
Fernandez
Alber

Shelve in
Applications /General

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning App Development
with Parse and PhoneGap
Beginning App Development with Parse and PhoneGap teaches you how to start
app development with Parse and PhoneGap: free and open source software. Using
the building block languages of the web—HTML, JavaScript, and CSS—you’ll
be on your way to creating a fully working product with minimal effort as fast as
possible. With over 25 years’ of combined experience, the authors make daunting
tasks seem trivial. There is no book on the market that can take you from designer
to developer faster.

Using Facebook’s Parse as backend service, and Adobe’s PhoneGap (or Cordova)
as a mobile development framework, building a highly customizable application
is easier than you can imagine. A basic understanding of HTML, JavaScript, and
CSS is not required, but it will help you pick up concepts faster.

This book is geared toward people who have some digital design or web
development experience and want to explore the world of application development.
We will walk you through step by step on how to build your first native iOS or
Android app in the fastest and easiest way possible. Using free and open source
software, this book will get you up and running quickly and efficiently—start using
Parse and PhoneGap today with this key title.

You learn to:

• Get your environment set up for application development
• Create online data storage using Parse
• Perform the database querying essentials: create, remove, update and

delete data
• Use advanced native phone features like geolocation and camera access
• Organize your code for maximum efficiency

9 781484 202364

54499
ISBN 978-1-4842-0236-4

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors��xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Preface���xxv

■■Chapter 1: Introduction�� 1

■■Chapter 2: Beginning PhoneGap��� 15

■■Chapter 3: Beginning Parse�� 35

■■Chapter 4: Tools and Helpers�� 67

■■Chapter 5: Facebook API�� 79

■■Chapter 6: The Messenger Application��� 109

■■Chapter 7: User Registration with Parse�� 121

■■Chapter 8: Messages�� 167

■■Chapter 9: Location Services�� 195

■■Chapter 10: Map Views�� 223

■■Chapter 11: Accessing and Sharing Photos��� 245

■■Chapter 12: Network Connection Status�� 259

Index�� 267

1

Chapter 1

Introduction

Let’s start with the basics! What is PhoneGap? What is Parse? Even if you already know about PhoneGap or
Parse, you will still find it worthwhile to read this section, as we’ll explain the motivation behind and benefits
of combining the two.

After providing a brief description of PhoneGap and Parse, we will talk about previous knowledge and
requirements, discuss some code standards, and present a general overview of what you will learn about
PhoneGap and Parse.

What Is PhoneGap?
PhoneGap is an open source project used to build mobile applications. It takes your JavaScript, HTML, and
CSS code, and packages them into an executable program that can run an array of mobile devices.

PhoneGap does this by exposing access to a device’s native features such as file and camera access,
using what is known as Foreign Function Interface (FFI). This interface lets you invoke platform specific native
code using JavaScript. This allows background tasks to send data from JavaScript to native code and vice versa.
FFI also allows developers access to native user interface features, such as showing the system’s dialog.

PhoneGap makes writing native applications possible by using a plug-in system. This system permits
developers to add custom features to their applications. Plug-ins are both maintained by the PhoneGap
team and the open source community. We’ll be exploring some of them later in this book.

History
The PhoneGap project history and its naming are somewhat bewildering. The project was born at a
hackathon in 2008 at the iPhoneDevCamp, which was later renamed iOSDevCamp. In the following years, a
company named Nitobi, located in Vancouver, Canada, further developed the software.

In 2011, Nitobi was acquired by Adobe. As a part of the acquisition, the source code of the project was
donated to the Apache Software Foundation (ASF), allowing the core of the PhoneGap project to remain
open sourced. This open source part of the project is named Apache Cordova (see Figure 1-1).

Chapter 1 ■ Introduction

2

This begs the question: What’s the difference between PhoneGap and Cordova? In short, PhoneGap is
Cordova plus Adobe services and extensions that further enhance its capabilities. Cordova can still be used
independently.

How PhoneGap Works
The first task is rather easy to understand by imagining your device’s browser without header and footer
bars, history, bookmarks, windows, and so forth. What’s left is the WebView, your playground that you can
use in full-screen mode to build an application using the web technologies HTML, CSS, and JavaScript.

The second part—exposing the device’s native features—is a more complex subject. Using code samples
is the best way to explain this concept. Before we look at code samples, let’s come back to the original
issue, which is that while we can do many things in JavaScript, there are some things we still cannot do. For
example, let’s say you want to use the Parse iOS Software Development Kit (SDK) in your application. How
can you use this SDK in JavaScript? You can’t. PhoneGap closes this gap, making native device and operating
system capabilities accessible.

Foreign Function Interface
The FFI system enables developers to build a bridge between JavaScript and native code for a very specific
task. Collections of these foreign function calls are commonly bundled in plug-ins, while a wide set of basic
features comes shipped with the Cordova or PhoneGap base package.

PhoneGap offers a broader feature set, which is required to build your mobile application. For example,
in Chapter 2, you will learn about the PhoneGap command line interface (CLI). This tool set allows you to
build and maintain PhoneGap applications by executing terminal commands.

Using the CLI, you’ll be able to package and compile your application files, as well as test your
application using virtual emulators or physical devices. These tools will help you to prepare your application
for distribution on marketplaces such as the Apple Store or Google Play.

Supported Platforms
PhoneGap applications are able to run on many platforms using only one code base. This book focuses on
developing with the most popular platforms—iOS and Android. Although PhoneGap is primarily used for
mobile devices, it is possible to apply the concepts covered here to a desktop platform such as Windows 8.

Figure 1-1.  Apache Cordova homepage: cordova.apache.org

http://dx.doi.org/10.1007/9781484202364_2

Chapter 1 ■ Introduction

3

As you have already learned, PhoneGap projects can be extended with the use of plug-ins: concise
scripts designed to add extra functionality to an application. As wonderful as they are, plug-ins must be used
responsibly due to the possibility of quirks between devices.

For example, the battery status application programming interface (API) for Windows Phone 7 and 8 does
not yet provide a way to determine the battery level of the device. It does, however, provide a way to tell if
the device is plugged in or not. You may often run into situations such as this one where it will take some
creativity to get the behavior you want.

