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alware Analyst’s Cookbook is a collection of solutions and tutorials designed to

enhance the skill set and analytical capabilities of anyone who works with, or
against, malware. Whether you're performing a forensic investigation, responding to an
incident, or reverse-engineering malware for fun or as a profession, this book teaches you
creative ways to accomplish your goals. The material for this book was designed with sev-
eral objectives in mind. The first is that we wanted to convey our many years of experience
in dealing with malicious code in a manner friendly enough for non-technical readers to
understand, but complex enough so that technical readers won't fall asleep. That being
said, malware analysis requires a well-balanced combination of many different skills. We
expect that our readers have at least a general familiarity with the following topics:

Networking and TCP/IP

Operating system internals (Windows and Unix)
Computer security

Forensics and incident response

Programming (C, C++, Python, and Perl)
Reverse-engineering

Vulnerability research

Malware basics

Our second objective is to teach you how various tools work, rather than just how to use
the tools. If you understand what goes on when you click a button (or type a command)
as opposed to just knowing which button to click, you'll be better equipped to perform an
analysis on the tool’s output instead of just collecting the output. We realize that not every-
one can or wants to program, so we've included over 50 tools on the DVD that accompanies
the book; and we discuss hundreds of others throughout the text. One thing we tried to
avoid is providing links to every tool under the sun. We limit our discussions to tools that
we’re familiar with, and—as much as possible—tools that are freely available.

Lastly, this book is not a comprehensive guide to all tasks you should perform during
examination of a malware sample or during a forensic investigation. We tried to include
solutions to problems that are common enough to be most beneficial to you, but rare enough
to not be covered in other books or websites. Furthermore, although malware can target
many platforms such as Windows, Linux, Mac OS X, mobile devices, and hardware/firmware
components, our book focuses primarily on analyzing Windows malware.
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Introduction

Who Should Read This Book

If you want to learn about malware, you should read this book. We expect our readers to
be forensic investigators, incident responders, system administrators, security engineers,
penetration testers, malware analysts (of course), vulnerability researchers, and anyone
looking to be more involved in security. If you find yourself in any of the following situ-
ations, then you are within our target audience:

You're a member of your organization’s incident handling, incident response, or
forensics team and want to learn some new tools and techniques for dealing with
malware.

You work as a systems, security, or network administrator and want to understand
how you can protect end users more effectively.

You're a member of your country’s Computer Emergency Response Team (CERT)
and need to identify and investigate malware intrusions.

You work at an antivirus or research company and need practical examples of ana-
lyzing and reporting on modern malware.

You're an aspiring student hoping to learn techniques that colleges and universities
just don’t teach.

You work in the IT field and have recently become bored, so you're looking for a
new specialty to compliment your technical knowledge.

How This Book Is Organized

This book is organized as a set of recipes that solve specific problems, present new tools, or
discuss how to detect and analyze malware in interesting ways. Some of the recipes are stand-
alone, meaning the problem, discussion, and solution are presented in the same recipe. Other
recipes flow together and describe a sequence of actions that you can use to solve a larger
problem. The book covers a large array of topics and becomes continually more advanced
and specialized as it goes on. Here is a preview of what you can find in each chapter:

Chapter 1, Anonymizing Your Activities: Describes how you conduct online inves-
tigations without exposing your own identity. You'll use this knowledge to stay safe
when following along with exercises in the book and when conducting research
in the future.

Chapter 2, Honeypots: Describes how you can use honeypots to collect the mal-
ware being distributed by bots and worms. Using these techniques, you can grab
new variants of malware families from the wild, share them in real time with other
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researchers, analyze attack patterns, or build a workflow to automatically analyze
the samples.

Chapter 3, Malware Classification: Shows you how to identify, classify, and orga-
nize malware. Youw'll learn how to detect malicious files using custom antivirus
signatures, determine the relationship between samples, and figure out exactly what
functionality attackers may have introduced into a new variant.

Chapter 4, Sandboxes and Multi-AV Scanners: Describes how you can leverage
online virus scanners and public sandboxes. You'll learn how to use scripts to con-
trol the behavior of your sample in the target sandbox, how to submit samples on
command line with Python scripts, how to store results to a database, and how to
scan for malicious artifacts based on sandbox results.

Chapter 5, Researching Domains and IP Addresses: Shows you how to identify and
correlate information regarding domains, hostnames, and IP addresses. You'll learn
how to track fast flux domains, determine the alleged owner of a domain, locate
other systems owned by the same group of attackers, and create static or interactive
maps based on the geographical location of IP addresses.

