Pro Spring 2.5

Jan Machacek, Aleksa Vukotic,
Anirvan Chakraborty, and Jessica Ditt

Apress*

Pro Spring 2.5
Copyright © 2008 by Jan Machacek, Aleksa Vukotic, Anirvan Chakraborty, and Jessica Ditt

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-921-1

ISBN-10 (pbk): 1-59059-921-7

ISBN-13 (electronic): 978-1-4302-0506-7

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

SpringSource is the company behind Spring, the de facto standard in enterprise Java. SpringSource is

a leading provider of enterprise Java infrastructure software, and delivers enterprise class software, support
and services to help organizations utilize Spring. The open source-based Spring Portfolio is a comprehen-
sive enterprise application framework designed on long-standing themes of simplicity and power. With
more than five million downloads to date, Spring has become an integral part of the enterprise application
infrastructure at organizations worldwide. For more information, visit www. springsource.com.

Lead Editors: Steve Anglin and Tom Welsh

Technical Reviewer: Rick Evans

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan
Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant

Copy Editors: Heather Lang, Damon Larson

Associate Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Kinetic Publishing Services

Proofreader: April Eddy

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

To Marc, who still thinks that beans grow on trees
—Jan

To my parents, Andja and Slobodan, who have guided me through life and encouraged me
to follow my own path
—Aleksa

To my parents, Sujata and Kalyan, for their unconditional love and support
—Anirvan

To Ioannis, for the vital nudges when I needed them most (and so much more), and to my
family, just for being my family
—Jessica

Contents at a Glance

FOrBWOId
About the AUTNOrS
About the Technical Reviewer
Acknowledgments.
INtrodUCHioN

PART 1 Getting Started with Spring

CHAPTER 1 Introducing Springl
CHAPTER 2 GettingStarted ...
CHAPTER 3 Introducing Inversion of Control.............................
CHAPTER 4 BeyondtheBasicsciiiiit,
CHAPTER 5 Introducing Spring AOP.l
CHAPTER 6 Advanced AOP
CHAPTER 7 Spring Schemas and Namespaces
CHAPTER 8 SpringPatterns.......................... .

PART 2 Data Access

CHAPTER 9 JDBC Support.
CHAPTER 10 iBATISIntegration...................
CHAPTER 11 Hibernate Support

PART 3 Enterprise Application Components

CHAPTER 12 Job Scheduling with Spring
CHAPTER 13 Mail SupportinSpring
CHAPTER 14 Dynamiclanguagescccoiiiiininiinann..

PART 4

CHAPTER 15
CHAPTER 16
CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22

Java EE 5

Using SpringRemoting........................ 533
Transaction Management................. il 575
Web Applications with Spring MVC................................. 611
SpringWeb Flow.......... 711
Springand AJAX 757
JMXwithSpring ... 771
Testingwith Springl 793
Spring PerformanceTuning.................... 829
.. 857

Contents

FOr WO . . .o Xxi

ADOUL the AUTNOIS . . .o XXiii

About the Technical ReVIEWEr Xxiv

ACKNOWIBMENES. . ..o XXV

INtrOdUCION XXvii
PART 1 Getting Started with Spring

CHAPTER 1 Introducing Spring ... 3

What Is Spring? 3

Beyond Dependency Injectionl 6

Aspect-Oriented Programming with Spring 6

Accessing Datain Spring 6

Simplifying and Integrating with JavaEE 7

Job Scheduling Support 7

Mail SUPPOrt ... 7

Dynamic Languagesttt 8

Remoting Support 8

Managing Transactions.o i 8

The Spring MVC Framework. 8

SpringWeb Flow ... 9

AJAX 9

Internationalization 9

Simplified ExceptionHandling L 9

The Spring Project 10

Origins of Spring 10

The Spring Community 10

Spring for Microsoft NETot 10

The Spring IDE 11

The Spring Security (Formerly Acegi)ovieii. ... 11

Alternativesto Spring 11

The Sample Code. 12

SUMMAIY .. 12

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

Getting Started ... 13
Obtaining the Spring Framework 13
Checking Out Spring from CVS.o it 13
Building Spring from Source Code.t 14
Verifying Your Spring Distribution., 15
Spring Packaging.t 15
Spring DependencCiesovti i 17
Spring Sample Applications 20
Setting Up Springand Your IDE 21
Hello, World. o 24
Putting Spring Into “Hello, World” it 27
Dependency Injection 28
Thelmpactof Spring. ... 30
SUMIMAIY e 30
Introducing Inversion of Control 31
OCand Dl. 31
Types Of l0C ... o 32
Contextualized Dependency Lookupccoviiiinn.. 33
Constructor DIo 35
Setter Dl ... 36
Injection vs. LOOKUD. 37
Setter Injection vs. Constructor Injection............................ 38
[0C I SPriNg. . ..o 39
DIwith Spring. 39
Beans and BeanFactories i 40
BeanFactory Implementationsl 40
XML Bean Definition 4
Using Constructor Injection. oo, 43
Injection Parameters 46
Understanding BeanNamingt 56
Bean Instantiation Modes 59
Resolving Dependencies. ... 62
Automatically WiringYourBeans 65
Checking Dependenciescooiiiiiiiii .. 68
Beanlnheritance 70

