
Pro JavaScript™ RIA
Techniques
Best Practices, Performance,
and Presentation

Den Odell

Pro JavaScript™ RIA Techniques: Best Practices, Performance, and Presentation

Copyright © 2009 by Den Odell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1934-7

ISBN-13 (electronic): 978-1-4302-1935-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editors: Clay Andres and Jonathan Hassell
Technical Reviewer: Kunal Mittal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Duncan Parkes, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Lynn L’Heureux
Proofreader: Martha Whitt
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at .

For my family, friends, and loved ones

v

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 Best Practices
CHAPTER 1 Building a Solid Foundation . 3

CHAPTER 2 JavaScript for Rich Internet Applications . 51

PART 2 Performance
CHAPTER 3 Understanding the Web Browser . 115

CHAPTER 4 Performance Tweaking . 135

CHAPTER 5 Smoke and Mirrors: Perceived Responsiveness 179

PART 3 Presentation
CHAPTER 6 Beautiful Typography . 195

CHAPTER 7 Multimedia Playback . 225

CHAPTER 8 Form Controls . 249

CHAPTER 9 Offline Storage—When the Lights Go Out . 307

CHAPTER 10 Binary Ajax . 331

CHAPTER 11 Drawing in the Browser . 357

CHAPTER 12 Accessibility in Rich Internet Applications . 375

INDEX . 403

vii

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 Best Practices

CHAPTER 1 Building a Solid Foundation . 3

Best Practice Overview . 3

Who Put the “Best” in Best Practice? . 4

Who Benefits from Best Practices? . 4

General Best Practices . 5

Define the Project Goals . 6

Know the Basic Rules . 6

Markup Best Practice: Semantic HTML . 14

Learn the HTML Tags . 14

Start with a Document Type Definition . 16

How Do You Put the X in XHTML? . 17

Put Best Practice into Practice . 19

Accessibility Guidelines for Web Content . 28

Formatting Best Practice: CSS . 30

Regarding Pixel- Perfect Reproduction of Designs 30

W3C CSS Standards . 31

Guidelines for Style Sheets . 31

Accessibility Guidelines for Styles . 39

Comment Blocks . 41

Browser Work- Arounds . 42

Localization Considerations . 43

CONTENTSviii

Structuring Your Folders, Files, and Assets . 43

Readable URLs . 43

File and Folder Naming . 44

File Encoding . 44

Organizing Assets . 44

Setting Up Your Development Environment . 46

Writing Your Files: Integrated Development Environments 46

Storing Your Files: Version Control Systems . 47

Testing Your Pages: Browsers and Development Tools 47

Summary . 49

CHAPTER 2 JavaScript for Rich Internet Applications 51

Coding Style Guidelines . 51

Use Consistent Formatting . 51

Use Braces and Brackets . 52

Add Meaning with Letter Casing . 53

Use Descriptive Variable and Function Names 53

Maintain Short Function Blocks . 54

Use Comments As Documentation with ScriptDoc 56

Mark Remaining Tasks with TODO . 57

Professional JavaScript Programming . 57

Avoid Solving Nonexistent Problems . 57

Use the Document Object Model . 58

Don’t Mix JavaScript and HTML . 60

Separate Style from Code . 60

Chain Function Calls . 61

Write Bulletproof Code . 61

Code with Localization in Mind . 63

Object-Oriented JavaScript . 64

Objects, Classes, and Constructors . 64

Inheritance: Creating New Classes from Existing Ones 68

The this Keyword . 71

Access to Properties and Methods . 73

Object Literals and JavaScript Object Notation 75

Creating Namespaces and Hierarchies . 77

ixCONTENTS

Libraries and Frameworks . 77

Selecting a Library . 78

Building a JavaScript Library . 79

Building RIAs . 97

Structuring the Application . 97

Managing Two Sets of HTML . 100

Using Design Patterns . 101

Testing and Test- Driven Development . 107

Using Third- Party Scripts . 110

Summary . 111

PART 2 Performance

CHAPTER 3 Understanding the Web Browser . 115

Engines: The Browser’s Powerhouse . 115

The Rendering and JavaScript Engines . 115

JavaScript Engine Performance Benchmarking 116

Anatomy of a Web Page Request . 119

HTTP: The Communication Standard Behind the Web 119

HTTP Status Codes . 125

How Messages Are Transmitted . 127

Loading Order of an HTML Page . 130

Page Performance . 131

Viewing the Performance of a Page . 131

