“The most useful technical security bobki{'ve read l‘ﬁan A must-have for all who protect
systems from malkcious software.”

-Lenny Zeltser, Security Practice D \

“The ultimate guide for anyone ware analysis.” \
-Ryan Olson, Director, VeriSig 1?* Jhr Response Team
"Every page is filled with p

-Afron Walters, Lead D !

or at Savvis and Senior Faculty Member at SANS Institute

ge, innovative ideas, and useful tools. Worth its weight in gold!”
and "u"P of Security R&D at Terremark

alware Analyst’'s

Lookbook and DVD

: EtHNléu;s FOR FIGHTING MALICIOUS CODE

/f
,’/”/

. VY
lé Ligh gtewzn Adair, Blake Hartstein, and Matthew Richard

.-f

5

Malware Analyst’s
Cookbook and DVD

Malware Analyst’s
Cookbook and DVD

Tools and Techniques for
Fighting Malicious Code

Michael Hale Ligh
Steven Adair
Blake Hartstein
Matthew Richard

WILI
Wiley Publishing, Inc.

Malware Analyst’s Cookbook and DVD: Tools and Techniques for Fighting Malicious Code

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-61303-0

ISBN: 978-1-118-00336-7 (ebk)
ISBN: 978-1-118-00829-4 (ebk)
ISBN: 978-1-118-00830-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or website is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010933462
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All

other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.

To my family for helping me shape my life and to my wife

Suzanne for always giving me something to look forward to.

—Michael Hale Ligh

To my new wife and love of my life Irene and my family.
Without your support over the many years, I would not be where

I .am or who I am today.

—Steven Adair

Executive Editor
Carol Long

Project Editor

Maureen Spears

Technical Editor
Michael Gregg

Production Editor
Kathleen Wisor

Copy Editor
Nancy Rappaport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelance Editorial Manager

Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Maureen Forys,

Happenstance Type-O-Rama

Proofreader
Word One New York

Indexer

Robert Swanson

Cover Image
Digital Vision/Getty Images

Cover Designer
Ryan Sneed

ichael Hale Ligh is a Malicious Code Analyst at Verisign iDefense, where he special-

izes in developing tools to detect, decrypt, and investigate malware. In the past few
years, he has taught malware analysis courses and trained hundreds of students in Rio De
Janeiro, Shanghai, Kuala Lumpur, London, Washington D.C., and New York City. Before
iDefense, Michael worked as a vulnerability researcher, providing ethical hacking services
to one of the nation’s largest healthcare providers. Due to this position, he gained a strong
background in reverse-engineering and operating system internals. Before that, Michael
defended networks and performed forensic investigations for financial institutions through-
out New England. He is currently Chief of Special Projects at MNIN Security LLC.

Steven Adair is a security researcher with The Shadowserver Foundation and a Principal
Architect at eTouch Federal Systems. At Shadowserver, Steven analyzes malware, tracks
botnets, and investigates cyber-attacks of all kinds with an emphasis on those linked to
cyber-espionage. Steven frequently presents on these topics at international conferences
and co-authored the paper “Shadows in the Cloud: Investigating Cyber Espionage 2.0.”
In his day job, he leads the Cyber Threat operations for a Federal Agency, proactively
detecting, mitigating and preventing cyber-intrusions. He has successfully implemented
enterprise-wide anti-malware solutions across global networks by marrying best practices
with new and innovative techniques. Steven is knee deep in malware daily, whether it be
supporting his company’s customer or spending his free time with Shadowserver.

Blake Hartstein is a Rapid Response Engineer at Verisign iDefense. He is responsible
for analyzing and reporting on suspicious activity and malware. He is the author of the
Jsunpack tool that aims to automatically analyze and detect web-based exploits, which
he presented at Shmoocon 2009 and 2010. Blake has also authored and contributed Snort
rules to the Emerging Threats project.

Matthew Richard is Malicious Code Operations Lead at Raytheon Corporation, where
he is responsible for analyzing and reporting on malicious code. Matthew was previously
Director of Rapid Response at iDefense. For 7 years before that, Matthew created and ran
a managed security service used by 130 banks and credit unions. In addition, he has done
independent forensic consulting for a number of national and global companies. Matthew
currently holds the CISSP, GCIA, GCFA, and GREM certifications.

ichael would like to thank his current and past employers for providing an envi-

ronment that encourages and stimulates creativity. He would like to thank his
coworkers and everyone who has shared knowledge in the past. In particular, AAron
Walters and Ryan Smith for never hesitating to engage and debate interesting new ideas
and techniques. A special thanks goes out to the guys who took time out of the busy days
to review our book: Lenny Zeltser, Tyler Hudak, and Ryan Olson.

Steven would like to extend his gratitude to those who spend countless hours behind
the scenes investigating malware and fighting cyber-crime. He would also like to thank
his fellow members of the Shadowserver Foundation for their hard work and dedication
towards making the Internet a safer place for us all.

We would also like to thank the following:

Maureen Spears and Carol A. Long from Wiley Publishing, for helping us get through
our first book.

Ilfak Guilfanov (and the team at Hex-Rays) and Halvar Flake (and the team at
Zynamics) for allowing us to use some of their really neat tools.

All the developers of the tools that we referenced throughout the book. In particular,
Frank Boldewin, Mario Vilas, Harlan Carvey, and Jesse Kornblum, who also helped
review some recipes in their realm of expertise.

The authors of other books, blogs, and websites that contribute to the collective
knowledge of the community.