SUMMAIY .. 72

CHAPTER 4

CHAPTER 5

CONTENTS
Beyond theBasics... 73
Spring’s Impact on Application Portability. 74
Bean Life Cycle Management. i 74
Hooking into Bean Creationot 75
Hooking into Bean Destruction.t 82
Making Your Beans Spring Aware ...ttt 87
Using the BeanNameAware Interface 87
Using the BeanFactoryAware Interface 89
Using Method Injection 91
Lookup Method Injection. 91
Method Replacement 96
Using FactoryBean. 100
The MessageDigestFactoryBean 100
Accessing a FactoryBean Directly 102
The BeanFactoryPostProcessor ... 103
Implementing a BeanFactoryPostProcessor 106
JavaBeans PropertyEditor. 110
The Built-in PropertyEditorso i i 110
Creating a Custom PropertyEditor 113
The BeanPosStProcessor. ... 118
Implementing a BeanPostProcessor 120
When to Use BeanPostProcessor.cooiiiii... 124
The Spring ApplicationContexto 125
Implementations of ApplicationContext. 126
Using ApplicationContextAwarecoiiiin. ... 126
Controlling Bean Initialization.................................... 127
Using Annotation-Based Configuration 129
Internationalization with MessageSource 133
Using MessageSource in Stand-Alone Applications. 141
The MessageSourceResolvable Interface 141
Using Application Events. i .. 141
Considerations for EventUsagecccoiiiiinnann.... 143
AcCessiNg RESOUICES. . ..ot 144
SUMIMANY e 145
Introducing Spring AOP...................................... 147
AOP CONCePES. . ..ot 148
TYPES Of AOP. . o 149
StaticAOP. 149
DynamiC AOP 149

Choosing an AOPTYpe. o 149

ix

CONTENTS

CHAPTER 6

AP IN SpPIiNG . ..o 149
The AOPAINANCEo e 150
“Hello, World” inAOP. e 150
Spring AOP Architecture ... 152
The ProxyFactory Class. ... 153
Creating Advice i SPringt 153

Advisors and Pointcuts inSpring 169
The Pointcut Interface 170
Using ComposablePointcut.l 187
Pointcutting Summary. 191

AlLADOUL ProXiesS e 191
Understanding Proxiesc i 192
Using JDK Dynamic Proxies, 192
Using CGLIB Proxiescoovieiii i 192
Comparing Proxy Performance. 193
Which Proxy to Use? 196

SUMMAIY . 196

Advanced AOP 199

@ASPECE . ..o 199

@AspectJ AspectsinDetail 203
Pointcuts. 203
Pointcut Expressions 207
Exploring the Pointcut Expressionsl 208
Using the @Pointcutsin XML, 211
TYpeS OF AQVICEo 212
ArgumentBinding 220
Introductions. 221
The AspectLifeCycle ... 227

Framework ServicesforAOP 228
Creating Our First Aspect Using the aop Namespace 229
Pointcuts inthe aop Namespacecoiiian.. 230
Creating Advice Using the aop Namespace 231
Introductions in the aop Namespace.............................. 237

Which Style Should You Use? 240

Working with Spring AOP Proxies., 241
Impact of ProXies. ... 242

Aspectd Integration 246
Creating Your First AspectJ Aspect. i, 247
Compiling the Sample Application................................ 249

Aspectd’s ASpect SCope ... 251

CHAPTER 7

CHAPTER 8

CONTENTS

Load-TimeWeaving.cooiriiii i 251
Your First Load-Time Weaving Example 252
LoadTimeWeaver Lookup Strategies.............................. 254

Practical UseSOf AOP e 254
Performance and Health Monitoring 255

SUMIMAIY e e 257

Spring Schemas and Namespaces........................... 259

Why the New Configuration? i 259

Schemas Included in Spring 2.5. 262
ThebeansSchema i 262
ThecontextSchemal 263
TheutilSchema.......... 263
ThetxSchema. 266
Theaop SChemat i 266
ThejeeSchema......... ... i 267
ThelangSchema........ i 267

Behind the SchemaScenes i 268

Custom SChemas. 270

IDE Configuration i 274

SUMIMAIY .t e e 277

Spring Patterns.............................l 279

Directory Structure. 279
Simple Applications. 279
Complex Applications i 281
Packagingand Naming................coiiiiiiii i 281

Design Patterns Introduction. 282
Programming Against Interfaces 282
Creational Patternsccoo it 283
Structural Patterns. 287
Behavioral Patterns 290
Template Method. 292

Spring Application Patterns. 293
Layered Design ...ttt 294
High-Performance Paging. 295
Multiple Error Reporting ... 298
User Interface Transactionst 301
Background Processest 304
E-mail Notifications.......... i 309
Error Collectingand Logging ..., 311

SUMIMAIY .t e e 315

Xi

xii

CONTENTS

PART 2

CHAPTER 9

CHAPTER 10

Data Access
JDBC Support. ... 319
Key JDBC ConCeptsSo 319
Using the DriverManager and Connections. 322
Using PreparedStatements.l 323
Using CallableStatements.t 326
Other JDBC COneeptsovvnei e 327
Concepts in Spring Data Access Support L. 327
JDBC Data Access Support. ... 328
Usingthe JdbcTemplate i 329
JdbcTemplate.execute 330
JdbcTemplate.query and Friends. Ll 334
JdbcTemplate.update ... 339
JdbcTemplate.batchUpdate 340
RdbmsOperation Subclassesco i 342
SqlUpdate. 343
BatchSqlUpdatec 348
SqlCall and StoredProcedure 349
SqlQuery and Its Subclasseso 351
JdbcTemplate or RdbmsOperation?. 358
Large Binary ObjectSt 358
JdbeDaoSuUpPPOmt. 361
Simple Spring JDBC. 364
SimpleJdbcTemplate. 365
SimpleddbeCall ... 367
Simpleddbelnsert. ... 369
SimpleddbeDaoSupport. 370
SUMIMAIY et e 371
iBATIS Integration.. 373
What IS IBATIS? ... 373
BATISVErsions.t 374
Infrastructure and Configuration 374
Mapping Files. 375
sqIMap Files. ... 376

Configuring iIBATISand Spring 378

CHAPTER 11

PART 3

CHAPTER 12

CONTENTS

SelectingData o 380
Simple Selects............oo i 380
One-to-OneSelects. ... 384
One-to-Many Selects. 388
Many-to-Many Selects i 390

Updating Data. i 391

DeletingData i 393

Inserting Data. 394

What's Missing from iBATIS? ... 397

Overall Performanceco i it 397

SUMMAIY . 398

Hibernate Support.. 399

Hibernate Primer 399

Packaging.o 400

Introduction to Hibernate Supportl 401
Using Hibernate Sessions. i 403
Using HibernateDaoSupportoo i 407
Deciding Between HibernateTemplate and Session. 409