The examples in this book will demonstrate some of the core plug-ins that come standard with
PhoneGap; these features cover all supported platforms, as shown in Figure 1-2.

Figure 1-2.  Compatible PhoneGap devices starting from the left: Android, iPhone and Apple devices,
Tizen ( formally bada), BlackBerry OS, Firefox OS, ubuntu, webOS, Windows Phone

■■ Note  In 2014, PhoneGap stopped actively supporting webOS, Symbian, BlackBerry, and Windows Phone 7
platforms that use Cordova versions below 3.0 (currently v5.0.0) in favor of supporting current and widely used
platforms. If you want to use PhoneGap to target these platforms, you can install older versions of Cordova to
build your application.

PhoneGap vs. Web Applications
Writing a PhoneGap application isn’t the same as building a web site. PhoneGap believes that writing code
in the languages that make up web pages should also be used to communicate with hardware devices.

When programming with PhoneGap, we intend to interface with a mobile device. A PhoneGap
application shouldn’t just be a packaged static web site that doesn’t take advantage of its API capabilities. In
fact, Apple may refuse your application to the App Store if they feel your application is just a bundled web
site that provides no entertainment value. In light of this, there are many examples of successful PhoneGap
applications available on the market today.

Building and Testing PhoneGap Applications
Mobile devices typically have a web browser out of the box. The basic technology that renders a web page
can also be used to create an installable application with PhoneGap.

The PhoneGap API was designed specifically for interfacing with hardware on mobile devices. This
means that PhoneGap applications will not work on a typical web browser, as you would expect on a
personal computer.

Web browsers use HTML and CSS for styling, positioning, and animating content elements (such as
text, buttons, images, and so forth). JavaScript is used for adding dynamic interactivity, giving the user a
unique experience. In this trio of languages, JavaScript arguably plays the most important role.

There are a variety of ways to build and test PhoneGap applications. The good news is that you only
need one code base to create an installable package for each compatible device. We will be looking at
different ways to test your applications, such as using device emulators and live testing on a compatible
mobile device.

Chapter 1 ■ Introduction

4

For example, if you plan on developing an application for an Apple device such as iPhone, you will need
to use a program called Xcode installed on a Mac computer. Using the developer tools that Xcode comes
with, combined with additional CLI tools, developers can test applications using the iOS simulator.

As you may expect, developers face several challenges when writing mobile applications for multiple
device platforms. Programming and testing applications natively typically requires its own development
tools and setup.

Does this mean you need to have a custom set development environment for each platform when
using PhoneGap? Yes. For proper testing of your user interface and application behavior, you need to test
each platform’s version of your application in its proper environment. This applies in particular to plug-ins
accessing native device capabilities.

In any case, developing PhoneGap applications for multiple platforms only requires one code base.
With that in mind, you may find yourself having to make adjustments to your code in order to provide the
best experience for users across operating systems or devices.

Once you are ready to release your application to the world, each marketplace expects you to provide a
package type that is unique to its store. The only way to do so is to have PhoneGap compile your application
in the environment that it is intended for. For example, if you are developing in an iOS environment and
want to release your application to Google Play, you’ll need to build your application using Android-based
IDE tools Android Studio.

The Adobe PhoneGap Build Service (Optional)
Since teaming up with PhoneGap, Adobe now offers a service that enables developers to build their mobile
applications for multiple devices all in one shot. As you know, there are many platforms that PhoneGap can
compile to. There is also a unique development environment for each platform; things can get messy quickly.

There are some potential pitfalls with using this service, which we’ll examine next. First, lets go over
some of the benefits of using Adobe PhoneGap Build.

If you are like most people, you may not have access to the devices and development environments
needed for compiling a PhoneGap application. Because of this, Adobe offers the build process in the cloud,
allowing developers to package mobile applications simultaneously for all available platforms. This ensures
that your application is updated with the latest native SDKs.

With new mobile devices coming out every few months, you can imagine the complexities involved
with developers maintaining and supporting new, current, and legacy operating systems. With PhoneGap
applications, you can maintain your code with confidence, knowing that you’re using open standards that
are supported by major platforms.

PhoneGap Build expands your application’s audience reach by providing multiple packaged platform
builds. This means you no longer need to write software in proprietary vendor code.

Without having to maintain multiple native SDKs, the Adobe PhoneGap build service does it all for you.
This optional service allows you to focus more on writing great software, not worrying about how to get it to
your users.

Adobe offers a three-tiered plan, each tier offering unique options. Figure 1-3 illustrates each plan in
detail, as of this writing. Learn more at build.phonegap.com/plans.

http://build.phonegap.com/plans

Chapter 1 ■ Introduction

5

When developing a PhoneGap application on your computer, you still need a way to actively test what
you’re building. Chapter 2 focuses on the tools and software you’ll need for the targeted platform.

Caveats
There are some things to consider before using the Adobe PhoneGap Build service. Technically, you don’t
need to install any platform-specific development environment, such as Xcode, to develop PhoneGap
applications. Following this logic, because this service builds your application for you, there is no need to
install software locally. Although this may be true, we recommend, at least if you’re getting started, using the
software that is designed to build your application locally. This can give you a better understanding of the
platform and its capabilities.

The Adobe PhoneGap Build service compiles your HTML, CSS, and JS code into the appropriate
packages for operating systems. It is your responsibility as a developer to submit your compiled application
to its respective app store for distribution.

Figure 1-3.  Adobe PhoneGap Build services

http://dx.doi.org/10.1007/9781484202364_2

Chapter 1 ■ Introduction

6

■■ Note D eveloping PhoneGap applications for Apple devices requires the use of the proprietary software
Xcode to create certificates for an iOS application. These policies and protocols established by Apple must be
implemented in order to distribute your application.

Why We Don’t Use Adobe PhoneGap Build in This Book
Debugging and testing PhoneGap applications in their native environment is easier using a local
development setup. Having a development environment while you are coding increases your chances of
avoiding potential bugs in your application. Without a testing environment, you run the risk of compiling
and distributing a broken application to your users without knowing it. We feel it is important to use
discretion and program safely. Learn more at http://build.phonegap.com.

