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Foreword

No one can ever doubt that electronic devices provide the basis of the way large components of our
civilization operate today. This book refreshingly provides both a well-organized history and state of the
art of the many technologies involved, how they are connected and most importantly, how this evolution
(and frequently revolution) took place. I am overjoyed to see that the IEEE Electron Device Society has
taken on this challenging undertaking and succeeded so well. The editor has made excellent choices of
authors to cover such a daunting challenge. I have known many of them personally and can attest to that
claim.

The initiation of the EDS and its growth has coincided with this revolution and it has been the principal
organization in creating conferences and providing publications in which people can present results and
interact with others working in their field. The importance of this cannot be overemphasized since the
trading of ideas, not to mention competition, between people in a field provides fertilizer for new ideas.
Incidentally, it is not too much of an exaggeration to say that, at conferences, as much information has
been traded in the hallways as in the technical sessions. The inception of this book is a continuation of
that fine tradition of publicizing information.

Although each chapter in this book covers a separate subject, they all start with a historical and tutorial
mix before attacking the current state of the art. This is very beneficial to both students and experts in a
given field who wish to broaden their horizons. I especially applaud the use of the blue sidebars which
explain terms and concepts which require no explanation for those in the field but are enigmas to those
less knowledgeable.

George E. Smith

Note: Dr. George E. Smith received the 2009 Nobel Prize in Physics for ”the invention of an imaging semiconductor circuit – the CCD
sensor”. He is also a Celebrated Member of the IEEE Electron Devices Society.



Foreword

This book marks the 35th anniversary of the IEEE Electron Devices Society (EDS), a journey that began
with the formation of the IRE Professional Group on Electron Devices 60 years ago. The major technical
advancements in the field of Electron Devices are commemorated chronologically through the “video clips”
at the bottom of the pages throughout the book. These clips represent snapshots of many pioneers whose
aspirations and dedication led to the discovery of numerous device concepts and their implementation into
practical use. This historical time line links well to the electronic booklet “50 Years of Electron Devices,”
which is freely available on the EDS web site.

Although the invention and development of vacuum tube devices for communications and sensing pre-
dated the age of transistor, it was the advent of the solid-state “triode” in 1947, followed by the integrated
circuits in the late 1950s, that has ceaselessly pushed new frontiers in computers, communications, and
many other emerging areas in the several recent decades. The work described in this book has revolution-
ized the way we live and the way we think. As the continuous, insatiable demand for higher performing
electronics drives the search for new materials and devices, the global electron devices community will
again and again respond to new challenges with novel solutions.

This book was compiled from contributions from many volunteer leaders of the Society. It is our sincere
wish that its technical content will serve as a bridge between the last sexagenary cycle and the next.

Paul Yu
IEEE EDS President 2012–2013



Preface

Electronics and power electronics have grown to be indispensable technologies supporting our lifestyle,
our health and our safety, social interaction and security. None of today’s industries would be viable
without electronic communication, automation and control. Through electronics people stay connected, get
supported in their professional life, and can enjoy leisure entertainment. Transportation and energy supply
depend on electronics as well. Electron devices are the foundation of electronics and power electronics.
They enable all kinds of electronic signal processing and allow for switching and steering electrical energy.

This book features a concise guide to state-of-the-art electron devices. It is written by 67 specialists who
are members of the IEEE Electron Devices Society (EDS). In 21 chapters they share their expert view on
a particular group of electron devices or device aspects. The chapters not only illustrate the broad variety
of electron device and device aspects but they are also a mirror of the diversity within the EDS. There are
contributions from industry, academic and government institutions. Authors come from all five continents
– a true world class team which includes the top-level industry manager as well as young engineer, the
renowned university professor, and the young academic. The editor therefore tried to keep the apparent
differences in style and language intact to reflect the rich diversity in regional background and affiliation.

Most of the authors are members of one of the 14 Technical Area Committees (TACs) in EDS, which
assist the Executive Committee (ExCom) and Board of Governors (BoG) of EDS with their expertise in
decision making and strategy processes. The current TACs in EDS are listed in Table 1.