—Michael, Steven, Blake, and Matthew

INtrOAUCHION . . oo XV

ONThe BOOK'S DVD ...ttt XXiii
Anonymizing Your Activities. 1
Recipe 1-1: Anonymous Web Browsing with Tor. 3
Recipe 1-2: Wrapping Wget and Network Clients with Torsocks 5
Recipe 1-3: Multi-platform Tor-enabled Downloader in Python 7
Recipe 1-4: Forwarding Traffic through Open Proxies 12
Recipe 1-5: Using SSH Tunnels to Proxy Connectionscooooivo... 16
Recipe 1-6: Privacy-enhanced Web browsing with Privoxy 18
Recipe 1-7: Anonymous Surfing with Anonymouse.org. 20
Recipe 1-8: Internet Access through Cellular Networks 21
Recipe 1-9: Using VPNs with Anonymizer Universal 23
HONBYPOTS ... 27
Recipe 2-1: Collecting Malware Samples with Nepenthes. 29
Recipe 2-2: Real-Time Attack Monitoring with IRC Logging 32
Recipe 2-3: Accepting Nepenthes Submissions over HTTP with Python. 34
Recipe 2-4: Collecting Malware Samples with Dionaea 37
Recipe 2-5: Accepting Dionaea Submissions over HTTP with Python 40
Recipe 2-6: Real-time Event Notification and Binary Sharing with XMPP 41
Recipe 2-7: Analyzing and Replaying Attacks Logged by Dionea. 43
Recipe 2-8: Passive Identification of Remote Systems with pOf. 44
Recipe 2-9: Graphing Dionaea Attack Patterns with SQLite and Gnuplot 46
Malware Classification 51
Recipe 3-1: Examining Existing ClamAV Signatures 52
Recipe 3-2: Creating a Custom ClamAV Database. 54
Recipe 3-3: Converting ClamAV Signhatures to YARA. i, 59
Recipe 3-4: Identifying Packers with YARA and PEID 61
Recipe 3-5: Detecting Malware Capabilities with YARA 63
Recipe 3-6: File Type Identification and Hashing in Python. 68

Recipe 3-7: Writing a Multiple-AV Scanner in Python 70

X

Contents

Recipe 3-8: Detecting Malicious PE Files in Python. 75
Recipe 3-9: Finding Similar Malware with ssdeep 79
Recipe 3-10: Detecting Self-modifying Code with ssdeep 82
Recipe 3-11: Comparing Binaries with IDA and BinDiff 83
Sandboxes and MUlti-AV SCaNNErs 89
Recipe 4-1: Scanning Files with VirusTotal 90
Recipe 4-2: Scanning Files with Jotti o i 92
Recipe 4-3: Scanning Files with NoVirusThanks 93
Recipe 4-4: Database-Enabled Multi-AV Uploader in Python 96
Recipe 4-5: Analyzing Malware with ThreatExpert, 100
Recipe 4-6: Analyzing Malware with CWSandbox. 102
Recipe 4-7: Analyzing Malware with Anubis 104
Recipe 4-8: Writing AutoIT Scripts for Joebox i, 105
Recipe 4-9: Defeating Path-dependent Malware with Joebox 107
Recipe 4-10: Defeating Process-dependent DLLs with Joebox 109
Recipe 4-11: Setting an Active HTTP Proxy with Joebox 111
Recipe 4-12: Scanning for Artifacts with Sandbox Results.......................... 112
Researching Domains and IP Addresses. ... 19
Recipe 5-1: Researching Domains with WHOIS 120
Recipe 5-2: Resolving DNS HOSENAMESo ovt i 125
Recipe 5-3: Obtaining IP WHOIS Records, 129
Recipe 5-4: Querying Passive DNS with BFK. 132
Recipe 5-5: Checking DNS Records with Robtex. 133
Recipe 5-6: Performing a Reverse IP Search with DomainTools. 134
Recipe 5-7: Initiating Zone Transfers with dig 135
Recipe 5-8: Brute-forcing Subdomains with dnsmap 137
Recipe 5-9: Mapping IP Addresses to ASNs via Shadowserver. 138
Recipe 5-10: Checking IP Reputation withRBLs oo... 140
Recipe 5-11: Detecting Fast Flux with Passive DNS and TTLs. 143
Recipe 5-12: Tracking Fast Flux DOMains, 146
Recipe 5-13: Static Maps with Maxmind, matplotlib, and pygeoip. 148
Recipe 5-14: Interactive Maps with Google Charts APL 152
Documents, Shellcode,and URLs 155
Recipe 6-1: Analyzing JavaScript with Spidermonkey 156
Recipe 6-2: Automatically Decoding JavaScript with Jsunpack 159
Recipe 6-3: Optimizing Jsunpack-n Decodings for Speed and Completeness 162