Using Hibernate in Enterprise Applications 413
Preventing Stale DataUpdates. 413
ObjectEquality....... ... i 416
Transactional Behavior i i 419
LazyLoadingcoieiii e 424
Dealing with Large Data Sets.......................oooiiint, 435
Handling Large Objects. ... 437
Combining Hibernate with Other DAOCode aM

SUMMANY . . 4aM

Enterprise Application Components

Job Scheduling withSpring 445
Scheduling Jobs Using JDKTimert 446
Trigger Typeswith Timer. ... 446
Creatinga Simple Job............ ... i 447
Spring Support for JDK Timer Scheduling. 449
Scheduling Jobs Using OpenSymphony Quartz 455
Introducing Quartz. ... 455

Quartz SupportinSpring. 464

Xiii

Xiv

CONTENTS

CHAPTER 13

CHAPTER 14

PART 4

CHAPTER 15

Job Scheduling Considerationscccoiiii i 470
Choosinga Scheduler 470
Packaging Job Logic Separately fromthe Job Class................. 470
Task Execution and Thread Pooling 471

SUMMAIY . 475

Mail SupportinSpring....................................... 477

The Spring Mail APl Structure. 479
Configuring Mail Settings Using Spring. 479

Sending Simple E-mails 479
Constructing and Sending E-mail Programmatically 479
Constructing E-mail Declaratively 482
Constructing and Sending MIME Messages 485
Insight into Enterprise-Level E-mail Handling. 500

SUMIMAIY e e 509

Dynamic Languages .. 511

Supported Languages Primer. 511
BeanShell 511
70701 513
JRUDY .. 514

Using Dynamic Languages As SpringBeans. 515
Behind the Scenes of Dynamic Language Support 517
Proxying Dynamic Language Beans 518
Performance. i 519

Refreshable Beans.ci i it 521

BeanShell Beanst 523

JRUDY BeaNS.o 525

GrooVy BEansSot 526

Typical Usage for Dynamic Languages in Spring Applications 526

SUMIMANY . e 530

Java EE 5

Using Spring Remoting 533

Spring Remoting Architecture. 535

Remote Method Invocation.................o i 535
Exposing Arbitrary Services o 536
Accessing an RMI Service Using Proxies 538
Exposing CORBA Services.c.oiiriii i 540

Accessinga CORBA Service.oooiiiiiii et 543

CHAPTER 16

CONTENTS

Web Services with JAX-RPC. 544
Introducing Apache AXiS 545
Creating a Web Service with ServletEndpointSupport................ 545
Accessing RPC-Style Web Services using Proxies................... 549
Working with JavaBeans in Axis Services. 552

Using JAX-WSWeb Services ...t 556
Exposing Web Services Using SimpleJaxWsServiceExporter 556
Exposing a Web Service Using XFire 557
Accessing JAX-WS Web Services ... 559
Accessing Java Web Services from Other Clients 560

Creating Web Services with HTTP Invoker 563
Exposing Simple Services. 564
Accessing an HTTP Invoker Service Using Proxies 567
Using Arbitrary Objects in HTTP Invoker Services 567
Using HTTP Basic Authentication................................. 569

Choosing a Remoting Architecture. 573

SUMMAIY . 574

Transaction Management.................................... 575

Exploring the Spring Transaction Abstraction Layer....................... 575

Analyzing Transaction Properties 576
Exploring the TransactionDefinition Interface 576
Using the TransactionStatus Interface............................. 578
Implementations of the PlatformTransactionManager................ 579

Exploring a Transaction ManagementSample 579
Nontransactional Code, 580

Programmatic Transaction Management. 588
Using the TransactionTemplate Class 590
Programmatic Transaction Management Summary.................. 591

Declarative Transaction Management 591
Using the TransactionProxyFactoryBean........................... 591
Implications of Using Proxies in Transaction Management............ 593

AOP Transaction Management it 594
Using Annotation-Based AOP Transaction Management 594
Using XML AOP Transaction Management 596

Working with Transactions Over Multiple Transactional Resources 599

Implementing Your Own Transaction Synchronization..................... 601

QUMY e e 610

Xv

Xvi CONTENTS

CHAPTER 17 Web Applications with SpringMVC.......................... 611
MVC Architecture 611
Spring MVC. ..o 613

MVC Implementation............... ... i 613
Using Handler Mappings. ... 614
Spring Controllers 616

AbstractController i 616

ParameterizableViewController 617

MultiActionController. 618
Interceplors. 621
Views, Locales, and ThemesS.t 622

Using Views Programmatically................... 622

Using View ReSOIVErS. 625

Using Localized MeSSagescoveieeie i, 629

UsingLocales. 630

USiNg Themes. 630
Command Controllers ... 633

Using Form Controllersco i, 633

Exploring the AbstractWizardFormController 640

FileUpload 644
Handling Exceptions 647
Spring and Other Web Technologieso it 650

USINGJSP . ..o 651

UsingVeloCity 669

FreeMarker. ... 674

USINg XSLT VIBWS. . . .ot 678

USiNg PDFVIEWS 680

Using Excel Views 682

USINGTIIBS . oot 684

JasperReports 696
Spring Conventions Over Configuration................................. 701

Controller Conventions ..., 701

MultiActionController Conventions. 702

Model Conventions i 703

View Conventions. 704
Using Annotations for Controller Configuration........................... 705

