations on irrationality. The second part has its origin in the
important results on the arithmetic properties of algebraic curves, which were
discovered and recently published by A. WEIL in his thesis.
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Part I: On transcendental numbers.

Dedicated to MAX DEHN.

By the theorems due to HERMITE and LINDEMANN the question of the arith-
metic properties of the values of the exponential function at algebraic arguments
has been answered. While the additivity of the exponential function reduces
every algebraic equation between values of this function to a linear equation,
something comparable does not exist anymore for other functions; and there lies
the difficulty of generalizing HERMITE’s arguments. For none of the other func-
tions, which are of importance in calculus, a theorem of analogous strength like
that for the exponential function has been found.
The irrationality of the cylindrical function

J0(x) =
∞∑
n=0

(−1)n
n!n!

( x
2

)2n
has been studied by different authors. HURWITZ and STRINSBERG proved that
J0(x) is irrational for every non-zero rational value of x2 and MAIER, going
beyond that, showed in an extremely clever way that for such x the value J0(x)
is not even a quadratic irrationality.
In what follows it will be shown that J0(x) is transcendental for every algeb-

raic non-zero x . The method even gives the more general result that between
the numbers J0(x) and J ′

0(x) no algebraic relation with rational coefficients can
exist since it is shown that a positive lower bound for the absolute value of an ar-
bitrary polynomial in J0(x) and J ′

0(x), whose coefficients are rational numbers,
exists in terms of these coefficients. More generally, an analog of LINDEMANN’s
theorem will be shown, that between the numbers J0(ξ1), J ′

0(ξ1), . . . , J0(ξk),
J ′
0(ξk) no algebraic relation with rational coefficients exists if ξ

2
1 , . . . , ξ

2
k are

pairwise distinct non-zero algebraic numbers.
The proof is done with the method that was discussed in the introduction. In

particular to apply the first lemma a theorem is needed assuring that the function
J0(x) is not solution of any first-order differential equation whose coefficients
are polynomials in x . The previously stated theorem, that for algebraic non-
zero values x no algebraic relation with algebraic coefficients exists between
the numbers J0(x) J ′

0(x) and x , is merely a consequence of the theorem that
assures that no algebraic equation identically in x between the functions J0(x)
J ′
0(x) holds. This might indicate that even in more general cases numerical rela-
tions can be obtained by specialization of functional equations, so that calculus
contains arithmetic in this sense.

§1. Tools from complex analysis.

In this paragraph it will be investigated which algebraic functional equations
exist between the solutions of the BESSEL differential equation

(7)
d2y

dx2
+ 1

x

d y

dx
+

(
1− λ2

x2

)
y = 0,