Recipe 6-4: Triggering exploits by Emulating Browser DOM Elements. 163

Contents

Recipe 6-5: Extracting JavaScript from PDF Files with pdfpy.................... ... 168
Recipe 6-6: Triggering Exploits by Faking PDF Software Versions 172
Recipe 6-7: Leveraging Didier Stevens’s PDF Tools 175
Recipe 6-8: Determining which Vulnerabilities a PDF File Exploits 178
Recipe 6-9: Disassembling Shellcode with DiStorm 185
Recipe 6-10: Emulating Shellcode with Libemu o ... 190
Recipe 6-11: Analyzing Microsoft Office Files with OfficeMalScanner. 193
Recipe 6-12: Debugging Office Shellcode with DisView and MalHost-setup 200
Recipe 6-13: Extracting HTTP Files from Packet Captures with Jsunpack. 204
Recipe 6-14: Graphing URL Relationships with Jsunpack 206
Malware Labs o 211
Recipe 7-1: Routing TCP/IP Connections in Your Lab. 215
Recipe 7-2: Capturing and Analyzing Network Traffic. 217
Recipe 7-3: Simulating the Internet with INetSim 221
Recipe 7-4: Manipulating HTTP/HTTPS with Burp Suite 225
Recipe 7-5: Using Joe Stewart’s Truman oo, 228
Recipe 7-6: Preserving Physical Systems with Deep Freeze 229
Recipe 7-7: Cloning and Imaging Disks with FOG 232
Recipe 7-8: Automating FOG Tasks with the MySQL Database 236
AUtOMALION ... o 239
Recipe 8-1: Automated Malware Analysis with VirtualBox 242
Recipe 8-2: Working with VirtualBox Disk and Memory Images. 248
Recipe 8-3: Automated Malware Analysis with VMware 250
Recipe 8-4: Capturing Packets with TShark via Python. 254
Recipe 8-5: Collecting Network Logs with INetSim via Python 256
Recipe 8-6: Analyzing Memory Dumps with Volatility 258
Recipe 8-7: Putting all the Sandbox Pieces Together. 260
Recipe 8-8: Automated Analysis with ZeroWine and QEMU 271
Recipe 8-9: Automated Analysis with Sandboxie and Buster 276
Dynamic ANAlYSIS.ot 283
Recipe 9-1: Logging API calls with Process Monitor 286
Recipe 9-2: Change Detection with Regshot 288
Recipe 9-3: Receiving File System Change Notifications 290
Recipe 9-4: Receiving Registry Change Notifications. 294
Recipe 9-5: Handle Table Diffing i 295
Recipe 9-6: Exploring Code Injection with HandleDiff 300

Recipe 9-7: Watching Bankpatch.C Disable Windows File Protection 301

Xi

xii

Contents

Recipe 9-8: Building an API Monitor with Microsoft Detours 304
Recipe 9-9: Following Child Processes with Your API Monitor. 311
Recipe 9-10: Capturing Process, Thread, and Image Load Events 314
Recipe 9-11: Preventing Processes from Terminating. 321
Recipe 9-12: Preventing Malware from Deleting Files 324
Recipe 9-13: Preventing Drivers from Loading. 325
Recipe 9-14: Using the Data Preservation Module 327
Recipe 9-15: Creating a Custom Command Shell with ReactOS 330
Malware Forensics........... ... 337
Recipe 10-1: Discovering Alternate Data Streams with TSK 337
Recipe 10-2: Detecting Hidden Files and Directories with TSK 341
Recipe 10-3: Finding Hidden Registry Data with Microsoft’s Offline APL 349
Recipe 10-4: Bypassing Poison Ivy’s Locked Files 355
Recipe 10-5: Bypassing Conficker’s File System ACL Restrictions 359
Recipe 10-6: Scanning for Rootkits with GMER. 363
Recipe 10-7: Detecting HTML Injection by Inspecting IESDOM 367
Recipe 10-8: Registry Forensics with RegRipper Plug-ins 377
Recipe 10-9: Detecting Rogue-Installed PKI Certificates 384
Recipe 10-10: Examining Malware that Leaks Data into the Registry 388
Debugging Malware oo 395
Recipe 11-1: Opening and Attaching to Processes. 396
Recipe 11-2: Configuring a JIT Debugger for Shellcode Analysis 398
Recipe 11-3: Getting Familiar with the Debugger GUL. 400
Recipe 11-4: Exploring Process Memory and Resources. 407
Recipe 11-5: Controlling Program Execution 410
Recipe 11-6: Setting and Catching Breakpoints 412
Recipe 11-7: Using Conditional Log Breakpoints 415
Recipe 11-8: Debugging with Python Scripts and PyCommands 418
Recipe 11-9: Detecting Shellcode in Binary Files oo, 421
Recipe 11-10: Investigating Silentbanker’s APT Hooks 426
Recipe 11-11: Manipulating Process Memory with WinAppDbg Tools. 431
Recipe 11-12: Designing a Python API Monitor with WinAppDbg 433
De-Obfuscation. 441
Recipe 12-1: Reversing XOR Algorithms in Python 441
Recipe 12-2: Detecting XOR Encoded Data with yaratize. 446
Recipe 12-3: Decoding Base64 with Special Alphabets. 448