The Institute of Electrical and Electronics Engineers (IEEE), the world’s largest professional association,
has its roots in the American Institute of Electrical Engineers (AIEE; founded 1884) and the Institute of
Radio Engineers (IRE; founded 1912), which merged in 1963 to form the IEEE. The IRE already paid
attention to the significance of electron devices by establishing an ‘Electron Tube and Solid-State Devices
Committee’ in 1951 shortly after the invention of the transistor. In 1952 the committee’s name was changed
to ‘IRE Professional Group on Electron Devices’. With the merger of AIEE and IRE an ‘IEEE Electron
Devices Group’ was established in 1964, which in 1976 became the ‘IEEE Electron Devices Society (EDS)’.

Today, we look back at the 35-year history of the IEEE Electron Devices Society and at its foundation
in the IRE 60 years ago: two great reasons to celebrate and provide the members and potential new
members of EDS with this concise guide to state-of-the-art electron devices at a very affordable price.
This was made possible by substantial sponsorship through EDS and by dedicated volunteer contributions.



xiv Preface

Table 1 Technical Area Committees of the IEEE Electron Devices Society

Compact Modeling CM

Compound Semiconductor Devices and Circuits CSDC

Device Reliability Physics DRP

Electronics Materials EM

Microelectromechanical Systems MEMS

Nanotechnology NT

Optoelectronic Devices OD

Organic Electronics OE

Photovoltaic Devices PD

Power Devices and ICs PDIC

Semiconductor Manufacturing SM

Technology Computer Aided Design TCAD

Vacuum Devices VLSI Technology and Circuits VLSI

The book is organized in three parts, of which Part II (5 chapters) and Part III (11 chapters) are closely
aligned with the TACs of EDS (see Figure 1). Part I of the book introduces in five chapters the fundamentals
of electron devices. Sidebars are used in all chapters to define important figures-of-merit or definitions for
a particular electron device and to offer an easy entry into the topic to the novice.
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Figure 1 Relationship of the Technical Area Committees in the IEEE Electron Devices Society and their organization in
Parts II and III of the book



Preface xv

A highlight of the book is the comprehensive timeline at the page bottom, featuring the historical
milestones of electron devices in chronological order in three eras, after 1976, between 1952 and 1976,
and before 1952. These eras mark the time periods of EDS, of electron devices in the IRE prior to EDS,
and of the early electron devices, respectively.

Besides the actual contributors many people have helped ‘behind the scenes’ to turn the idea of this
anniversary book into reality. They are duly acknowledged in the Acknowledgments section.

Joachim N. Burghartz
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Introduction: Historic Timeline

Electron devices go back a long time: from the vacuum tube to the inventions of the transistor and the
integrated circuit, through 40 years of scaling microelectronics to the exciting possibilities brought about
by the current investigations on emerging research devices. The history of electron device applications is
also captured here. Looking back in time means learning from the past so that future progress can be made
more efficiently. It also means taking pride in the pioneers’ achievement and viewing them as role models
empowering young electron device engineers.

The historic timeline that runs as a movie strip at the bottom of the pages in chronological order through
this entire anniversary book marks key milestones of electron device development and applications in more
than 1000 slides. Landmarks of world history and other technical breakthroughs place those milestones into
historical perspective. The book can, thus, be read in two ways; chapter-by-chapter, or along the timeline
of device history.

1947





Part I

BASIC ELECTRON DEVICES

1623 Wilhelm Schickard
invents the calculator





Chapter 1
Bipolar Transistors
John D. Cressler and Katsuyoshi Washio

1.1 Motivation
In terms of its influence on the development of modern technology and hence, global civilization, the
invention of the point contact transistor on December 23, 1947 at Bell Labs in New Jersey by Bardeen
and Brattain was by any reckoning a watershed moment in human history [1]. The device we know today
as a bipolar junction transistor was demonstrated four years later in 1951 by Shockley and co-workers [2]
setting the stage for the transistor revolution. Our world has changed profoundly as a result [3].