Collaboration and Testing Tools
If you would like to collaborate with other people on an application, we recommend using free services such
as Github or Bitbucket for hosting your code.

For distributing test release software, other free solutions are available. For example, with iOS you can
use a service called TestFlight. Once you’re ready to share and test your application, use it to send updates
to beta testers for immediate feedback. Android applications can be distributed using the Google Play
Developer Console.

Using Parse
Parse is the perfect companion for building a highly scalable web or native application. Acting as data
storage, Parse is capable of saving things like photos, geo location, and other basic data types.

By providing features that would typically be handled by a variety of technologies, Parse bundles
together features such as push notifications and scheduled tasks using its intuitive API. Gone are the days
when you need to host your own databases and sync them to your applications. Now that everything can be
handled “in the cloud,” saving and managing data have never been easier.

Parse was created by a group of developers who got together to create a set of back-end tools and
services to help manage all the facets of mobile development. In 2013, Facebook acquired Parse with the
intent of further expanding its already amazing feature set.

Developing Applications with Parse
Parse offers its services for use with many different programming languages. For this book, we’ll be using the
JavaScript SDK, as it’s perfect for using with PhoneGap.

Parse offers different tiers of free and paid services based on your needs. When your application reaches
the point where your users are making more than 30 requests per second, Parse offers to extend the free
service by providing more file storage, as well as a higher data transfer rate.

For our purposes, a free account will suffice. In fact, this would be the case for most new applications.
A free account gives you up to 20 gigs of data and file storage respectively for each Parse application you
create. That’s a lot of data! Not only that, it also offers the ability to run what it calls “background jobs.” These
are programs that you can write to run on the cloud at any given time. This is helpful for things like providing
mass updates to your app or introducing new features to your users in real time.

http://build.phonegap.com/

Chapter 1 ■ Introduction

7

Features
We’ll be exploring different aspects of Parse throughout this book. To give you an idea of how awesome
Parse is, here are just a few cool things that come with a registered account:

•	 Analytics: Instead of just having to rely on third-party scripts to track your apps
usage, Parse offers an analytics tool without your having to configure anything.

•	 Parse push: Using any of the SDKs, you’ll be able to send up to one million unique
recipients push notifications a month.

•	 User management: In place of creating your own database structure and code for
user accounts, Parse offers this functionality right out of the box. This includes
things like resetting passwords, linking accounts with Facebook, and many other
conveniences.

•	 Data browser: Using the web interface, you can browse all of your application’s data
with just a few clicks. It also allows you to create new data objects that allow you to
save custom data sets, while also providing pre-defined data structures such as the
User or Product classes.

Why Parse and PhoneGap?
Of all the frameworks, in all the languages, why did we choose to go with Parse and PhoneGap? The answer
is easy: To build a successful application, you need a user interface technology—the front end—and a data
infrastructure—the back-end. While PhoneGap is doing a good job on the front end, the project doesn’t
cover back-end needs.

With PhoneGap alone, you are forced to learn another programming language and design your
back-end system on your own. If you want to save data to the back end, you needed to write a front-end
module to prepare the data, connect to a server, and send the data to it. In the back-end tier, the request
needs to be authenticated, processed, and then stored to a database. This is typically done using another
system with its own language, such as MySQL. The same applies to the task of reading data.

With Parse, this approach is a thing of the past. Using PhoneGap together with Parse will enable you to
use only one programming language—JavaScript—to manage all your data needs: reading, saving, deleting,
defining schemas, authentication, querying, and so forth.

To demonstrate how easy it is to save data in Parse, we’ll use a simple code example: In Listing 1-1, we
initialize the Parse JavaScript SDK, which opens a connection to the Parse backend. This back-end service
will store your data securely and efficiently “in the cloud.”

To get an idea of how data is stored using Parse, Listing 1-1 demonstrates creating a class that we save a
new record to. We start by defining a new Parse class named Toy, then create a new instance of the class, set
some sample values, and finally save the object to the database using myToy.save().

Listing 1-1.  Saving a Simple Object to the Parse Cloud in JavaScript

// Initialize Parse JavaScript SDK
Parse.initialize("APPLICATION ID", "JAVASCRIPT KEY");
// Define a new Parse class named "Toy"
var Toy = Parse.Object.extend("Toy");
// Create a new Instance of the Toy Parse Class
var myToy = new Toy();

Chapter 1 ■ Introduction

8

// Set some Example Values
myToy.set("name", "Rocking Horse");
myToy.set("color", "brown");
// Save Object to Parse Cloud Database
myToy.save();

That’s it! Saving data has never been easier. In a production application, we could add more complexity
to these tasks, like success and error callbacks, but in a perfect world this code will actually work as is.
Figure 1-4 shows how the result from Listing 1-1 would look when it is executed and viewed in Parse’s
data browser.

Yet saving data is just one example how Parse and PhoneGap complement each other. We show a wider
span of applications in Table 1-1. These samples will assure you that joining these two forces just seems
natural.

Make Your Application Social
Humans have a need to communicate with each other. Using Parse and PhoneGap together to create an
application allows you to facilitate this need by allowing you to share. This social component can be very
important in the success of your application. After all, it’s Words with Friends, not Words with Myself.
Building static, nonsocial applications is a thing of the past.

Figure 1-4.  The result of Listing 1-1

Table 1-1.  Complementary Functionality between PhoneGap and Parse

PhoneGap Parse

Access camera and audio functionality of the
native operating systems

Has a database field that is specifically used for media
such as images, video, and audio files

Get the geo position of a device, pinpointing a
user’s location anywhere in the world

Has a data field for geo location, allowing you to save
the latitude and longitude and query data by location
and distance

Access the contact list a user has on his or her
phone, providing information that can enhance
your application

Stores media, text, and all basic database field types
in the cloud. Can store user profiles, content, and any
other associated data for your needs

Access the native (push) notification system of
Android and iOS devices via PhoneGap plug-ins

Offers a push notification service for both Android
and iOS devices

Compiles your application code for multiple
platforms

Allows to share data between platforms
(iOS, Android, Web)

Chapter 1 ■ Introduction

9

PhoneGap and Parse together stand by your side when building social applications. As an example,
you can use the Parse Facebook single sign-on login feature to sign up to an application and connect with
friends. You can then use PhoneGap’s technology to capture a picture and use Parse again to store it to the
cloud and share it with your friends.