@Controller. 705

@RequestMappingt 706

@RequestParam 707

@ModelAttribute 707

Using Annotations with the Command Controller.................... 708

SUMMAIY . 709

CHAPTER 18

CONTENTS

SpringWebFlow .. 711
Introducing SpringWeb Flow 712
Core CONCEPLSo 713
Obtaining SpringWeb Flow. i 716
Spring Web Flow Dependencies.coviiiiiann.s. 718
Hello,Web Flow!. 719
Exploring States. i 723
ViewState. ... 724
DecisionStateo 724
EndState 725
Working with Transitions. o i 725
Advanced CONCePES.t 727
Expression Languages and Scopest 727
Implementing Actions 731
Model Data Binding.c i 732
Partial Rendering of Views 736
Mapping Flow Input and Output Parameters 736
Using Subflows 737
Spring Web Flow Behindthe Scenes...................coiii .t 738
Flow Execution Architecture it 739
Flow Executor. 4
Flow Definition Registry i 742
Flow Execution Repository ...t 745
Integration with Spring MVC.............. i 746
FlowHandling......... ... 746
ViewResoIVINg. 747
Securing Flows with Spring Security. L 747
Step 1: Adding the SecurityFlowExecutionListener 748
Step 2: Basic Authentication and Authorization Handling 748
Step 3: Defining Security Rules in Flow Definitions.................. 750
Problem Solver. 752
Stateful Navigational Control oot 753
Browser Navigation Bar Support and Double Submit 753
Testing Flow Definitions i 753

SUMMANY .. 754

Xvii

Xviii

CONTENTS

CHAPTER 19

CHAPTER 20

Springand AJAX 757
DWR. . 758
Installing DWRo 758
Spring Configuration for DWR. i 758
About the Complete Example 760
Testing the DWR Configuration. 764
Running the Complete Example 765
DWR Scripting BasiCs ..ot 766
Using Simple Callback Functions. 766
Calling Metadata Objectso, 767
BNGINE S o ettt 767
CallBatching 767
Call Ordering. . ..ottt e 768
Handling ErrorsandWarnings 768
UL S . o 768
Security in DWR 768
Advantages and Disadvantages of DWR 770
SUMMAIY .. 770
JMXwithSpring... 771
JMX REfreSher 771
ExposingYourBeans i 772
MBeanExporter. ... 772
MBeanServerFactoryBeanl 774
Exposing Your Beans in an Existing MBean Server 775
Bean Registration Behaviorl 776
Controlling Object Namest e 776
Controlling the ManagementInterface 777
MBeaninfoAssembler Interface 777
MethodNameBasedMBeanInfoAssembler Interface.................. 777
Using Java Interfaces to Control the Management Interface 780
Using Source-Level Metadata 782
Remoting with Spring JMX 785
Exposing Remote MBeans, 785
AccessingRemote MBeansc it 786
ProxyingMBeans. 786
Notifications in Spring JMX. 787
Notification Listeners. i 787
Publishing Notifications. o i 788

SUMIMAIY e e 792

CHAPTER 21

CHAPTER 22

CONTENTS

TestingwithSpring .. 793
UnitTesting. ... 793
UnitTestS ... 795
Unit Testing the Web Layer.............. it 798
Integration TestS.o e 800
Using AbstractSpringContextTests................t 807
Using AbstractDependencylnjectionSpringContextTests 809
Using AbstractTransactionalSpringContextTests. 811
Using AbstractAnnotationAwareTransactionalTests 813
NDL 817
Spring TestContext Framework. i 819
Application Context and DI with the TestContext Framework 820
Transactions in the TestContext Framework........................ 822
SUPPOrt ClasSeso et 824
TeSt COVerage. . ..ot 826
SUMIMANY 827
Spring Performance Tuning 829
Performance vs. ReSponsiveness. 829
Exploring Enterprise Application Performance Issues 830
Measuring Java EE Application Performance 830
Finding OutWhatto Measure. ..., 830
Determining the Necessary Data Sets. 837
Improving the Data Access Tier ... iin.. 837
Improving Transaction Management.............................. 847
Controlling the Performance of Remote Calls....................... 849
Understanding View Performance 849
Using Caching.t 849
Performance Testingo oot 851
Monitoring Application Health and Performance 853
More Resources on Performance Tuning.coovvienn.n... 855
SUMMAIY . 855

Xix

Foreword

It was with a heavy heart that I made the decision not to participate in writing Pro Spring 2.5. 1 am
deeply thankful that Jan was around to pick up this book and run with it. Pro Spring has been a big
part of my life for over three years, and I didn't relinquish the reins lightly. When Juergen and I set
out working on Spring Framework 2.0, I knew that I wouldn’t have the time to participate in the
writing process and write the software at the same time. Fortunately, Jan was there to step into the
breach.

Jan and Apress had additionally planned to release Pro Spring 2.0, but Juergen and I inadver-
tently made it impossible for them to keep up by making many changes to the Spring Framework.

I vividly remember cringing when updating all the JSP form tags, knowing that I was creating yet
more work for Jan.

With the 2.5 release just on the horizon, Jan made the sensible choice to forego a 2.0 edition
and head straight for 2.5. This was a wise move. The Spring Framework 2.5 release reflects the state
of the art in both the Spring Framework and in enterprise Java frameworks as a whole. A guide book
to this critical tool is necessary reading for any conscientious Java developer.

Irecall, back in the early days of running Cake Solutions, when we decided we needed to hire
another programmer. We were very inexperienced at hiring in general, and hiring programmers is
fraught with problems. We knew that we wanted to get a graduate, but we never imagined that we
would get someone as accomplished as Jan.

I remember, in his first week, he wrote a complete desktop mailing package from scratch—and
it worked. Over the last five years, Jan has been at the center of most of the projects run at Cake, many
of which are large-scale Java products based on the Spring Framework. His knowledge of Spring comes
from an immense amount of practical experience: he has been in the trenches with Spring since
version 1.0 and has delivered successful systems on top of it.

To his credit, Jan realized that writing Pro Spring 2.5 was too big a job for just one man, so he
roped in the rest of the Cake Solutions team to help him. This prospect excited me greatly— a team
of real programmers, with real experience in Spring, passing along that knowledge. There is no doubt
that many will find this book to be an indispensable reference.