Identifying Potential Bottlenecks in Performance 132

Summary . 134

CHAPTER 4 Performance Tweaking . 135

Is Performance Really an Issue? . 135

Tweaking Your Web Server for Performance . 137

Use Separate Domain Names for External Assets 137

Use a Content Delivery Network . 137

Send HTML to the Browser in Chunks . 138

Customize HTTP Headers to Force Browser Caching 140

Compress the Output from the Server . 141

CONTENTSx

Tweaking HTML for Performance . 142

Shrink Your HTML File Size with HTML Tidy 143

Reference JavaScript Files at the End of Your HTML 143

Reduce the Number of HTTP Requests . 144

Don’t Load Every Asset from Your Home Page 146

Reduce Domain Name Lookups . 146

Split Components Across Domains . 147

Avoid Linking to Redirects . 148

Reduce the Number of HTML Elements . 148

Don’t Link to Nonexistent Files . 149

Reduce the Size of HTTP Cookies . 149

Tweaking Your Style Sheets for Performance . 150

Shrink Your CSS File Size with CSSTidy . 150

Don’t Use the @import Command . 150

Speed Up Table Layouts . 150

Avoid CSS Filters and Expressions in IE . 151

Use Shorthand Values . 151

Use the CSS Sprite Technique . 155

Avoid Inefficient CSS Selectors . 159

Tweaking Your Images for Performance . 159

Understand Image File Formats . 160

Optimize PNG Images . 162

Don’t Forget the Favicon . 163

Tweaking Your JavaScript for Performance . 163

Shrink Your JavaScript File Using Dojo ShrinkSafe 163

Access JavaScript Libraries Through CDNs 164

Timing Is Everything . 164

Boost Core JavaScript Performance . 166

Improve Ajax Performance . 170

Improve DOM Performance . 172

Summary . 178

CONTENTS xi

CHAPTER 5 Smoke and Mirrors: Perceived Responsiveness 179

Providing Prompt Visual Feedback . 179

Time It Right . 179

Use CSS Pseudo- Classes on Hyperlinks . 181

Let the User Know the Form Is Being Submitted 181

Change the Mouse Pointer . 182

Use a Web 2.0–Style Animated Indicator . 183

Show a Progress Bar . 183

Handling Long- Running Scripts. 184

Divide Long- Running Scripts into Chunks . 185

Use a Timer to Run Code Blocks Multiple Times 187

Anticipating Your Site Visitors’ Needs . 189

Preload Content . 189

Load Navigation Levels Efficiently . 190

Catch Mouse Clicks Early . 192

Summary . 192

PART 3 Presentation

CHAPTER 6 Beautiful Typography . 195

The Challenge. 195

The Basic Anatomy of a Font . 196

Using Static Images for Text . 198

Generating Images for Text Dynamically . 199

Using CSS to Embed Font Files Directly . 199

Having the Server Generate Text Images . 202

Generating Text in Custom Typefaces Using Flash 210

Generating Text Using Vector Graphics . 211

Using Reusable Custom Font Components . 211

Text2PNG . 211

Scalable Inman Flash Replacement . 215

Facelift Image Replacement . 219

Typeface.js . 221

Summary . 223

CONTENTSxii

CHAPTER 7 Multimedia Playback . 225

Handling Accessibility . 225

Using Reusable Audio Playback Components . 226

The SoundManager Component . 226

Playing Audio Files Without Flash . 231

Using Reusable Video Playback Components . 232

YouTube Chromeless Player. 235

JW FLV Player . 241

The Future: Audio and Video in HTML 5 . 246

The <audio> and <video> Tags . 246

JavaScript API . 247

Current Adoption Level . 248

Summary . 248

CHAPTER 8 Form Controls . 249

Customizing Existing Form Controls . 249

Buttons . 249

Text Fields . 253

File Upload Controls . 255

Adding New Types of Form Controls . 259

A Calendar Widget for Date Selection. 259

Slider Control . 281

Using Reusable Form Components . 296

SWFUpload: Multiple File Uploads with Progress Bars 296

TinyMCE: Rich Text Editing . 301

Validating Forms . 304

Summary . 305

CHAPTER 9 Offline Storage—When the Lights Go Out 307

Using Cookies to Store Data . 307

Creating Cookies . 308

The Downside of Cookies . 310

Using Internet Explorer’s Data Store . 311

CONTENTS xiii

Introducing the Data Storage APIs . 314

The Local Storage API . 314

Mozilla’s Global Storage API . 315

Client-Side Database Storage API . 317

Storing Data Using Flash Shared Objects . 322

Creating a Cross- Browser Local Data Storage API 323

Using a Reusable Offline Storage Component . 330

Summary . 330

CHAPTER 10 Binary Ajax . 331

Plain Text Files vs. Binary Files . 331