Recipe 12-4: Isolating Encrypted Data in Packet Captures 452

Contents

Recipe 12-5: Finding Crypto with SnD Reverser Tool, FindCrypt, and Kanal 454
Recipe 12-6: Porting OpenSSL Symbols with Zynamics BinDiff 456
Recipe 12-7: Decrypting Data in Python with PyCrypto 458
Recipe 12-8: Finding OEP in Packed Malware 461
Recipe 12-9: Dumping Process Memory with LordPE 465
Recipe 12-10: Rebuilding Import Tables with InpREC 467
Recipe 12-11: Cracking Domain Generation Algorithms 476
Recipe 12-12: Decoding Strings with x86emu and Python 481
Working With DLLS 487
Recipe 13-1: Enumerating DLL EXports, 488
Recipe 13-2: Executing DLLs with rundll32.exeo oo, 491
Recipe 13-3: Bypassing Host Process Restrictions 493
Recipe 13-4: Calling DLL Exports Remotely with rundll32ex....................... 495
Recipe 13-5: Debugging DLLs with LOADDLL.EXEccooviiein... 499
Recipe 13-6: Catching Breakpoints on DLL Entry Points 501
Recipe 13-7: Executing DLLs as a Windows Servicec.ccoiiiiii .. 502
Recipe 13-8: Converting DLLs to Standalone Executables. 507
Kernel DebUgEINg oot 5T
Recipe 14-1: Local Debugging with LiveKd 513
Recipe 14-2: Enabling the Kernel’s Debug Boot Switch. 514
Recipe 14-3: Debug a VMware Workstation Guest (on Windows) 517
Recipe 14-4: Debug a Parallels Guest (on Mac OSX) 519
Recipe 14-5: Introduction to WinDbg Commands And Controls 521
Recipe 14-6: Exploring Processes and Process CONtexts.oouo... 528
Recipe 14-7: Exploring Kernel Memory o .. 534
Recipe 14-8: Catching Breakpoints on Driver Load 540
Recipe 14-9: Unpacking Drivers to OEP. 548
Recipe 14-10: Dumping and Rebuilding Drivers.o ... 555
Recipe 14-11: Detecting Rootkits with WinDbg Scripts 561
Recipe 14-12: Kernel Debugging with IDAPro., 566
Memory Forensics with Volatility ... 571
Recipe 15-1: Dumping Memory with MoonSols Windows Memory Toolkit............. 572
Recipe 15-2: Remote, Read-only Memory Acquisition with F-Response. 575
Recipe 15-3: Accessing Virtual Machine Memory Files 576
Recipe 15-4: Volatility in a Nutshell. 578
Recipe 15-5: Investigating processes in Memory Dumps. 581

Recipe 15-6: Detecting DKOM Attacks with psscan., 588

xiii

xiv Contents

Recipe 15-7: Exploring csrss.exe’s Alternate Process Listings. 591
Recipe 15-8: Recognizing Process Context Tricks 593
Memory Forensics: Code Injection and Extraction........................ ... 601
Recipe 16-1: Hunting Suspicious Loaded DLLs, 603
Recipe 16-2: Detecting Unlinked DLLs with ldr_modules 605
Recipe 16-3: Exploring Virtual Address Descriptors (VAD). 610
Recipe 16-4: Translating Page Protectionsc.oviiiie e .. 614
Recipe 16-5: Finding Artifacts in Process Memory. 617
Recipe 16-6: Identifying Injected Code with Malfind and YARA 619
Recipe 16-7: Rebuilding Executable Images from Memory. 627
Recipe 16-8: Scanning for Imported Functions with impscan. 629
Recipe 16-9: Dumping Suspicious Kernel Modules 633
Memory Forensics: RoOtkits. 637
Recipe 17-1: Detecting IAT Hooks. i 637
Recipe 17-2: Detecting EAT HOORSot 639
Recipe 17-3: Detecting Inline APT Hooks. 641
Recipe 17-4: Detecting Interrupt Descriptor Table (IDT) Hooks 644
Recipe 17-5: Detecting Driver IRP Hooks i 646
Recipe 17-6: Detecting SSDT Hooks 650
Recipe 17-7: Automating Damn Near Everything with ssdt_ex 054
Recipe 17-8: Finding Rootkits with Detached Kernel Threads 655
Recipe 17-9: Identifying System-Wide Notification Routines 658
Recipe 17-10: Locating Rogue Service Processes with svescan 661
Recipe 17-11: Scanning for Mutex Objects with mutantscan. 669
Memory Forensics: Network and Registry ..., 673
Recipe 18-1: Exploring Socket and Connection Objects 673
Recipe 18-2: Analyzing Network Artifacts Left by Zeus. 678
Recipe 18-3: Detecting Attempts to Hide TCP/IP Activity. 680
Recipe 18-4: Detecting Raw Sockets and Promiscuous NICs 682
Recipe 18-5: Analyzing Registry Artifacts with Memory Registry Tools 685
Recipe 18-6: Sorting Keys by Last Written Timestamp 689
Recipe 18-7: Using Volatility with RegRipper.o i .. 692

alware Analyst’s Cookbook is a collection of solutions and tutorials designed to

enhance the skill set and analytical capabilities of anyone who works with, or
against, malware. Whether you're performing a forensic investigation, responding to an
incident, or reverse-engineering malware for fun or as a profession, this book teaches you
creative ways to accomplish your goals. The material for this book was designed with sev-
eral objectives in mind. The first is that we wanted to convey our many years of experience
in dealing with malicious code in a manner friendly enough for non-technical readers to
understand, but complex enough so that technical readers won't fall asleep. That being
said, malware analysis requires a well-balanced combination of many different skills. We
expect that our readers have at least a general familiarity with the following topics:

Networking and TCP/IP

Operating system internals (Windows and Unix)
Computer security

Forensics and incident response

Programming (C, C++, Python, and Perl)
Reverse-engineering

Vulnerability research

Malware basics

Our second objective is to teach you how various tools work, rather than just how to use
the tools. If you understand what goes on when you click a button (or type a command)
as opposed to just knowing which button to click, you'll be better equipped to perform an
analysis on the tool’s output instead of just collecting the output. We realize that not every-
one can or wants to program, so we've included over 50 tools on the DVD that accompanies
the book; and we discuss hundreds of others throughout the text. One thing we tried to
avoid is providing links to every tool under the sun. We limit our discussions to tools that
we’re familiar with, and—as much as possible—tools that are freely available.