Adding a social element to your application does more than expose your work to new users. It can also
add a personal touch that can make your application feel special. We’ll show you how to build a full social
application starting in Chapter 6 that will demonstrate how to keep people connected. We’ll be doing all
sorts of cool things like accessing media, location sharing, and providing real-time updates.

Previous Knowledge and Requirements
There are a few core concepts in modern front-end web development that need to be understood before
continuing. These will provide you with a foundation that you can build upon while developing multiple
skills. There are plenty of approaches you can take for creating a PhoneGap application, and you don’t have
to decide on anything before starting a new project. However, knowing the fundamentals will aid you in
taking the best approach for each application.

There are many books that cover the delicate intricacies of HTML, JavaScript, and CSS. Because of this,
we’ll only highlight some of the key concepts that you’ll need to get the most out of this book. We encourage
you to do further research on any topics you find challenging.

Whatever level of programming you are at right now, consider the following section a refresher on some
of the concepts that need to be understood to get the most out of this book.

JavaScript Object Literals
If you’re just getting into programming, the phrase object-oriented programming can sound frightening.
Objects in programming are analogous to real-world tangible objects that have properties and values. If you
were to consider yourself as an object, the value of your firstName property would be your first name.

An object literal can be thought of in the same way, with some rules: the value of a property name must
fall within a predefined type of data. This basically means you need to use valid data. All values in JavaScript
are considered objects, so anything can be stored into an object. An object literal is enclosed in a set of
curly braces, like this { key: value }. An empty set of braces ({}) is considered a valid object; it has zero
properties and values. The following code demonstrates JavaScript’s primitive types of data by assigning
them to an object that is referenced in the variable named obj:

var obj = {
 name: "value",
 array: [4,2,0],
 boolean: true,
 type: "string",
 number: 0,
 emptyObject: {},
 fn: function(){
 var declaredButNoValueAssigned;
 console.log("fn scoped variable: " + declaredButNoValueAssigned);
 var emptyValue = null;
 // This function returns a null value
 return emptyValue;
 }
};
 

http://dx.doi.org/10.1007/9781484202364_6

Chapter 1 ■ Introduction

10

console.log(obj.name); // value
console.log(obj["name"]); // value
console.log(typeof obj.name); // string
console.log(typeof obj.type); // string
console.log(obj.type); // string
console.log(obj.array); // [4,2,0]
console.log(typeof obj.boolean);// boolean
console.log(typeof {}); // object
console.log(obj.fn());
 // fn scoped variable: undefined
 // null

Namespaces with Object Literals
Object literals are a great way to organize related functionality. The way programmers write JavaScript
applications has developed over the years since its creation in 1995. A common and powerful concept that
JavaScript shares with other programming languages is that of namespaces. From server-side scripting
with Node.js, to client-side and installable applications with PhoneGap, namespaces allow developers to
communicate concepts into understandable programmatic interfaces.

All programming languages have unique ways of expressing objects and ideas. Each has its own
syntactical rules that need be followed in order to use it. What all programming languages have in common
is the use of language itself: strict syntax that is used to communicate concepts that a machine can
understand. In JavaScript, object literals help developers encapsulate logic in an expressive and organized
way that can be understood by others. In Chapter 2, you’ll see this put to use in a full example using
PhoneGap. Listing 1-2 demonstrates how a fictional JavaScript program may be written using namespaces.

Listing 1-2.  Creating a Simple JavaScript Using Namespaces

var app = {
 settings: {
 version: "0.0.1"
 }
};
app.user = {};
app.user.register = function(){};

To get an even deeper understanding of namespaces, we recommend reading a great article by engineer
and developer advocate Addy Osmani titled “Essential JavaScript Namespacing Patterns.”1

Organizing Code for Projects in This Book
The code samples and concepts in this book can be combined with many JavaScript projects, libraries,
and frameworks. As a matter of fact, a part of the JavaScript Parse SDK is forked from Backbone.js; existing
developers will find converting existing applications intuitive. Some demonstrations in this book use
third-party libraries such as jQuery. However, we do also use plain ole’ JavaScript as well. With each
chapter, we explore both the PhoneGap and Parse APIs by demonstrating functionality that you could use
in your next application.

1Read the “Essential JavaScript Namespacing Patterns” article at http://addyosmani.com/blog/
essential-js-namespacing/.

http://dx.doi.org/10.1007/9781484202364_2
http://addyosmani.com/blog/essential-js-namespacing/
http://addyosmani.com/blog/essential-js-namespacing/

Chapter 1 ■ Introduction

11

All projects use some form of file structure for organizing different aspects of an application. Chapter 2
explores what a typical PhoneGap application looks like by using the “Hello World” starter application. Parse
also has a starter application that we dig into in Chapter 3.

Aside from the default folder structures found in starter Parse and PhoneGap projects, we’ll be using
intuitive naming conventions in an attempt to keep things simple, clear, and concise. The following snippet
demonstrates a typical folder structure for web-based projects with index.html located at the root of
the folder:

img/
js/
css/
index.html

The example structure above contains three directories and one HTML file, the home page. The folders
are named in an obvious way as to make it clear what it’s responsible for containing. In Chapter 6, you will
start creating a Parse and PhoneGap application that will have a similar structure, while still respecting the
required directory structure needed for compiling PhoneGap applications.

Loading Scripts with LABjs
There are many ways to load scripts in JavaScript. From using classic <script> tags to building complex
modular compiler systems, loading scripts in JavaScript is always an important task. We decided to go with
what we find is one of the most straightforward and simple ways of loading scripts: a library named LABjs.
LABjs is an open source project written by Open Web Evangelist, Kyle Simpson.

Chapter 6 demonstrates the necessity of using a script loader, in which we’ll begin building an entire
application from scratch. There will be lots of scripts in this application, and in order to manage them, we
will use LABjs to do the hard work.

You can see a comparison of traditional loading vs. loading using LABjs in Listings 1-3 and 1-4.