And so, although I am disappointed at being unable to work on this book myself, I am glad that
Jan was there to deliver what so many people have been asking for, an updated version of Pro Spring.
Enjoy,

Rob Harrop
Principal Software Engineer and Lead Engineer
of the SpringSource Application Platform

XXi

About the Authors

JAN MACHACEK is the chief software architect at Cake Solutions, which
places him at the center of all architectural decisions in all projects. Apart
from the architecture, Jan is often called on to help with some of the most
complex and challenging areas of the implementation. Since joining Cake,
Jan has proven his expertise in Java not only by taking on a wide variety of
complex projects but also through his collection of published works. In his
free time, Jan is a keen cyclist and a member of the Manchester Wheelers’
Club. He tries his best in various time trials and road races.

Jan authored Chapters 1-4, 6, 9, 11, 14, 16, and 22.

ALEKSA VUKOTIC is a software architect at Cake Solutions. He oversees the
architecture as well as the implementation of most of Cake’s projects. He has
extensive experience with most Java EE technologies, particularly Spring MVC
and Security. He also has the knack, which means he can solve virtually any
technical problem. He is an excellent tutor and is in charge of directing a team
of Cake Solutions developers, helping the team in solving the most complex
problems. As well as his interest in Java and .NET platforms, Aleksa enjoys
sports, music, and nights out. Aleksa works with Jan on all of the major proj-
ects at Cake Solutions.

Aleksa authored Chapters 5, 8, 10, 15, 17, and 21.

ANIRVAN CHAKRABORTY is a senior developer at Cake Solutions. His exten-
sive experience with the Spring Framework and attention to detail puts him
in charge of the implementation of some of the challenging aspects of Cake
Solutions’s projects. Anirvan takes great pride in his code and always makes
sure the code can be used as an example to others. When he does not have
his head buried in Java EE and Linux, he enjoys good food and drink with
his friends. He is also an ardent follower of the sport of cricket and enjoys
reading detective novels.

Anirvan authored Chapters 7, 13, 19, and 20.

JESSICA DITT has been a developer at London-based Avenue A | Razorfish
since early 2008. Prior to that, she was part of the Cake Solutions team for
2.5 years. She has been working on numerous enterprise-level projects,
all of which were written using the Spring Framework and Spring Web
Flow. Jessica has acquired significant expertise in efficient indexing using
Lucene and has efficiently addressed Java EE application scalability issues
using Gigaspaces. Out of the office, Jessica is a keen volleyball player and
enjoys spending time in the gym.

Jessica authored Chapters 12 and 18.

XXxiii

About the Technical Reviewer

RICK EVANS is an independent contractor based in the UK with many years
of experience working in the health, financial, and retail sectors. Over the
years, Rick has committed on a number of open source projects, including
Spring and Spring.NET. A polished teacher and mentor, Rick often speaks
professionally about technology and delivers training on a wide range of
enterprise technologies and disciplines.

XXiv

Acknowledgments

When writing a book, a substantial amount of work goes on behind the scenes, and authors are
backed by an excellent team of editors, proofreaders, and technical reviewers. This book was no
exception, and we would like to thank everyone who worked on the book. Our thanks goes to Rick,
the technical reviewer, who has done enormous amounts of work to ensure that this book is of the
highest quality. The great editorial team at Apress also deserves our thanks: most importantly, Sofia
Marchant; our editor, Tom Welsh; Heather Lang; Kelly Winquist; and many others. Without their
help, we would not have been able to complete this book. I would also like to thank Rob Harrop for
agreeing to write the Foreword. Finally, we all wish to thank the managing director of Cake Solutions,
Guy Remond; he gave some of Cake Solutions’s time to us to work on the book.

XXV

Introduction

Recently, the Java world has witnessed a dramatic shift away from so-called “heavyweight” archi-
tectures such as Enterprise JavaBeans (EJB) toward lighter weight frameworks such as Spring. Complex
and container-dependent services, such as CMP, and transaction management systems have been
replaced with simpler alternatives such as Hibernate and aspect-oriented programming (AOP). At
the core, Spring provides a comprehensive, lightweight container based on the principle of Inversion
of Control (IoC), on which you can build your own applications. On top of this container, Spring
provides a myriad of useful services, bringing together a large range of highly competent open
source projects into a single cohesive framework.

The quality of the Spring Framework has seen it replacing traditional Java EE architectures in
many cases; as a result, more and more developers see the need for comprehensive Spring skills.
Despite Spring having quite an extensive suite of documentation and examples, we feel that many
developers are still struggling to understand how to use Spring and, more importantly, how to use it
effectively. Because of this, we decided to write a new edition of Pro Spring.

At first, we thought we would just update a few chapters and call it Pro Spring 2.5. However, we
quickly realized that Spring 2.5 brought so many new features and improvements that, although we
kept the old Pro Spring name, this is a completely new book.

Through this book, you will learn how to use Spring to build better web and stand-alone appli-
cations and how to sift through the many choices available to you through the framework. Our aim
is to provide you with all the knowledge you need to use Spring effectively in your own applications
and to give you insight into what is happening behind the scenes in Spring.

For example, you will

¢ Learn the fundamentals of IoC in the context of AOP.

* Become aware of the seamlessness and power of Spring by referencing the easy-to-understand
sample applications we provide.

e Learn how to replace common EJB features with Spring alternatives, including Spring’s
comprehensive AOP-based transaction management framework.

¢ Effectively manage your Spring components and applications using Spring’s built-in JMX
engine.

e Learn how to add scheduling to your Spring application with Quartz.

After reading this book, you will be equipped with all the knowledge you need to build applications
effectively using Spring and its related open source projects.

XXVii

PART 1

Getting Started with Spring

In this part of the book, we will introduce the Spring Framework, starting with the steps needed to
download the binary and source distributions. We will next explain the Inversion of Control (loC)
pattern and aspect-oriented programming (AOP). loC and AOP lie at the heart of the Spring Frame-
work. Toward the end of Part 1, we will show you, in full detail, various ways to configure
Spring-managed beans. Finally, we will round off Part 1 with a look at some of the most important
Spring design patterns.