Lastly, this book is not a comprehensive guide to all tasks you should perform during
examination of a malware sample or during a forensic investigation. We tried to include
solutions to problems that are common enough to be most beneficial to you, but rare enough
to not be covered in other books or websites. Furthermore, although malware can target
many platforms such as Windows, Linux, Mac OS X, mobile devices, and hardware/firmware
components, our book focuses primarily on analyzing Windows malware.

XVi

Introduction

Who Should Read This Book

If you want to learn about malware, you should read this book. We expect our readers to
be forensic investigators, incident responders, system administrators, security engineers,
penetration testers, malware analysts (of course), vulnerability researchers, and anyone
looking to be more involved in security. If you find yourself in any of the following situ-
ations, then you are within our target audience:

You're a member of your organization’s incident handling, incident response, or
forensics team and want to learn some new tools and techniques for dealing with
malware.

You work as a systems, security, or network administrator and want to understand
how you can protect end users more effectively.

You're a member of your country’s Computer Emergency Response Team (CERT)
and need to identify and investigate malware intrusions.

You work at an antivirus or research company and need practical examples of ana-
lyzing and reporting on modern malware.

You're an aspiring student hoping to learn techniques that colleges and universities
just don’t teach.

You work in the IT field and have recently become bored, so you're looking for a
new specialty to compliment your technical knowledge.

How This Book Is Organized

This book is organized as a set of recipes that solve specific problems, present new tools, or
discuss how to detect and analyze malware in interesting ways. Some of the recipes are stand-
alone, meaning the problem, discussion, and solution are presented in the same recipe. Other
recipes flow together and describe a sequence of actions that you can use to solve a larger
problem. The book covers a large array of topics and becomes continually more advanced
and specialized as it goes on. Here is a preview of what you can find in each chapter:

Chapter 1, Anonymizing Your Activities: Describes how you conduct online inves-
tigations without exposing your own identity. You'll use this knowledge to stay safe
when following along with exercises in the book and when conducting research
in the future.

Chapter 2, Honeypots: Describes how you can use honeypots to collect the mal-
ware being distributed by bots and worms. Using these techniques, you can grab
new variants of malware families from the wild, share them in real time with other

Introduction xvii

researchers, analyze attack patterns, or build a workflow to automatically analyze
the samples.

Chapter 3, Malware Classification: Shows you how to identify, classify, and orga-
nize malware. Youw'll learn how to detect malicious files using custom antivirus
signatures, determine the relationship between samples, and figure out exactly what
functionality attackers may have introduced into a new variant.

Chapter 4, Sandboxes and Multi-AV Scanners: Describes how you can leverage
online virus scanners and public sandboxes. You'll learn how to use scripts to con-
trol the behavior of your sample in the target sandbox, how to submit samples on
command line with Python scripts, how to store results to a database, and how to
scan for malicious artifacts based on sandbox results.

Chapter 5, Researching Domains and IP Addresses: Shows you how to identify and
correlate information regarding domains, hostnames, and IP addresses. You'll learn
how to track fast flux domains, determine the alleged owner of a domain, locate
other systems owned by the same group of attackers, and create static or interactive
maps based on the geographical location of IP addresses.

Chapter 6, Documents, Shellcode, and URLs: In this chapter, you'll learn to ana-
lyze JavaScript, PDFs, Office documents, and packet captures for signs of malicious
activity. We discuss how to extract shellcode from exploits and analyze it within a
debugger or in an emulated environment.

Chapter 7, Malware Labs: Shows how to build a safe, flexible, and inexpensive lab
in which to execute and monitor malicious code. We discuss solutions involving
virtual or physical machines and using real or simulated Internet.

Chapter 8, Automation: Describes how you can automate the execution of malware
in VMware or VirtualBox virtual machines. The chapter introduces several Python
scripts to create custom reports about the malware’s behavior, including network
traffic logs and artifacts created in physical memory.

Chapter 9, Dynamic Analysis: One of the best ways to understand malware behavior
is to execute it and watch what it does. In this chapter, we cover how to build your
own API monitor, how to prevent certain evidence from being destroyed, how to log
file system and Registry activity in real time without using hooks, how to compare
changes to a process’s handle table, and how to log commands that attackers send
through backdoors.

Chapter 10, Malware Forensics: Focuses on ways to detect rootkits and stealth
malware using forensic tools. We show you how to scan the file system and Registry
for hidden data, how to bypass locked file restrictions and remove stubborn mal-
ware, how to detect HTML injection and how to investigate a new form of Registry
“slack” space.

Xviii

Introduction

Chapter 11, Debugging Malware: Shows how you can use a debugger to analyze,
control, and manipulate a malware sample’s behaviors. You'll learn how to script
debugging sessions with Python and how to create debugger plug-ins that monitor
API calls, output HTML behavior reports, and automatically highlight suspicious
activity.

Chapter 12, De-obfuscation: Describes how you can decode, decrypt, and unpack
data that attackers intentionally try to hide from you. We walk you through the
process of reverse-engineering a malware sample that encrypts its network traffic
so you can recover stolen data. In this chapter, you also learn techniques to crack
domain generation algorithms.

Chapter 13, Working with DLLs: Describes how to analyze malware distributed
as Dynamic Link Libraries (DLLs). Youwll learn how to enumerate and examine a
DLL’s exported functions, how to run the DLL in a process of your choice (and
bypass host process restrictions), how to execute DLLs as a Windows service, and
how to convert DLLs to standalone executables.