Listing 1-3.  Traditional Script Loading Using the <script> Tag

<script src="framework.js"></script>
<script src="plugin.framework.js"></script>
<script src="myplugin.framework.js"></script>
<script src="init.js"></script>

Listing 1-4.  Script Loading using LABjs

<script>
 $LAB
 .script("framework.js").wait()
 .script("plugin.framework.js")
 .script("myplugin.framework.js").wait()
 .script("init.js").wait();
</script>

Although it may not look like much, using this script loader is an efficient way to load scripts and, more
importantly, manage dependencies using the wait() method. We’ll be going through this in extensive detail
as the application progresses in the chapters following Chapter 6.

http://dx.doi.org/10.1007/9781484202364_2
http://dx.doi.org/10.1007/9781484202364_3
http://dx.doi.org/10.1007/9781484202364_6
http://dx.doi.org/10.1007/9781484202364_6
http://dx.doi.org/10.1007/9781484202364_6

Chapter 1 ■ Introduction

12

Build Process
A build process is a series of automated operations that aids developers in outputting production-ready
applications. We will not be covering this topic in this book, but thought we’d acknowledge its use and
efficiency.

Again, when it concerns JavaScript, everyone has an opinion. What the JavaScript community can agree
on is trying our hardest to deliver the best experience for our users. In doing so, there have been a few popular
tools that aid in this process, including the following:

•	 Grunt.js

•	 Gulp.js

•	 Yeoman.io

•	 Brunch.io

There are numerous plug-ins for each of these tools designed to make your life as a developer run more
smoothly. Processes such as JSHint, SASS/LESS compilation, minification, image compression, and many
more are available with build-processing tools.

Debugging
Software that has yet to be written is the only kind without bugs. This means that every time you write code
is an opportunity for a bug to appear. We will be introducing some basic debugging techniques that are
specific to PhoneGap development. PhoneGap applications aren’t like typical web applications and need
special attention when it comes to debugging issues. We’ll be going through a few ways of testing PhoneGap
applications in Chapter 4. Additionally, we’ll be covering ways of testing database interactions with Parse by
using their Data Browser, among other tools and techniques.

Basic knowledge of web developer tools such as the browser inspector should be understood. It’s OK
if you’re new to it; we’ll be covering what you need to know to make the most out of each application you
build. The most common and basic way to see what’s going on during code execution is to log statements to
the console. This technique is often used for building web sites.

Command-Line Interface Tools
A command-line user interface allows programmers to communicate with a computer by executing
statements using an interactive console. If you’re not familiar with executing code from the command line,
we have got you covered. After installing a few command-line based tools for using Parse and PhoneGap,
you’ll be experienced in no time. All tools will both work in Terminal (Mac) and Command Prompt
(Windows).

After installing packages for Parse and PhoneGap development, we’ll be experimenting with various
aspects of each API, like syncing Parse apps to your local environment for publishing, as well as compiling
and previewing PhoneGap applications using an emulator.

Integrated Development Environment (IDE)
An IDE is where all the magic happens. And by magic, we mean coding. It’s the software you use to write
software. There are a plethora of options to choose from. From command-line interface editors like
vim, to basic text editors like Notepad or textEdit, practically anything can be used to create a web site.

http://dx.doi.org/10.1007/9781484202364_4

Chapter 1 ■ Introduction

13

While some are more powerful and fully featured than others, the IDE you use is up to you. Some of our
recommendations include the following:

•	 Atom.io

•	 Sublime Text 2

•	 NotePad++

Any of these IDEs will get the job done. If you already use an editor you know and love, great! But if you
haven’t found one, here are some things to consider:

•	 Is it free? Is paying for one worth it?

•	 Are there plug-ins that can extend its functionality?

•	 Does it contain any built-in features like code collapsing, autofill, or syntax
highlighting?

What You Will Learn about PhoneGap and Parse
Chapter 2 will provide you with everything you need to begin application development with PhoneGap.
From installing and setting up, to previewing and editing an example application, to implementing
real-world scenarios that demonstrate some of PhoneGap’s core functionality, we’ll attempt to cover as
much of their API as possible.

We’ll also be covering some cool plug-ins that extend the functionality of your applications, as well as
some debugging and development tools that you can start using immediately.

Using Parse as our main data storage, we’ll be covering everything from creating an account to setting
up your first Parse application. As the book progresses, we’ll introduce some core features of Parse. We’ll be
covering the Parse JavaScript SDK, which we’ll tie into PhoneGap applications. This will enable you to do
things like take a picture using the native camera on a mobile device and saving it to a database.

Going Further
The code and concepts used for examples in this book can be applied to any PhoneGap or Parse application
you create. Because we are using the language of the web (HTML, JS, CSS), there is opportunity to build a
variety of different experiences for your users per application. For example:

•	 Storing media with Parse: audio, image, and video storage

•	 Accessing media content with PhoneGap

•	 Creating user accounts with Parse

•	 Sync Facebook accounts with your Parse app

•	 Using PhoneGap plug-ins to extend device features

•	 Structuring your application data using the Parse Data Browser

We are convinced that this book contains enough information to get you building applications that you
have only imagined. Aside from the hands-on projects that we’ll be walking you through, we encourage
you to take everything you learn and apply it to your next project.

http://dx.doi.org/10.1007/9781484202364_2

15

Chapter 2

Beginning PhoneGap

Configuring your Development Environment
In this chapter, you’ll learn the essentials of PhoneGap. First, we will walk you through the installation
process of PhoneGap and its dependencies. Then you’ll be creating, debugging, and testing your first
“Hello World” PhoneGap application.

We get underway with setting up your development environment for the two most popular mobile
platforms, iOS and Android. You’ll install the package manager for Node.js, which will lead to the PhoneGap
installation process.

Platform Setup and Restrictions
While PhoneGap is designed to use one codebase to handle multiple platforms, you still need to prepare
your system for each platform you wish to support. For example, with Android you’ll need to install the
Android SDK, with the Windows Phone you will need to install the Windows Phone SDK, and so forth.

Each platform may have further dependencies or operating system restrictions. For instance, you need
a Windows system to build Windows Phone applications and a Mac OS X system to build iOS applications.
While the Android SDK can run on Windows and Mac, it requires the installation of the Java Development
Kit (JDK). Requirements and installation procedures will be covered in the following sections.