Interestingly, there are actually seven major families of semiconductor devices (only one of which
includes transistors!), 74 basic classes of devices within those seven families, and another 130 derivative
types of devices from those 74 basic classes (Figure 1.1) [4]. Here we focus only on three basic devices:
(1) the pn homojunction junction diode (or pn junction or diode), (2) the homojunction bipolar junction
transistor (or BJT), and (3) the special variant of the BJT called the silicon-germanium heterojunction
bipolar transistor (or SiGe HBT). As we will see, diodes are useful in their own right, but also are the
functional building block of all transistors.

Surprisingly, all semiconductor devices can be built from a remarkably small set of materials building
blocks (Figure 1.2), including [4]:
• the metal–semiconductor interface (e.g., Pt/Si; a “Schottky barrier”)
• the doping transition (e.g., a Si p-type to n-type doping transition; the pn junction)
• the heterojunction (e.g., n-AlGaAs/p-GaAs)
• the semiconductor/insulator interface (e.g., Si/SiO2)
• the insulator/metal interface (e.g., SiO2/Al).

Guide to State-of-the-Art Electron Devices, First Edition. Edited by Joachim N. Burghartz.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

1650 1675 1700 1725
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The Transistor Food Chain

Rectifiers
Negative R (N-shaped)
Negative R (S-Shaped)
Negative R (Transit Time)

Diodes

Transistors

Non-Volatile Memories

Thyristors / Power Devices

Photonic Devices

Resistance and Capacitance Devices

Sensors

Field Effect Transistors
Potential Effect Transistors

Junction Diodes

p-i-n Diode
Schottky Barrier Diode
Planar Doped Diode
Isotype Heterojunction

pn Junction Diode
Zener Diode
Step-Recovery Diode
Fast Recovery Diode
Snap-back
Snap-off Diode
Varactor Diode
Esaki Diode

Insulated Gate FETs

JFET
MESFET
MODFET
Permeable Base Transistor
SIT
RST
Planar-Doped FET
Surface Tunnel Transistor
LRTFET
Stark Effect
VMT

Bipolar Transistors

THETA
Metal Base Transistor
BiCFET
TETRAN
PDB
HHET
Induced Base Transistor
RTBT
QWBRTT
Spin-Valve Transistor

MOSFET
Strained Si MOSFET
DMOS
LDMOS
HEXFET
VMOS
UMOS
TFT
MISFET
PRESSFET

Point Contact Transistor
BJT
HBT
DHBT
Darlington Amplifier
Tunneling-Emitter Transistor

Figure 1.1 The transistor ‘‘food chain’’ showing all major families of semiconductor devices. Reproduced with
permission from Cressler, J. D.; Silicon Earth: Introduction to the Microelectronics and Nanotechnology Revolution; 2009,
Cambridge University Press

Naming of the Transistor

The name ‘‘transistor’’ was actually
coined by J.R. Pierce of Bell Labs,
following an office betting pool
which he won. He started with a
literal description of what the device
actually does electronically, a
‘‘transresistance amplifier,’’ which
he first shortened to ‘‘trans-resistor,’’
and then finally ‘‘transistor’’ [3].

Why do we actually need transistors in the first place? Basically,
because nature attenuates all electrical signals. By this we mean that
the magnitude of all electrical signals (think “1s” and “0s” inside
a computer, or an EM radio signal from a cell phone) necessarily
decreases as it moves from point A to point B, something we call
“loss”. When we present an (attenuated) input signal to the transis-
tor, the transistor is capable of creating an output signal of larger
magnitude (i.e., “gain”), and hence the transistor serves as a “gain
block” to “regenerate” (recover) the attenuated signal in question,
an essential concept for electronics. In the electronics world, when
the transistor is used as a source of signal gain, we refer to it as
an “amplifier.” Amplifiers are ubiquitous to all electronic systems.
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Figure 1.2 The essential building blocks of all semiconductor devices. Reproduced with permission from Cressler,
J. D.; Silicon Earth: Introduction to the Microelectronics and Nanotechnology Revolution; 2009, Cambridge University
Press

Not only can the transistor serve as a wonderful nanoscale sized amplifier, but importantly it can also be
used as a tiny “regenerative switch”; meaning, an on/off switch that does NOT have loss associated with
it. Why is this so important? Well, imagine that the computational path through a microprocessor requires
1 000 000 binary switches (think light switch on the wall – on/off, on/off) to implement the complex digital
binary logic of a given computation. If each of those switches even contributes a tiny amount of loss (which
it inevitably will), multiplying that tiny loss by 1 000 000 adds up to unacceptably large system loss. That
is, if we push a logical “1” or “0” in, it rapidly will get so small during the computation that it gets lost
in the background noise. If, however, we implement our binary switches with gain-enabled transistors,
then each switch is effectively regenerative, and we can now propagate the signals through the millions of
requisite logic gates without excessive loss, maintaining their magnitude above the background noise level.