CHAPTER 1

Introducing Spring

When we think of the community of Java developers, we are reminded of the hordes of gold rush
prospectors of the late 1840s, frantically panning the rivers of North America looking for fragments
of gold. As Java developers, our rivers run rife with open source projects, but, like the prospectors,
finding a useful project can be time consuming and arduous. And yet, more and more developers
are turning to open source tools and code. Open source brings innovative code and few restrictions
on its usage, allowing developers to focus on the core of the applications they build.

A common gripe about many open source Java projects is that they exist merely to fill a gap in
the implementation of the latest buzzword-heavy technology or pattern. Another problem is that
some projects lose all their momentum: code that looked very promising in version 0.1 never reaches
version 0.2, much less 1.0. Having said that, many high-quality, user-friendly projects meet and address
areal need for real applications. In the course of this book, you will meet a carefully chosen subset
of these projects. You will get to know one in particular rather well—Spring.

Spring has come a long way since the early code written by Rod Johnson in his book Expert
One-to-One J2EE Design and Development (Wrox, October 2002). It has seen contributions from the
most respected Java developers in the world and reached version 2.5.

Throughout this book, you will see many applications of different open source technologies, all
of which are unified under the Spring Framework. When working with Spring, an application devel-
oper can use a large variety of open source tools, without needing to write reams of infrastructure
code and without coupling his application too closely to any particular tool. This chapter is a gentle
introduction to the Spring Framework. If you are already familiar with Spring, you might want to skip
this chapter and go straight to Chapter 2, which deals with the setup and introduces the “Hello, World”
application in Spring.

Our main aims in this book are to provide as comprehensive a reference to the Spring Framework
as we can and, at the same time, give plenty of practical, application-focused advice without it seem-
ing like a clone of the documentation. To help with this, we build a full application using Spring
throughout the book to illustrate how to use Spring technologies.

What Is Spring?

The first thing we need to explain is the name Spring. We will use “Spring” in most of the text of this
book, but we may not always mean the same thing. Sometimes, we will mean the Spring Framework
and sometimes the Spring project. We believe the distinction will always be clear and that you will
not have any trouble understanding our meaning.

The core of the Spring Framework is based on the principle of Inversion of Control (IoC). Appli-
cations that follow the IoC principle use configuration that describes the dependencies between its
components. It is then up to the IoC framework to satisfy the configured dependencies. The “inversion”
means that the application does not control its structure; it is up to the IoC framework to do that.

CHAPTER 1 " INTRODUCING SPRING

Consider an example where an instance of class Foo depends on an instance of class Bar to perform
some kind of processing. Traditionally, Foo creates an instance of Bar using the new operator or obtains
one from some kind of factory class. Using the IoC technique, an instance of Bar (or a subclass) is
provided to Foo at runtime by some external process. This injection of dependencies at runtime has
sometimes led to IoC being given the much more descriptive name dependency injection (DI). The
precise nature of the dependencies managed by DI is discussed in Chapter 3.

Spring’s DI implementation puts focus on loose coupling: the components of your application
should assume as little as possible about other components. The easiest way to achieve loose cou-
pling in Java is to code to interfaces. Imagine your application’s code as a system of components: in
a web application, you will have components that handle the HTTP requests and then use the com-
ponents that contain the business logic of the application. The business logic components, in turn,
use the data access objects (DAOs) to persist the data to a database. The important concept is that
each component does not know what concrete implementation it is using; it only sees an interface.
Because each component of the application is aware only of the interfaces of the other components,
we can switch the implementation of the components (or entire groups or layers of components) with-
out affecting the components that use the changed components. Spring’s DI core uses the information
from your application’s configuration files to satisfy the dependencies between its components. The
easiest way to allow Spring to set the dependencies is to follow the JavaBean naming conventions
in your components, but it is not a strict requirement (for a quick introduction to JavaBeans, go to
Chapter 3).

When you use DI, you allow dependency configuration to be externalized from your code.
JavaBeans provide a standard mechanism for creating Java resources that are configurable in a stan-
dard way. In Chapter 3, you will see how Spring uses the JavaBean specification to form the core of
its DI configuration model; in fact, any Spring-managed resource is referred to as a bean. If you are
unfamiliar with JavaBeans, take a look at the quick primer at the beginning of Chapter 3.

Interfaces and DI are mutually beneficial. We are sure that everyone reading this book will
agree that designing and coding an application to interfaces makes for a flexible application that is
much more amenable to unit testing. But the complexity of writing code that manages the depend-
encies between the components of an application designed using interfaces is quite high and places
an additional coding burden on developers. By using DI, you reduce the amount of extra code you
need for an interface-based design to almost zero. Likewise, by using interfaces, you can get the most
out of DI because your beans can utilize any interface implementation to satisfy their dependency.

In the context of DI, Spring acts more like a container than a framework—providing instances
of your application classes with all the dependencies they need—but it does so in a much less intru-
sive way than, say, the EJB container that allows you to create persistent entity beans. Most importantly,
Spring will manage the dependencies between the components of your application automatically.
All you have to do is create a configuration file that describes the dependencies; Spring will take
care of the rest. Using Spring for DI requires nothing more than following the JavaBeans naming
conventions within your classes (a requirement that, as you will see in Chapter 4, you can bypass
using Spring’s method injection support)—there are no special classes from which to inherit or pro-
prietary naming schemes to follow. If anything, the only change you make in an application that uses
DI is to expose more properties on your JavaBeans, thus allowing more dependencies to be injected
at runtime.

Note A container builds the environment in which all other software components live. Spring is a container,
because it creates the components of your application and the components are children of the container.

A framework is a collection of components that you can use to build your applications. Spring is a framework,
because it provides components to build common parts of applications, such as data access support, MVC support,
and many others.