Installing Node.js and Node Package Manager
Before installing PhoneGap and its dependencies, you need to install Node.js. Node.js is a server side
JavaScript programming environment used to build fast, scalable network applications. When Node.js is
installed on your computer, it includes a JavaScript package manager called node package manager (npm),
which we’ll be using to install PhoneGap and other tools.

Even though npm was intended for use with Node.js and JavaScript, it may be used for source files using
other programming languages as well. You can install JavaScript packages, called node modules, by using the
npm install <package-name> terminal command. Download Node.js from http://nodejs.org/download/
and follow the installation instructions.

Node.js is available for both Windows and Mac. To ensure you have installed Node.js properly, in your
terminal, run node -v. This should return the currently installed version of Node.js on your system.

http://nodejs.org/download/

Chapter 2 ■ Beginning PhoneGap

16

iOS Environment Setup
If you want to develop iOS applications, you need a Mac OS X computer. If you are a Windows user, this
doesn’t necessarily mean you need run to the nearest Apple store and buy a Mac. It is possible, but not
recommended, to simulate an installation of Mac OS X on Windows using virtualization software like
VMWare, or the open source alternative VirtualBox.

Once you either have a Mac or virtual machine configured and running, you need to install Apple’s IDE
software called Xcode. With Xcode, you can build applications for OS X and iOS. You’ll only need the iOS
portion for this book.

Figure 2-1 shows the Xcode IDE for Mac. It also shows how the iOS simulator looks when running the
starter project that comes with all PhoneGap applications.

The fastest way to download and install Xcode is by searching for “Xcode” in the App Store desktop
application. After it’s installed, it will either be listed in the Mac’s dock or in the Launcher. You can also find it
using the Spotlight Search.

Alternatively, you may download Xcode (and more) in the Apple Developer Member Center. The
Member Center requires you have an Apple ID and register as an Apple Developer. This can be done for
free at https://developer.apple.com/register/. After you have registered as a developer, visit
https://developer.apple.com/downloads/ to download Xcode.

If you intend on releasing your applications to the Apple App Store, you will need to enroll in the iOS
Developer Program ($99/year). With that said, you won’t need it right now.

Figure 2-1.  Xcode, the IDE for iOS, and the iOS simulator

https://developer.apple.com/register/
https://developer.apple.com/downloads/

Chapter 2 ■ Beginning PhoneGap

17

■■ Note  Setting up things like Certificates, Identifiers, and Provisioning Profiles (things you’ll need to
publish your applications) are outside of the scope of this book. For a complete guide on setting this up,
visit developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/
MaintainingCertificates/MaintainingCertificates.html.

Command Line Tools for Xcode
The Command Line Tools package allows you to do command-line development in OS X. PhoneGap uses
this package to build the iOS version of your application. For OS X 10.9 and greater, Xcode comes bundled
with all command-line tools.

If you’re using an older version of OS X, you can install the Command Line Tools package from the main
menu in Xcode. Select Preferences and then click the Downloads tab. From the Components panel, click
the Install button next to the Command Line Tools listing. If Xcode does not show an option to install the
package or if it’s missing for any other reason, you can download the package from the Apple Developers
downloads page at https://developer.apple.com/downloads. Note that in order to view the downloads
page, you must be logged in with your Apple Developer credentials.

iOS Launcher Packages
To be able to install and run PhoneGap applications using the iOS simulator or an iOS device from the
command line, you need to install two more JavaScript packages using npm. The command ios-deploy
launches iOS apps to a physical iOS device, and ios-sim executes the application using the iOS simulator
provided by Xcode. Install the packages via the following commands, adding the sudo prefix if needed.
The following code lines demonstrate two separate commands for installing the packages used for testing
PhoneGap applications.

npm install -g ios-sim
npm install -g ios-deploy

At this point, you should have everything you need for iOS development with PhoneGap. If you do not
wish to develop for Android, skip the next section and continue to PhoneGap Installation.

■■ Note  You don’t have to use Xcode as your code editor. You also don’t need to use it to build PhoneGap
applications; the latter happens using the command line. However, Xcode is a good tool for testing your
application on different types of iOS devices. You can download more iOS simulators using Xcode via Preferences
from the main menu (in the Downloads tab).

https://developer.apple.com/downloads

Chapter 2 ■ Beginning PhoneGap

18

Android Environment Setup
Setting up your environment for Android development differs greatly from that of iOS. Figure 2-2 illustrates
where it all starts—the Android Developer Portal.

To build applications for the Android platform, you need to install the Android SDK. As previously
mentioned, there are no OS restrictions—you can use either Windows or Mac to build Android applications.
The Android environment setup is slightly more involved than the iOS setup. But fear not, you will be guided
through the setup process step-by-step.

There are theoretically two ways to install the Android SDK: via the Android Studio software or with the
Android standalone SDK. Because Android Studio is not needed to build PhoneGap applications, we don’t
cover it in this book, but stick to the stand-alone SDK.

Java Development Kit (JDK)
Android is closely tied to the Java programming language. It’s no surprise that you’ll need to install the JDK
to be able to use the Android SDK. This applies in particular to Windows systems; you have to install the
JDK prior to running Android installations. For older Mac systems (< 10.7), you may skip this step.

Identify the JDK package fitting your system configuration on the Oracle Java Downloads page:
www.oracle.com/technetwork/java/javase/downloads/.

Figure 2-2.  The Android Developer Portal at http://developer.android.com

http://www.oracle.com/technetwork/java/javase/downloads/
http://developer.android.com/

Chapter 2 ■ Beginning PhoneGap

19

Android SDK Installation
As previously stated, we will use the Android SDK Tools only to build the Android version of our PhoneGap
applications. You should also be able to navigate to the SDK package download from developer.android.
com/sdk/index.html.

In case something has changed since this writing, head over to the Android Developer site
(http://developer.android.com) and choose Get the SDK link (as shown in Figure 2-2) to navigate to the
latest Android SDK download instructions. Next, choose the Installing the Android SDK link from the main
navigation. This will take you to a new page where you will click the Stand-alone SDK Tools button.