Chapter 6, Documents, Shellcode, and URLs: In this chapter, you'll learn to ana-
lyze JavaScript, PDFs, Office documents, and packet captures for signs of malicious
activity. We discuss how to extract shellcode from exploits and analyze it within a
debugger or in an emulated environment.

Chapter 7, Malware Labs: Shows how to build a safe, flexible, and inexpensive lab
in which to execute and monitor malicious code. We discuss solutions involving
virtual or physical machines and using real or simulated Internet.

Chapter 8, Automation: Describes how you can automate the execution of malware
in VMware or VirtualBox virtual machines. The chapter introduces several Python
scripts to create custom reports about the malware’s behavior, including network
traffic logs and artifacts created in physical memory.

Chapter 9, Dynamic Analysis: One of the best ways to understand malware behavior
is to execute it and watch what it does. In this chapter, we cover how to build your
own API monitor, how to prevent certain evidence from being destroyed, how to log
file system and Registry activity in real time without using hooks, how to compare
changes to a process’s handle table, and how to log commands that attackers send
through backdoors.

Chapter 10, Malware Forensics: Focuses on ways to detect rootkits and stealth
malware using forensic tools. We show you how to scan the file system and Registry
for hidden data, how to bypass locked file restrictions and remove stubborn mal-
ware, how to detect HTML injection and how to investigate a new form of Registry
“slack” space.
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Chapter 11, Debugging Malware: Shows how you can use a debugger to analyze,
control, and manipulate a malware sample’s behaviors. You'll learn how to script
debugging sessions with Python and how to create debugger plug-ins that monitor
API calls, output HTML behavior reports, and automatically highlight suspicious
activity.

Chapter 12, De-obfuscation: Describes how you can decode, decrypt, and unpack
data that attackers intentionally try to hide from you. We walk you through the
process of reverse-engineering a malware sample that encrypts its network traffic
so you can recover stolen data. In this chapter, you also learn techniques to crack
domain generation algorithms.

Chapter 13, Working with DLLs: Describes how to analyze malware distributed
as Dynamic Link Libraries (DLLs). Youwll learn how to enumerate and examine a
DLL’s exported functions, how to run the DLL in a process of your choice (and
bypass host process restrictions), how to execute DLLs as a Windows service, and
how to convert DLLs to standalone executables.

Chapter 14, Kernel Debugging: Some of the most malicious malware operates only
in kernel mode. This chapter covers how to debug the kernel of a virtual machine
infected with malware to understand its low-level functionality. You learn how to
create scripts for WinDbg, unpack kernel drivers, and to leverage IDA Pro’s debug-
ger plug-ins.

Chapter 15, Memory Forensics with Volatility: Shows how to acquire memory
samples from physical and virtual machines, how to install the Volatility advanced
memory forensics platform and associated plug-ins, and how to begin your analysis
by detecting process context tricks and DKOM attacks.

Chapter 16, Memory Forensics: Code Injection and Extraction: Describes how you
can detect and extract code (unlinked DLLs, shellcode, and so on) hiding in process
memory. You'll learn to rebuild binaries, including user mode programs and kernel
drivers, from memory samples and how to rebuild the import address tables (IAT)
of packed malware based on information in the memory dump.

Chapter 17, Memory Forensics: Rootkits: Describes how to detect various forms
of rootkit activity, including the presence of IAT, EAT, Inline, driver IRP, IDT, and
SSDT hooks on a system. You'll learn how to identify malware that hides in kernel
memory without a loaded driver, how to locate system-wide notification routines,
and how to detect attempts to hide running Windows services.

Chapter 18, Network and Registry: Shows how to explore the artifacts created on
a system due to a malware sample’s network activity. You'll learn to detect active
connections, listening sockets, and the use of raw sockets and promiscuous mode
network cards. This chapter also covers how to extract volatile Registry keys and
values from memory.
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Setting Up Your Environment

We performed most of the development and testing of Windows tools on 32-bit Windows
XP and Windows 7 machines using Microsoft’s Visual Studio and Windows Driver Kit.
If you need to recompile our tools for any reason (for example to fix a bug), or if you're
interested in building your own tools based on source code that we've provided, then you
can download the development environments here:

The Windows Driver Kit: http://www.microsoft.com/whdc/devtools/WDK/default
.MSpx

Visual Studio C++ Express: http: //www.microsoft.com/express/Downloads/#2010-
Visual-CPP

As for the Python tools, we developed and tested them on Linux (mainly Ubuntu 9.04,
9.10, or 10.04) and Mac OS X 10.4 and 10.5. You'll find that a majority of the Python tools
are multi-platform and run wherever Python runs. If you need to install Python, you can
get it from the website at http://python.org/download/. We recommend using Python
version 2.6 or greater (but not 3.x), because it will be most compatible with the tools on
the book’s DVD.