CHAPTER 1 " INTRODUCING SPRING

Although we leave a full discussion of DI until Chapter 3, it is worth taking a look at the benefits
of using DI rather than a more traditional approach:

Reduce glue code: One of the biggest plus points of DI is its ability to reduce dramatically the
amount of code you have to write to glue the different components of your application together.
Often, this code is trivial—where creating a dependency involves simply creating a new instance
of a class. However, the glue code can get quite complex when you need to look up dependencies
in a JNDI repository or when the dependencies cannot be invoked directly, as is the case with
remote resources. In these cases, DI can really simplify the glue code by providing automatic
JNDI lookup and automatic proxying of remote resources.

Externalize dependencies: You can externalize the configuration of dependencies, which allows
you to reconfigure easily without needing to recompile your application. This gives you two
interesting benefits. First, as you will see in Chapter 4, DI in Spring gives you the ideal mecha-
nism for externalizing all the configuration options of your application for free. Second, this
externalization of dependencies makes it much simpler to swap one implementation of

a dependency for another. Consider the case where you have a DAO component that performs
data operations against a PostgreSQL database and you want to upgrade to Oracle. Using DI,
you can simply reconfigure the appropriate dependency on your business objects to use the
Oracle implementation rather than the PostgreSQL one.

Manage dependencies in a single place: In the traditional approach to dependency management,

you create instances of your dependencies where they are needed—within the dependent

class. Even worse, in typical large applications, you usually use a factory or locator to find the
dependent components. That means that your code depends on the factory or locator as well
as the actual dependency. In all but the most trivial of applications, you will have dependencies
spread across the classes in your application, and changing them can prove problematic.

When you use D], all the information about dependencies is the responsibility of a single com-
ponent (the Spring IoC container), making the management of dependencies much simpler

and less error prone.

Improve testability: When you design your classes for DI, you make it possible to replace depend-
encies easily. This comes in especially handy when you are testing your application. Consider
a business object that performs some complex processing; for part of this, it uses a DAO object
to access data stored in a relational database. You are not interested in testing the DAO; you
simply want to test the business object with various sets of data. In a traditional approach, where
the service object is responsible for obtaining an instance of the DAO itself, you have a hard time
testing this, because you are unable to replace the DAO implementation easily with a dummy
implementation that returns your test data. Instead, you need to make sure that your test data-
base contains the correct data and uses the full DAO implementation for your tests. Using DI,
you can create a mock implementation of the DAO that returns the test data, and then you can
pass this to your service object for testing. This mechanism can be extended for testing any tier
of your application and is especially useful for testing web components, where you can create
fake implementations of HttpServletRequest and HttpServletResponse.

Foster good application design: Designing for DI means, in general, designing against interfaces.
A typical injection-oriented application is designed so that all major components are defined
as interfaces, and then concrete implementations of these interfaces are created and wired
together using the DI container. This kind of design was possible in Java before the advent of
DI and DI-based containers such as Spring, but by using Spring, you get a whole host of DI fea-
tures for free, and you can concentrate on building your application logic, not a framework to
support it.

CHAPTER 1 " INTRODUCING SPRING

As you can see from this list, DI provides a lot of benefits, but it is not without its drawbacks
too. In particular, DI can make seeing just what implementation of a particular dependency is being
hooked into which objects difficult, especially for someone not intimately familiar with the code.
Typically, this is only a problem when developers are inexperienced with DI; after becoming more
experienced, developers find that the centralized view of an application given by Spring DI lets them
see the whole picture. For the most part, the massive benefits far outweigh this small drawback, but
you should consider this when planning your application.

Beyond Dependency Injection

The Spring core alone, with its advanced DI capabilities, is a worthy tool, but where Spring really
excels is in its myriad of additional features, all elegantly designed and built using the principles
of DI. Spring provides tools to help build every layer of an application, from helper application pro-
gramming interfaces (APIs) for data access right through to advanced model-view-controller (MVC)
capabilities. What is great about these features is that, although Spring often provides its own approach,
you can easily integrate them with other tools, making them all first-class members of the Spring
family.

Aspect-Oriented Programming with Spring

Aspect-oriented programming (AOP) is one of the technologies of the moment in the programming
space. AOP lets you implement crosscutting logic—that is, logic that applies to many parts of your
application—in a single place, and then have that logic automatically applied right across the appli-
cation. AOP is enjoying an immense amount of time in the limelight at the moment; however, behind
all the hype is a truly useful technology that has a place in any Java developer’s toolbox.

There are two main kinds of AOP implementation. Static AOB, such as Aspect] (www.aspectj.org),
provides a compile-time solution for building AOP-based logic and adding it to an application.
Dynamic AOP such as that in Spring, allows crosscutting logic to be applied arbitrarily to any other
code at runtime. Finally, in Spring 2.5, you can use load-time dynamic weaving, which applies the
crosscutting logic when the class loader loads the class. Both kinds of AOP have their places, and
indeed, Spring provides features to integrate with Aspect]. This is covered in more detail in Chapters 5
and 6.

There are many applications for AOP. The typical one given in many traditional examples
involves performing some kind of tracing, but AOP has found many more ambitious uses, even
within the Spring Framework itself, particularly in transaction management. Spring AOP is covered
in depth in Chapters 5-7, where we show you typical uses of AOP within the Spring Framework and
your own application. We also look into the issue of performance and consider some areas where
traditional technologies can work better than AOP.

Accessing Data in Spring

Data access and persistence seem to be the most often discussed topics in the Java world. It seems
that you cannot visit a community site such as www.theserverside.com without being bombarded
with articles and blog entries describing the latest, greatest data access tool.

Spring provides excellent integration with a choice selection of these data access tools. More-
over, Spring makes the use of JDBC, a viable option for many projects thanks to its simplified
wrapper APIs around the standard JDBC API. As of Spring version 1.1, you have support for JDBC,
Hibernate, iBATIS, and Java Data Objects (JDO).