Chapter 14, Kernel Debugging: Some of the most malicious malware operates only
in kernel mode. This chapter covers how to debug the kernel of a virtual machine
infected with malware to understand its low-level functionality. You learn how to
create scripts for WinDbg, unpack kernel drivers, and to leverage IDA Pro’s debug-
ger plug-ins.

Chapter 15, Memory Forensics with Volatility: Shows how to acquire memory
samples from physical and virtual machines, how to install the Volatility advanced
memory forensics platform and associated plug-ins, and how to begin your analysis
by detecting process context tricks and DKOM attacks.

Chapter 16, Memory Forensics: Code Injection and Extraction: Describes how you
can detect and extract code (unlinked DLLs, shellcode, and so on) hiding in process
memory. You'll learn to rebuild binaries, including user mode programs and kernel
drivers, from memory samples and how to rebuild the import address tables (IAT)
of packed malware based on information in the memory dump.

Chapter 17, Memory Forensics: Rootkits: Describes how to detect various forms
of rootkit activity, including the presence of IAT, EAT, Inline, driver IRP, IDT, and
SSDT hooks on a system. You'll learn how to identify malware that hides in kernel
memory without a loaded driver, how to locate system-wide notification routines,
and how to detect attempts to hide running Windows services.

Chapter 18, Network and Registry: Shows how to explore the artifacts created on
a system due to a malware sample’s network activity. You'll learn to detect active
connections, listening sockets, and the use of raw sockets and promiscuous mode
network cards. This chapter also covers how to extract volatile Registry keys and
values from memory.

Introduction

Setting Up Your Environment

We performed most of the development and testing of Windows tools on 32-bit Windows
XP and Windows 7 machines using Microsoft’s Visual Studio and Windows Driver Kit.
If you need to recompile our tools for any reason (for example to fix a bug), or if you're
interested in building your own tools based on source code that we've provided, then you
can download the development environments here:

The Windows Driver Kit: http://www.microsoft.com/whdc/devtools/WDK/default
.MSpx

Visual Studio C++ Express: http: //www.microsoft.com/express/Downloads/#2010-
Visual-CPP

As for the Python tools, we developed and tested them on Linux (mainly Ubuntu 9.04,
9.10, or 10.04) and Mac OS X 10.4 and 10.5. You'll find that a majority of the Python tools
are multi-platform and run wherever Python runs. If you need to install Python, you can
get it from the website at http://python.org/download/. We recommend using Python
version 2.6 or greater (but not 3.x), because it will be most compatible with the tools on
the book’s DVD.

Throughout the book, when we discuss how to install various tools on Linux, we assume
you're using Ubuntu. As long as you know your way around a Linux system, you're com-
fortable compiling packages from source, and you know how to solve basic dependency
issues, then you shouldn’t have a problem using any other Linux distribution. We chose
Ubuntu because a majority of the tools (or libraries on which the tools depend) that we
reference in the book are either preinstalled, available through the apt-get package man-
ager, or the developers of the tools specifically say that their tools work on Ubuntu.

You have a few options for getting access to an Ubuntu machine:

Download Ubuntu dil‘eCtlyZ http://www.ubuntu.com/desktop/get-ubuntu/download
Download Lenny Zeltser’s REMnux: http://REMnux.org. REMnux is an Ubuntu
system preconfigured with various open source malware analysis tools. REMnux is
available as a VMware appliance or ISO image.

Download Rob Lee’s SANS SIFT Workstation: https://computer-forensics2.
sans.org/community/siftkit/. SIFT is an Ubuntu system preconfigured with vari-
ous forensic tools. SIFT is available as a VMware appliance or ISO image.

We always try to provide a URL to the tools we mention in a recipe. However, we use
some tools significantly more than others, thus they appear in five to ten recipes. Instead

Xix

X-X 2day

Introduction

of linking to each tool each time, here is a list of the tools that you should have access to
throughout all chapters:

Sysinternals Suite: http://technet.microsoft.com/en-us/sysinternals/bb842062
.aspx

Wireshark: http://www.wireshark.org/

IDA Pro and Hex-Rays: http://www.hex-rays.com/idapro/

Volatility: http://code.google.com/p/volatility/

WinDbg Debugger: http://www.microsoft.com/whdc/devtools/debugging/
default.mspx

YARA: http://code.google.com/p/yara-project/

Process Hacker: http://processhacker.sourceforge.net/

You should note a few final things before you begin working with the material in the
book. Many of the tools require administrative privileges to install and execute. Typically,
mixing malicious code and administrative privileges isn’t a good idea, so you must be sure
to properly secure your environment (see Chapter 7 for setting up a virtual machine if you
do not already have one). You must also be aware of any laws that may prohibit you from
collecting, analyzing, sharing, or reporting on malicious code. Just because we discuss a
technique in the book does not mean it’s legal in the city or country in which you reside.

Conventions

To help you get the most from the text and keep track of what’s happening, we've used a
number of conventions throughout the book.

RECIPE X-X: RECIPE TITLE

Boxes like this contain recipes, which solve specific problems, present new tools, or discuss
how to detect and analyze malware in interesting ways. Recipes may contain helpful steps,
supporting figures, and notes from the authors. They also may have supporting materials
associated with them on the companion DVD. If they do have supporting DVD materials,
you will see a DVD icon and descriptive text, as follows:

=D You can find supporting material for this recipe on the companion DVD.