Throughout the book, when we discuss how to install various tools on Linux, we assume
you're using Ubuntu. As long as you know your way around a Linux system, you're com-
fortable compiling packages from source, and you know how to solve basic dependency
issues, then you shouldn’t have a problem using any other Linux distribution. We chose
Ubuntu because a majority of the tools (or libraries on which the tools depend) that we
reference in the book are either preinstalled, available through the apt-get package man-
ager, or the developers of the tools specifically say that their tools work on Ubuntu.

You have a few options for getting access to an Ubuntu machine:

Download Ubuntu dil‘eCtlyZ http://www.ubuntu.com/desktop/get-ubuntu/download
Download Lenny Zeltser’s REMnux: http://REMnux.org. REMnux is an Ubuntu
system preconfigured with various open source malware analysis tools. REMnux is
available as a VMware appliance or ISO image.

Download Rob Lee’s SANS SIFT Workstation: https://computer-forensics2.
sans.org/community/siftkit/. SIFT is an Ubuntu system preconfigured with vari-
ous forensic tools. SIFT is available as a VMware appliance or ISO image.

We always try to provide a URL to the tools we mention in a recipe. However, we use
some tools significantly more than others, thus they appear in five to ten recipes. Instead

Xix
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of linking to each tool each time, here is a list of the tools that you should have access to
throughout all chapters:

Sysinternals Suite: http://technet.microsoft.com/en-us/sysinternals/bb842062
.aspx

Wireshark: http://www.wireshark.org/

IDA Pro and Hex-Rays: http://www.hex-rays.com/idapro/

Volatility: http://code.google.com/p/volatility/

WinDbg Debugger: http://www.microsoft.com/whdc/devtools/debugging/
default.mspx

YARA: http://code.google.com/p/yara-project/

Process Hacker: http://processhacker.sourceforge.net/

You should note a few final things before you begin working with the material in the
book. Many of the tools require administrative privileges to install and execute. Typically,
mixing malicious code and administrative privileges isn’t a good idea, so you must be sure
to properly secure your environment (see Chapter 7 for setting up a virtual machine if you
do not already have one). You must also be aware of any laws that may prohibit you from
collecting, analyzing, sharing, or reporting on malicious code. Just because we discuss a
technique in the book does not mean it’s legal in the city or country in which you reside.

Conventions

To help you get the most from the text and keep track of what’s happening, we've used a
number of conventions throughout the book.

RECIPE X-X: RECIPE TITLE

Boxes like this contain recipes, which solve specific problems, present new tools, or discuss
how to detect and analyze malware in interesting ways. Recipes may contain helpful steps,
supporting figures, and notes from the authors. They also may have supporting materials
associated with them on the companion DVD. If they do have supporting DVD materials,
you will see a DVD icon and descriptive text, as follows:

=D You can find supporting material for this recipe on the companion DVD.

ONTHE DVD

For your further reading and research, recipes may also have endnotes' that site Internet
or other supporting sources. You will find endnote references at the end of the recipe.
Endnotes are numbered sequentially throughout a chapter.

! This is an endnote. This is the format for a website source



Introduction  xxi

NOTE

Tips, hints, tricks, and asides to the current discussion look like this.

As for other conventions in the text:

New terms and important words appear in italics when first introduced.
Keyboard combinations are treated like this: Ctrl+R.
File names are in parafont, (filename.txt), URLs and code (API functions and vari-
able names) within the text are treated like so: www.site.org, LoadLibrary, varl.
This book uses monofont type with no highlighting for most code examples. Code
fragments may be broken into multiple lines or truncated to fit on the page:

This is an example of monofont type with a long \

line of code that needed to be broken.
This truncated line shows how [REMOVED]

This book uses bolding to emphasize code. User input for commands and code that
is of particular importance appears in bold:

$ date ; typing into a Unix shell

Wed Sep 1 14:30:20 EDT 2010

C:\> date ; typing into a Windows shell
Wed 09/01/2010






he book’s DVD contains evidence files, videos, source code, and programs that you
can use to follow along with recipes or to conduct your own investigations and analy-
sis. It also contains the full-size, original images and figures that you can view, since they
appear in black and white in the book. The files are organized on the DVD in folders named
according to the chapter and recipe number. Most of the tools on the DVD are written in
C, Python, or Perl and carry a GPLv2 or GPLv3 license. You can use a majority of them
as-is, but a few may require small modifications depending on your system’s configuration.
Thus, even if you're not a programmer, you should take a look at the top of the source file
to see if there are any notes regarding dependencies, the platforms on which we tested the
tools, and any variables that you may need to change according to your environment.
We do not guarantee that all programs are bug free (who does?), thus, we welcome
feature requests and bug reports addressed to malwarecookbook@gmail.com. If we do pro-
vide updates for the code in the future, you can always find the most recent versions at
http://www.malwarecookbook.com.
The following table shows a summary of the tools that you can find on the DVD, includ-
ing the corresponding recipe number, programming language, and intended platform.