Pick either Windows or Mac and accept the terms and conditions on the following page to initiate the
download. For Windows, we recommend using the executable installer package.

Windows
Double-click the executable (.exe) file to start the installation process. Write down the location where you
saved the SDK on your system—you will need it to refer to the SDK directory later when using the SDK tools
from the command line. Once the installation completes, the installer starts the Android SDK Manager.
Skip the following Mac paragraph and continue at Android SDK Manager.

Mac
Unpack the ZIP file you’ve downloaded. By default, it’s unpacked into a directory named
android-sdk-mac_x86. Move it to an appropriate location on your machine, for example, to the directory
/Users/{YOUR_USERNAME}/Library/Android/sdk/.

Android SDK Manager
As you may know, there are many different versions of Android. The latest version 5.0 is named Lollipop, yet
more common are the older releases KitKat (4.4) and Jelly Bean (4.3, 4.2, 4.1). To install the SDKs for these
different platform versions, use the Android SDK Manager. There are some other tools, like the Android SDK
Build Tools, that you need to install. These will be installed via the Android SDK Manager as well.

To start the SDK Manager on Windows, double-click the SDK Manager.exe file at the root of the Android
SDK directory.

On Mac, open a terminal and navigate to the /tools directory in the Android SDK directory (for example,
/Users/{YOUR_USERNAME}/Library/Android/sdk/tools). Then execute the command android sdk. This
will open a new window, the Android SDK Manager.

Once the Android SDK Manager starts, it will look for packages available for download. This will include
both the latest releases as well as older or common packages. See Figure 2-3 for reference. By checking the
boxes right next to the packages and hitting the Install button, you can download and install the selected
packages.

http://developer.android.com/

Chapter 2 ■ Beginning PhoneGap

20

At minimum, you should download the latest tools and Android platform:

•	 Android SDK Tools

•	 Android SDK Platform-tools

•	 Android SDK Build-tools (highest version)

Next, you need to add each platform version you want to test your application on. We recommend
starting on the most common version (as of this writing), KitKat (4.4), first. You can later verify that your
application is working on other platforms as well.

Figure 2-3.  Android SDK Manager

Chapter 2 ■ Beginning PhoneGap

21

Open the folder Android 4.4.22 (API 19) and select the following:

•	 SDK Platform

•	 A system image for the emulator, such as ARM EABI v7a System Image

Choosing an Android Emulator Image
Emulation on Android is a tricky thing. And by tricky, we mean it’s slow. To speed up your emulator, install
the package, use the android sdk manager, and select “Intel x86 Emulator Accelerator” from the Extras
menu. Also select a corresponding emulator image (for example, Intel x86 Atom System Image).

You can find more information about this topic in the article “Speeding Up the Android* Emulator
on Intel Architecture” at https://software.intel.com/en-us/android/articles/speeding-up-the-
android-emulator-on-intel-architecture.

As an alternative, you can use a physical Android device connected via USB cable as a test system.
Even though it’s an external device, it will speed up the process of installing and testing your application
significantly.

There are also third-party services, such as Genymotion (www.genymotion.com), that can assist you in
testing your Android applications.

Managing Virtual Devices
Once you have downloaded and installed all Android packages, it’s time to add a virtual device. A virtual
device is an emulator configuration defined by hardware and software options. This means you can combine
any emulator image you downloaded in the previous step with a range of devices, operating system versions,
and so forth.

Virtual devices are managed via the Android Virtual Device (AVD) Manager. To start the manager, run
the command android avd in the tools directory. Add a new virtual device via the Create button. You will
need to configure the following:

•	 A hardware profile: The hardware profile defines the hardware features of the virtual
device, including how much memory the device holds, whether it has a camera,
and so on.

•	 A mapping to a system image: In the previous step, you downloaded at least one
image using the Android SDK Manager. Assign one of the images you downloaded.

•	 Other options: You can specify the screen dimensions, appearance, and other options
of the device, including the size of the device’s internal storage in which it saves the
user’s data (installed applications, settings, and so on) as well as a virtual SD card
memory.

Once you have finished your configuration, confirm via the OK button, as shown in Figure 2-4.

https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
https://www.genymotion.com/

Chapter 2 ■ Beginning PhoneGap

22

You can test your virtual device by selecting it and clicking the Start... button. It may take some time to
launch the emulator. If you have major speed issues, please refer back to the preceding section, “Choosing
an Android Emulator Image.” Figure 2-5 shows an example of the emulator.

Figure 2-5.  Android emulator

Figure 2-4.  The Android Virtual Device Manager (AVD Manager)

Chapter 2 ■ Beginning PhoneGap

23

Adding Android SDK Paths
To make the Android SDK accessible for PhoneGap, you need to add SDK paths to your system’s settings.
Among other things, adding these paths will allow PhoneGap to compile your application.

On Windows systems, execute the commands shown in Listing 2-1 in the command prompt. On Mac
systems, execute Listing 2-2 in the terminal. Replace the placeholder {INSTALLATION-LOCATION} with the
path you picked at the beginning of the Android SDK installation process.

Listing 2-1.  Adding Android SDK Paths on Windows

set ANDROID_HOME=C:\{INSTALLATION-LOCATION}\android-sdk
set PATH=%PATH%;%ANDROID_HOME%\tools;%ANDROID_HOME%\platform-tools

Listing 2-2.  Adding Android SDK Paths on Mac

export ANDROID_HOME=/{INSTALLATION-LOCATION}/android-sdk-macosx
export PATH=${PATH}:$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools

Installing Apache Ant
On most systems, you need to install Apache Ant (http://ant.apache.org) as a last step. If you own a Mac
and use Homebrew, you can run brew install ant.

■■ Note H omebrew is a package manager for Mac OS X. If you don’t yet use it, you should! You can find
download and install instructions on http://brew.sh/.

You can also pick and download a fitting Ant binary from www.apache.org/dist/ant/binaries/.
As Ant is built with Java, the files for Mac and Windows are the same. Extract the ZIP file (for example,
apache-ant-1.9.4-bin.zip) somewhere on your computer. Add the full path to the contained bin/ folder
to the end of your PATH environment variable as shown in Listings 2-3 and 2-4. You can find more
instructions and help how to install Apache Ant on ant.apache.org/manual/install.html.