The JDBC support in Spring makes building an application on top of JDBC realistic, even for
complex applications. The support for Hibernate, iBATIS, and JDO makes their already simple APIs
even simpler, thus easing the burden on developers. When using the Spring APIs to access data via

CHAPTER 1 " INTRODUCING SPRING

any tool, you can take advantage of Spring’s excellent transaction support. A full discussion of this
support can be found in Chapter 15.

One of Spring’s nicest features is the ability to mix and match data access technologies easily
within an application. For instance, you may be running an application with Oracle, using Hibernate
for much of your data access logic. However, if you want to take advantage of Oracle-specific features,
it is simple to implement that particular part of your data access tier using Spring’s JDBC APIs.

Simplifying and Integrating with Java EE

There has been a lot of discussion recently about the complexity of various Java EE APIs, especially
those of EJB. It is evident from the EJB 3.0 specification that this discussion has been taken on board
by the expert group, and EJB 3.0 brought some simplifications and many new features. Even with
the simplifications over EJB 2.0, using Spring’s simplified support for many Java EE technologies is still
more convenient. For instance, Spring provides a selection of classes for building and accessing
EJB resources. These classes cut out a lot of the grunt work from both tasks and provide a more
DI-oriented API for EJBs.

For any resources stored in a JNDI-accessible location, Spring allows you to do away with the
complex lookup code and have JNDI-managed resources injected as dependencies into other
objects at runtime. As a side effect of this, your application code becomes decoupled from JNDI,
giving you more scope for code reuse in the future.

As of version 1.0.2, Spring does not support JMS access. However, the CVS repository already
contains a large array of classes that are to be introduced in 1.1. Using these classes simplifies all
interaction with Java Message Service (JMS) destinations and should reduce a lot of the boilerplate
code you need to write in order to use JMS from your Spring applications.

Chapters 11-13 explain how Spring works with the most important Java EE application compo-
nents; Chapter 14 addresses application integration issues; and Chapter 20 deals with management
of Java EE applications.

Job Scheduling Support

Many advanced applications require some kind of scheduling capability. Whether for sending
updates to customers or doing housekeeping tasks, the ability to schedule code to run at a prede-
fined time is an invaluable tool for developers.

Spring supports two scheduling mechanisms: one uses the Timer class, which has been available
since Java 1.3; and the other uses the Quartz scheduling engine. Scheduling based on the Timer class
is quite primitive and is limited to fixed periods defined in milliseconds. With Quartz, on the other
hand, you can build complex schedules using the Unix cron format to define when tasks should be run.

Spring’s scheduling support is covered in full in Chapter 11.

Mail Support

Sending e-mail is a typical requirement for many different kinds of applications and is given first-class
treatment within the Spring Framework. Spring provides a simplified API for sending e-mail messages
that fits nicely with its DI capabilities. It supports pluggable implementations of the mail API and
comes complete with two implementations: one uses JavaMail, and the other uses Jason Hunter’s
MailMessage class from the com.oreilly.servlet package available from http://servlets.com/cos.

Spring lets you create a prototype message in the DI container and use this as the base for all
messages sent from your application. This allows for easy customization of mail parameters such as
the subject and sender address. However, there is no support for customizing the message body
outside of the code. In Chapter 12, we look at Spring’s mail support in detail and discuss a solution
that combines templating engines such as Velocity and FreeMarker and Spring, allowing mail con-
tent to be externalized from the Java code.

7

CHAPTER 1 " INTRODUCING SPRING

In addition to simple mail-sending code, we will show how to use Spring events to implement
fully asynchronous messaging infrastructure. We will make use of the Spring Java Management Exten-
sions (JMX) features to show how to create an efficient management console for the mail queues.

Dynamic Languages

Dynamic languages in Spring allow you to implement components of your application in languages
other than Java (Spring 2.5 supports BeanShell, JRuby, and Groovy). This allows you to externalize
part of your application’s code so that it can be easily updated by administrators and power users.
You could do this even without Spring, but the support built into Spring means that the rest of your
application will not be aware that a component is implemented in another language; it will appear
to be an ordinary Spring bean.

Many large applications have to deal with complex business processes. This would not be too dif-
ficult to handle in Java, but in most cases, these processes change over time, and users want to be able
to make the changes themselves. This is where a domain-specific language implementation comes in.

In Chapter 14, you will see how to use the dynamic language support in Spring 2.5 and how to
use it to implement a simple domain-specific language.

Remoting Support

Accessing or exposing remote components in Java has never been simple. Using Spring, you can
take advantage of extensive support for a wide range of remoting techniques that help you expose
and access remote services quickly.

Spring supports a variety of remote access mechanisms, including Java RMI, JAX-RPC, Caucho
Hessian, and Caucho Burlap. In addition to these remoting protocols, Spring 1.1 introduced its own
HTTP-based protocol that is based on standard Java serialization. By applying Spring’s dynamic
proxying capabilities, you can have a proxy to a remote resource injected as a dependency into one
of your components, thus removing the need to couple your application to a specific remoting
implementation and also reducing the amount of code you need to write for your application.

As well as making it easy to access remote components, Spring provides excellent support for
exposing a Spring-managed resource as a remote service. This lets you export your service using
any of the remoting mechanisms mentioned earlier, without needing any implementation-specific
code in your application.

Integrating applications written in different programming languages, and possibly running on
different platformes, is one of the most compelling reasons for using remote services. In Chapter 14,
we will show how to use remoting between Java applications and a C# Windows rich client applica-
tion making full use of a Spring service running on a Unix system.

Managing Transactions

Spring provides an excellent abstraction layer for transaction management, allowing for program-
matic and declarative transaction control. By using the Spring abstraction layer for transactions,
you can easily change the underlying transaction protocol and resource managers. You can start
with simple, local, resource-specific transactions and move to global, multiresource transactions
without having to change your code. Transactions are covered in full detail in Chapter 15.

The Spring MVC Framework

Although Spring can be used in almost any application, from a service-only application, through
web and rich-client ones, it provides a rich array of classes for creating web-based applications.
Using Spring, you have maximum flexibility when you are choosing how to implement your web
front end.