ONTHE DVD

For your further reading and research, recipes may also have endnotes' that site Internet
or other supporting sources. You will find endnote references at the end of the recipe.
Endnotes are numbered sequentially throughout a chapter.

! This is an endnote. This is the format for a website source

Introduction xxi

NOTE

Tips, hints, tricks, and asides to the current discussion look like this.

As for other conventions in the text:

New terms and important words appear in italics when first introduced.
Keyboard combinations are treated like this: Ctrl+R.
File names are in parafont, (filename.txt), URLs and code (API functions and vari-
able names) within the text are treated like so: www.site.org, LoadLibrary, varl.
This book uses monofont type with no highlighting for most code examples. Code
fragments may be broken into multiple lines or truncated to fit on the page:

This is an example of monofont type with a long \

line of code that needed to be broken.
This truncated line shows how [REMOVED]

This book uses bolding to emphasize code. User input for commands and code that
is of particular importance appears in bold:

$ date ; typing into a Unix shell

Wed Sep 1 14:30:20 EDT 2010

C:\> date ; typing into a Windows shell
Wed 09/01/2010

he book’s DVD contains evidence files, videos, source code, and programs that you
can use to follow along with recipes or to conduct your own investigations and analy-
sis. It also contains the full-size, original images and figures that you can view, since they
appear in black and white in the book. The files are organized on the DVD in folders named
according to the chapter and recipe number. Most of the tools on the DVD are written in
C, Python, or Perl and carry a GPLv2 or GPLv3 license. You can use a majority of them
as-is, but a few may require small modifications depending on your system’s configuration.
Thus, even if you're not a programmer, you should take a look at the top of the source file
to see if there are any notes regarding dependencies, the platforms on which we tested the
tools, and any variables that you may need to change according to your environment.
We do not guarantee that all programs are bug free (who does?), thus, we welcome
feature requests and bug reports addressed to malwarecookbook@gmail.com. If we do pro-
vide updates for the code in the future, you can always find the most recent versions at
http://www.malwarecookbook.com.
The following table shows a summary of the tools that you can find on the DVD, includ-
ing the corresponding recipe number, programming language, and intended platform.

Recipe Tool Description Language Platform

1-3 torwget.py Multi-platform TOR-enabled URL Python All
fetcher

23 wwwhoney.tgz CGl scripts to accept submissions from Python All

nepenthes and dionaea honeypots

33 clamav_to_yara.py Convert ClamAV antivirus signatures Python All
to YARA rules

3-4 peid_to_yara.py Convert PEID packer signatures to Python All
YARA rules
3-7 av_multiscan.py Script to implement your own antivi- Python All

rus multi-scanner
3-8 pescanner.py Detect malicious PE file attributes Python All

3-10 ssdeep_procs.py Detect self-mutating code on live Python Windows
Windows systems using ssdeep only (XP/7)

xxiv On The Book’s DVD

Recipe

4-4

4-12

4-12

5-13

5-14

6-9

8-1

8-1

8-7

8-7

9-3

9-5

9-10

Tool

avsubmit.py

dbmgr.py

artifactscanner.py

mapper.py

googlegeoip.py

sc_distorm.py

vmauto.py

mybox.py

myvmware.py

analysis.py

RegFsNotify.exe

HandleDiff.exe

Preservation.zip

Description

Command-line interface to VirusTotal,
ThreatExpert, Jotti, and NoVirusThanks

Malware artifacts database manager

Application to scan live Windows sys-
tems for artifacts (files, Registry keys,
mutexes) left by malware

Create static PNG images of IP
addresses plotted on a map using
GeolP

Create dynamic/interactive geographi-
cal maps of IP addresses using Google
charts

Script to produce disassemblies (via
DiStorm) of shellcode and optionally
apply an XOR mask

Python class for automating malware
execution in VirtualBox and VMware
guests

Sample automation script for
VirtualBox based on vmauto.py

Sample automation script for VMware
based on vmauto.py

Python class for building sandboxes
with support for analyzing network
traffic, packet captures, and memory.

Tool to detect changes to the Registry
and file system in real time (from user
mode without APl hooks)

Tool to detect changes to the handle
tables of all processes on a system
(useful to analyze the side-effects of
code injecting malware)

Kernel driver for monitoring notifica-
tion routines, preventing processes
from terminating, preventing files from
being deleted, and preventing other
drivers from loading

Language

Python

Python

Python

Python

Python

Python

Python

Python

Python

Python

Platform
All

All
Windows

only (XP/7)

All

All

All

All

All

All

Linux

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only

10-2

10-4

10-7

10-8

10-8

10-8

10-8

10-9

10-10

11-2

1-9

11-10

1-12

Tool

cmd.exe

tsk-xview.exe

closehandle.exe

HTMLInjection
Detector.exe
routes.pl

pendingdelete.pl

disallowrun.pl

shellexecute-

hooks.pl

dumpcerts.pl

somethingelse.pl

scloader.exe

scd.py

findhooks.py

pymon.py

Description

Custom command shell (cmd.exe) for
logging malware activity and backdoor
activity

Cross-view based rootkit detection
tool based on The Sleuth Kit APl and
Microsoft’s Offline Registry API.

Command-line tool to remotely close
a handle that another process has
open

Detect HTML injection attacks on
banking and financial websites

RegRipper plug-in for printing a com-
puter’s routing table

RegRipper plug-in for printing files that
are pending deletion.