Listing 2-3.  Adding the Apache Ant Path on Windows

set PATH=%PATH%;C:\{YOUR-PATH}\apache-ant-1.9.4\bin

Listing 2-4.  Adding the Apache Ant Path on Mac

export PATH=${PATH}:{YOUR-PATH}\apache-ant-1.9.4\bin

Installing PhoneGap
Next, you’ll be installing PhoneGap via the node package manager. The PhoneGap command-line tool will
allow you to install plug-ins, build your application, or install and run your application using a simulator.

http://ant.apache.org/
http://brew.sh/
http://www.apache.org/dist/ant/binaries/
http://ant.apache.org/manual/install.html

Chapter 2 ■ Beginning PhoneGap

24

Windows
To install PhoneGap on Windows, open the command prompt. You can find the command prompt via the
Windows search using “cmd” as your search term or via the Start button in All Programs ➤ Accessories ➤
Command Prompt. Execute npm install -g phonegap. It does not matter in which directory you execute
this command.

Mac
Open the Terminal application. You can find it using Spotlight Search. As on Windows, execute npm install -g
phonegap. If you run into a permission error, you may need to run this as a superuser (sudo), since the
installation requires authorization. In this case, execute sudo npm install -g phonegap instead.

■■ Tip T he -g flag installs npm packages globally, making the command available to run in any directory on
your computer. This is why the location of where you execute this command is irrelevant. Without using -g, the
package will only install in the directory that npm install is executed.

During the installation process, you will see several requests to npm logged in the terminal; this
retrieves all the packages used for PhoneGap. To ensure it’s properly installed, run phonegap -v once. This
will return the version of PhoneGap you have installed.

Updating PhoneGap
When installing PhoneGap the first time, you’ll always have the latest version. You can stay up-to-date with
npm packages by using the update command before the name of the package, for example, npm update -g
phonegap or respectively sudo npm update -g phonegap. Follow the PhoneGap blog to stay up-to-date with
new releases and information at http://phonegap.com/blog/.

Using the PhoneGap CLI Tools
You’ll be using the CLI throughout this book to run an array of commands such as compiling PhoneGap
applications and running your application using emulation software. To get an idea of what is in store when
using phonegap commands, in your terminal execute phonegap help. This will show all the commands
available in the PhoneGap CLI, as shown in Figure 2-6.

http://phonegap.com/blog/

Chapter 2 ■ Beginning PhoneGap

25

For even more information from the command line, run phonegap help <command>. For example,
phonegap help create provides a full description of how to use the create command.

Creating a New PhoneGap Application
It’s time to create your first PhoneGap application. All new PhoneGap projects start by using the create
keyword. Before you get started, select a location on your computer where you intend on saving projects
associated with this book. You can develop from any directory just as long as you keep it consistent and easy
find. For example:

Windows

C:\Users\%USERNAME%\Apress\Chapter-2\

Figure 2-6.  PhoneGap help menu used in the command-line interface

Chapter 2 ■ Beginning PhoneGap

26

Mac

/Users/<username>/Documents/Apress/Chapter-2/

When you have a location that you’re happy with, navigate to that folder in your terminal and execute
phonegap create <project name> to create a new PhoneGap application. You can see an example for
creating an application named HelloWorld in Listing 2-5.

Listing 2-5.  Terminal Command for Creating a New PhoneGap Application Named “HelloWorld”

phonegap create HelloWorld

Executing the code in Listing 2-5 will create a new folder of the same name, for example,
C:\Users\%USERNAME%\Apress\Chapter-2\HelloWorld. The contents inside are files and folders PhoneGap
uses to build and compile the application. You’ll need to navigate into this folder through the terminal to be
able to run phonegap commands. You can do so by executing the change directory command followed by the
folder name: cd HelloWorld (Windows and Mac).

PhoneGap “Hello World” Application
The create command will add a small sample application to your project folder. You can find the
application files in the directory HelloWorld/www. Further details about files and folders inside the “Hello
World” application will be described later. For the moment, the goal is to run this application on an Android
and/or iOS simulator.

After creating a PhoneGap application, it’s time to add a testing platform. To do so, run the command
phonegap platform add <platform>. To add iOS and Android to your project, run the commands shown in
Listing 2-6.

Listing 2-6.  Adding Platforms to Existing PhoneGap Projects (iOS, Android)

phonegap platform add ios
phonegap platform add android

The command will create a directory for each platform in ./HelloWorld/platforms. These directories
will contain platform specific code and libraries as well as your JavaScript application, HTML, CSS, and
image files.

Important rule for the platforms directory in advance: You should never change the contained files, or
bad things may happen.

You can get a list of all installed and available platforms using phonegap platform list. Other
phonegap platform commands include update and remove respectively. For more information, run
phonegap platform help.

Building Applications
As explained in the introductory chapter, PhoneGap will compile your web application into a program that
can run natively on a device. Executing phonegap build <platform> performs this operation. You will need
to use the build command every time you change your web application code or when you add or remove a
PhoneGap plug-in.

Chapter 2 ■ Beginning PhoneGap

27

The first time you add a platform to a PhoneGap project, the application is ready to run. However, for
testing purposes, use the build command for all platforms you added in the previous section, as shown in
Listing 2-7.

Listing 2-7.  Build the Application for the Targeted Operating System

phonegap build ios
phonegap build android

Running Applications
There are generally two different ways to run a PhoneGap application: using a simulator or a physical
device. Because running your application on a device will require some additional work, let’s focus on using
a simulator for now. To install and run your application using a simulator, use the emulate command, as
shown in Listing 2-8.

Listing 2-8.  Start the Emulator from the Command Line Using the Targeted Device Name

phonegap emulate ios
phonegap emulate android

After a few moments, your system will do a few things:

	 1.	 Launch the simulator for the targeted platform

	 2.	 Compile and install the application on the simulator

	 3.	 Start the application

The application will show the PhoneGap icon followed by the message Connecting to Device. Once the
app is fully loaded, the message will switch to Device is Ready. Figure 2-7 shows that the device is ready.