In short, the transistor can serve in one of two fundamental capacities: (1) an amplifier or (2) a regenerative
switch. Amplifiers and regenerative switches work well only because the transistor has the ability to produce
gain. So a logical question becomes, where does transistor gain come from? To answer this, first we need
to understand pn junctions.

1.2 The pn Junction and its Electronic Applications
Virtually all semiconductor devices (both electronic and photonic) rely on pn junctions (a.k.a., “diodes”, a
name which harkens back to a vacuum tube legacy) for their functionality. The simplest embodiment of a
pn junction is the pn “homojunction”, meaning that within a single piece of semiconductor (e.g., silicon –
Si) we have a transition between p-type doping and n-type doping (e.g., p-Si/n-Si). The opposite would be

1750 1775 1782 Alesandro Volta
develops the condenser



6 Guide to State-of-the-Art Electron Devices

A' A'A An n
np

p

p

B'

B'

B

B

Step Junction
Approximation

Depth

Depth

D
op

in
g 

co
nc

en
tr

at
io

n

D
op

in
g 

co
nc

en
tr

at
io

n

Metallurgical
Junction

NDND
NA

NA

x0

x0
0

0

–

Figure 1.3 Cartoons of a pn junction, showing doping transition from n-type to p-type. Reproduced with permission
from Cressler, J. D.; Silicon Earth: Introduction to the Microelectronics and Nanotechnology Revolution; 2009, Cambridge
University Press

a pn heterojunction, in which the p-type doping is within one type of semiconductor (e.g., p-GaAs), and
the n-type doping is within another type of semiconductor (e.g., n-AlGaAs).

As shown in Figure 1.3, to build a pn junction we might, for instance, ion implant and then diffuse
n-type doping into a p-type wafer. The important thing is the resultant “doping profile” as one moves
through the junction (ND(x) – NA(x), which is just the net doping concentration). At some point in the
doping transition, ND = NA, and we thus have a transition between net n-type and net p-type doping. This
point is called the “metallurgical junction” (x0 in Figure 1.3) and all of the important electrical action of
the junction is centered here. To make the physics easier, two simplifications are typically made: (1) Let
us assume a “step junction” approximation to the real pn junction doping profile, which is just what it
says, an abrupt change (a step) in doping occurring at the metallurgical junction (Figure 1.3). (2) Let us
assume that all of the dopant impurities are ionized (one donor atom equals one electron, etc., an excellent
approximation for common dopants in silicon at 300 K).

So, how does a pn junction actually work? The operation of ALL semiconductor devices is best under-
stood at an intuitive level by considering the energy band diagram, which plots electron and hole energy
as a function of position as we move physically through a device. An n-type semiconductor is electron
rich (i.e., majority carriers), and hole poor (i.e., minority carriers). Conversely, a p-type semiconductor
is hole-rich and electron-poor. If we imagine bringing an n-type and p-type semiconductor into “intimate
electrical contact” where they can freely exchange electrons and/or holes from n to p and p to n, the final
equilibrium band diagram shown in Figure 1.4 will result. Note, that under equilibrium conditions, there
is no NET current flow across the junction.

We might logically wonder what actually happened inside the junction to establish this equilibrium
condition. When brought into contact, the n-type side of the junction is electron rich, while the p-type
side is electron poor. That is, there is a large driving force for electrons to diffuse from the n region to
the p region. Recall, that there are in fact two ways to move charge in a semiconductor: (1) drift, whose
driving force is the electric field (voltage/length), and (2) diffusion, whose driving force is the carrier
density gradient (change in carrier density per unit distance). The latter process is what is operative here.
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