RegRipper plug-in for printing pro-
cesses that malware prevents from
running

RegRipper plug-in for printing
ShellExecute hooks (a method of DLL
injection)

Parse:Win32Registry module to
extract and examine cryptography
certificates stored in Registry hives

Parse:Win32Registry module for find-
ing hidden binary data in the Registry

Executable wrapper for launching shell
code in a debugger

Immunity Debugger PyCommand for
finding shellcode in arbitrary binary
files

Immunity Debugger PyCommand for
finding Inline-style user mode API
hooks

WinAppDbg plug-in for monitoring
API calls, alerting on suspicious flags/
parameters and producing an HTML
report

On The Book’s DVD

Language

C

Perl

Perl

Perl

Perl

Perl

Perl

Python

Python

Python

Platform

Windows
only
(XP/7)

Windows

XP only

Windows
only (XP/7)

Windows
XP only
All

All

All

All

All

All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

XXV

xxvi On The Book’s DVD

Recipe

12-1

12-10

12-11

13-7

13-7

13-8

14-8

14-10

14-T1

Tool

xortools.py

trickimprec.py

kraken.py

sbstrings.py

rundll32ex.exe

install_svc.bat

install_svc.py

dll2exe.py

DriverEntryFinder

windbg_to_ida.py

WinDbgNotify.txt

Description

Python library for encoding/decod-
ing XOR, including brute force meth-
ods and automated YARA signature
generation

Immunity Debugger PyCommand for
assistance when rebuilding import
tables with Import REconstructor

Immunity Debugger PyCommand for
cracking Kraken's Domain Generation
Algorithm (DGA)

Immunity Debugger PyCommand for
decrypting Silent Banker strings.

Extended version of rundl(32.exe that
allows you to run DLLs in other pro-
cesses, call exported functions, and
pass parameters

Batch script for installing a service DLL
(for dynamic analysis of the DLL)

Python script for installing a service
DLL and supplying optional arguments
to the service

Python script for converting a DLL
into a standalone executable

Kernel driver to find the correct
address in kernel memory to set
breakpoints for catching new drivers
as they load

Python script to convert WinDbg
output into data that can be imported
into IDA

WinDbg script for identifying mali-
cious notification routines.

Language

Python

Python

Python

Python

Batch

Python

Python

Python

WinDbg
scripting
language

Platform
All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only

Windows
only

Windows
only

All

Windows

XP only

All

Windows
only

In our daily lives we like to have a certain level of privacy. We have curtains on our win-
dows, doors for our offices, and even special screen protectors for computers to keep out
prying eyes. This idea of wanting privacy also extends to the use of the Internet. We do
not want people knowing what we typed in Google, what we said in our Instant Message
conversations, or what websites we visited. Unfortunately, your private information is
largely available if someone is watching. When doing any number of things on the Internet,
there are plenty of reasons you might want to go incognito. However, that does not mean
you're doing anything wrong or illegal.

he justification for anonymity when researching malware and bad guys is pretty

straightforward. You do not want information to show up in logs and other records
that might tie back to you or your organization. For example, let’s say you work at a finan-
cial firm and you recently detected that a banking trojan infected several of your systems.
You collected malicious domain names, IP addresses, and other data related to the malware.
The next steps you take in your research may lead you to websites owned by the criminals.
As aresult, if you are not taking precautions to stay anonymous, your IP address will show
up in various logs and be visible to miscreants.

If the criminals can identify you or the organization from which you conduct your
research, they may change tactics or go into hiding, thus spoiling your investigation.
Even worse, they may turn the tables and attack you in a personal way (such as identity
theft) or launch a distributed denial of service (DDoS) attack against your IP address.
For example, the Storm worm initiated DDoS attacks against machines that scanned an
infected system (see http://www.securityfocus. com/news/ll482).

This chapter contains several methods that you can use to conduct research without
blowing your cover. We've positioned this chapter to be first in the book, so you can use
the techniques when following along with examples in the remaining chapters. Keep in
mind that you may never truly be anonymous in what you are doing, but more privacy is
better than no privacy!

Malware Analyst’s Cookbook

The Onion Router (Tor)

A widely known and accepted solution for staying anonymous on the Internet is Tor. Tor,
despite being an acronym, is written with only the first letter capitalized and stands for
The Onion Router or the onion routing network. The project has a long history stemming
from a project run by the Naval Research Laboratory. You can read all about it at http://
www . torproject.org.

Tor is a network of computers around the world that forward requests in an encrypted
manner from the start of the request until it reaches the last machine in the network, which
is known as an exit node. At this point, the request is decrypted and passed to the destination
server. Exit nodes are specifically used as the last hop for traffic leaving the Tor network and
then as the first hop for returning traffic. When you use Tor, the systems with which you are
communicating see all incoming traffic as if it originated from the exit node. They do not know
where you are located or what your actual IP address is. Furthermore, the other systems in the
Tor network cannot determine your location either, because they are essentially forwarding
traffic with no knowledge of where it actually originated. The responses to your requests will
return to your system, but as far as the Tor network is concerned, you are just another hop along
the way. In essence, you are anonymous. Figure 1-1 shows a simplified view of the Tor network.

‘ Tor node N Tor node
Tor node Tor
‘ ‘ exit node

Tor user T -

Tor node Tor node Destination
Tor Web server
node . Tor

exit node
Tor node \
Tor node
Tor node
-------- Encrypted traffic

Unencrypted traffic

Figure 1-1: Simplified Tor Diagram