Recipe  Tool Description Language  Platform

1-3 torwget.py Multi-platform TOR-enabled URL Python All
fetcher

23 wwwhoney.tgz CGl scripts to accept submissions from  Python All

nepenthes and dionaea honeypots

33 clamav_to_yara.py  Convert ClamAV antivirus signatures Python All
to YARA rules

3-4 peid_to_yara.py Convert PEID packer signatures to Python All
YARA rules
3-7 av_multiscan.py Script to implement your own antivi- Python All

rus multi-scanner
3-8 pescanner.py Detect malicious PE file attributes Python All

3-10 ssdeep_procs.py Detect self-mutating code on live Python Windows
Windows systems using ssdeep only (XP/7)
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Recipe

4-4

4-12

4-12

5-13

5-14

6-9

8-1

8-1

8-7

8-7

9-3

9-5

9-10

Tool

avsubmit.py

dbmgr.py

artifactscanner.py

mapper.py

googlegeoip.py

sc_distorm.py

vmauto.py

mybox.py

myvmware.py

analysis.py

RegFsNotify.exe

HandleDiff.exe

Preservation.zip

Description

Command-line interface to VirusTotal,
ThreatExpert, Jotti, and NoVirusThanks

Malware artifacts database manager

Application to scan live Windows sys-
tems for artifacts (files, Registry keys,
mutexes) left by malware

Create static PNG images of IP
addresses plotted on a map using
GeolP

Create dynamic/interactive geographi-
cal maps of IP addresses using Google
charts

Script to produce disassemblies (via
DiStorm) of shellcode and optionally
apply an XOR mask

Python class for automating malware
execution in VirtualBox and VMware
guests

Sample automation script for
VirtualBox based on vmauto.py

Sample automation script for VMware
based on vmauto.py

Python class for building sandboxes
with support for analyzing network
traffic, packet captures, and memory.

Tool to detect changes to the Registry
and file system in real time (from user
mode without APl hooks)

Tool to detect changes to the handle
tables of all processes on a system
(useful to analyze the side-effects of
code injecting malware)

Kernel driver for monitoring notifica-
tion routines, preventing processes
from terminating, preventing files from
being deleted, and preventing other
drivers from loading

Language

Python

Python

Python

Python

Python

Python

Python

Python

Python

Python

Platform
All

All
Windows

only (XP/7)

All

All

All

All

All

All

Linux

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only



10-2

10-4

10-7

10-8

10-8

10-8

10-8

10-9

10-10

11-2

1-9

11-10

1-12

Tool

cmd.exe

tsk-xview.exe

closehandle.exe

HTMLInjection
Detector.exe
routes.pl

pendingdelete.pl

disallowrun.pl

shellexecute-

hooks.pl

dumpcerts.pl

somethingelse.pl

scloader.exe

scd.py

findhooks.py

pymon.py

Description

Custom command shell (cmd.exe) for
logging malware activity and backdoor
activity

Cross-view based rootkit detection
tool based on The Sleuth Kit APl and
Microsoft’s Offline Registry API.

Command-line tool to remotely close
a handle that another process has
open

Detect HTML injection attacks on
banking and financial websites

RegRipper plug-in for printing a com-
puter’s routing table

RegRipper plug-in for printing files that
are pending deletion.

RegRipper plug-in for printing pro-
cesses that malware prevents from
running

RegRipper plug-in for printing
ShellExecute hooks (a method of DLL
injection)

Parse:Win32Registry module to
extract and examine cryptography
certificates stored in Registry hives

Parse:Win32Registry module for find-
ing hidden binary data in the Registry

Executable wrapper for launching shell
code in a debugger

Immunity Debugger PyCommand for
finding shellcode in arbitrary binary
files

Immunity Debugger PyCommand for
finding Inline-style user mode API
hooks

WinAppDbg plug-in for monitoring
API calls, alerting on suspicious flags/
parameters and producing an HTML
report

On The Book’s DVD

Language

C

Perl

Perl

Perl

Perl

Perl

Perl

Python

Python

Python

Platform

Windows
only
(XP/7)

Windows

XP only

Windows
only (XP/7)

Windows
XP only
All

All

All

All

All

All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)
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Recipe

12-1

12-10

12-11

13-7

13-7

13-8

14-8

14-10

14-T1

Tool

xortools.py

trickimprec.py

kraken.py

sbstrings.py

rundll32ex.exe

install_svc.bat

install_svc.py

dll2exe.py

DriverEntryFinder

windbg_to_ida.py

WinDbgNotify.txt

Description

Python library for encoding/decod-
ing XOR, including brute force meth-
ods and automated YARA signature
generation

Immunity Debugger PyCommand for
assistance when rebuilding import
tables with Import REconstructor

Immunity Debugger PyCommand for
cracking Kraken's Domain Generation
Algorithm (DGA)

Immunity Debugger PyCommand for
decrypting Silent Banker strings.

Extended version of rundl(32.exe that
allows you to run DLLs in other pro-
cesses, call exported functions, and
pass parameters

Batch script for installing a service DLL
(for dynamic analysis of the DLL)

Python script for installing a service
DLL and supplying optional arguments
to the service

Python script for converting a DLL
into a standalone executable

Kernel driver to find the correct
address in kernel memory to set
breakpoints for catching new drivers
as they load

Python script to convert WinDbg
output into data that can be imported
into IDA

WinDbg script for identifying mali-
cious notification routines.

Language

Python

Python

Python

Python

Batch

Python

Python

Python

WinDbg
scripting
language

Platform
All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only

Windows
only

Windows
only

All

Windows

XP only

All

Windows
only



In our daily lives we like to have a certain level of privacy. We have curtains on our win-
dows, doors for our offices, and even special screen protectors for computers to keep out
prying eyes. This idea of wanting privacy also extends to the use of the Internet. We do
not want people knowing what we typed in Google, what we said in our Instant Message
conversations, or what websites we visited. Unfortunately, your private information is
largely available if someone is watching. When doing any number of things on the Internet,
there are plenty of reasons you might want to go incognito. However, that does not mean
you're doing anything wrong or illegal.

he justification for anonymity when researching malware and bad guys is pretty

straightforward. You do not want information to show up in logs and other records
that might tie back to you or your organization. For example, let’s say you work at a finan-
cial firm and you recently detected that a banking trojan infected several of your systems.
You collected malicious domain names, IP addresses, and other data related to the malware.
The next steps you take in your research may lead you to websites owned by the criminals.
As aresult, if you are not taking precautions to stay anonymous, your IP address will show
up in various logs and be visible to miscreants.

If the criminals can identify you or the organization from which you conduct your
research, they may change tactics or go into hiding, thus spoiling your investigation.
Even worse, they may turn the tables and attack you in a personal way (such as identity
theft) or launch a distributed denial of service (DDoS) attack against your IP address.
For example, the Storm worm initiated DDoS attacks against machines that scanned an
infected system (see http://www.securityfocus. com/news/ll482).

This chapter contains several methods that you can use to conduct research without
blowing your cover. We've positioned this chapter to be first in the book, so you can use
the techniques when following along with examples in the remaining chapters. Keep in
mind that you may never truly be anonymous in what you are doing, but more privacy is
better than no privacy!
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The Onion Router (Tor)

A widely known and accepted solution for staying anonymous on the Internet is Tor. Tor,
despite being an acronym, is written with only the first letter capitalized and stands for
The Onion Router or the onion routing network. The project has a long history stemming
from a project run by the Naval Research Laboratory. You can read all about it at http://
www . torproject.org.

Tor is a network of computers around the world that forward requests in an encrypted
manner from the start of the request until it reaches the last machine in the network, which
is known as an exit node. At this point, the request is decrypted and passed to the destination
server. Exit nodes are specifically used as the last hop for traffic leaving the Tor network and
then as the first hop for returning traffic. When you use Tor, the systems with which you are
communicating see all incoming traffic as if it originated from the exit node. They do not know
where you are located or what your actual IP address is. Furthermore, the other systems in the
Tor network cannot determine your location either, because they are essentially forwarding
traffic with no knowledge of where it actually originated. The responses to your requests will
return to your system, but as far as the Tor network is concerned, you are just another hop along
the way. In essence, you are anonymous. Figure 1-1 shows a simplified view of the Tor network.

‘ Tor node N Tor node
Tor node Tor
‘ ‘ exit node

Tor user T -

Tor node Tor node Destination
Tor Web server
node . Tor

exit node
Tor node \
Tor node
Tor node
-------- Encrypted traffic

Unencrypted traffic

Figure 1-1: Simplified Tor Diagram