Reading Binary Files with Ajax . 331

Extracting Image Data from Photo Files. 339

Understanding the EXIF Format . 340

Reading EXIF Data Using JavaScript . 341

Displaying EXIF Data from a File . 351

Summary . 356

CHAPTER 11 Drawing in the Browser . 357

Creating Scalable Vector Graphics . 357

Creating SVG Image Files . 358

Specifying SVG Within HTML . 359

Specifying SVG Through JavaScript . 361

Drawing with Vector Markup Language. 362

Building Dynamic Graphs with a Reusable Drawing Library 363

Using the HTML 5 <canvas> Tag . 371

Summary . 373

CHAPTER 12 Accessibility in Rich Internet Applications 375

Whose Needs Are We Meeting? . 375

Users Using Assistive Technology . 375

Users on Mobile Devices . 375

Users Without a Mouse . 376

Accessibility for All . 377

CONTENTSxiv

Proper Navigation with the Back and Forward Buttons 377

Device-Independent JavaScript . 383

Device-Independent Events . 383

Device-Independent Event Delegation . 384

Updated Content Alerts and Focus . 386

Web Accessibility Initiative: Accessible Rich Internet
Applications (WAI-ARIA) . 390

Roles. 390

States and Properties . 391

Focus Management . 393

Keyboard Interaction with ARIA Widgets . 394

WAI-ARIA Examples . 394

Validation . 399

Testing . 400

Summary . 401

INDEX . 403

xv

About the Author

DEN ODELL is a multidisciplined web developer with
expert JavaScript skills. He is a web standards and acces-
sibility advocate, with a special passion for user interface
development.

As a front-end technical architect at the AKQA digi-
tal service agency in London, Den built and architected
several large-scale web sites and rich Internet applica-
tions for a number of clients, including Ferrari, Nike, and
Nokia. He now lives in Sweden, where he has been using
his technical skills and passion for music to help record
labels and artists develop their presence on the Web.

In his spare time, Den runs nightclub events, plays
records at clubs across Europe, and has a keen eye for
digital photography.

xvii

About the Technical Reviewer

KUNAL MITTAL serves as Executive Director of Technology
at Sony Pictures Entertainment, where he is responsible
for the SOA and Identity Management programs. He pro-
vides a centralized engineering service to different lines of
business and consults on content management, collabora-
tion, and mobile strategies.

Kunal is an entrepreneur who helps startups define
their technology strategy, product road map, and devel-
opment plans. With strong relationships with several
development partners worldwide, he is able to help
startups and even large companies build appropriate devel-
opment partnerships. He generally works in an advisor or a
consulting CTO capacity, and serves actively in the project
management and technical architect functions.

Kunal has authored and edited several books and
articles on J2EE, WebLogic, and SOA. He holds a Master’s degree in Software Engineering and
is an instrument-rated private pilot.

xix

Acknowledgments

Throughout the course of my career, I have met and worked alongside many incredibly intel-
ligent people who have inspired me to improve my technical skills, and to varying degrees,
have had an impact on this book and its material. There are way too many people to name, but
I would like to thank you all—you know who you are.

Thanks to Clay Andres for seeing the potential in my book and allowing me to run with it.
I’d also like to offer my sincere thanks to Kunal, Sofia, Jon, Marilyn, Laura, and the rest of the
team at Apress who worked so diligently and effectively to run a tight ship for delivering such a
high-quality product from my source material.

I want to offer massive thanks to Maria for supporting me when I was busy for what must
have seemed like endless evenings and weekends as I wrote this book. Thank you for calming
my stress, keeping me together, encouraging me to keep on when times were tough, and going
above and beyond what anyone could expect. You are an amazing, beautiful, insightful, and
intelligent person; I love you, and I can’t imagine my life without you.

Thanks most of all to you, my readers, for taking the time to read and study this book. I hope
you are able to understand, learn from, and put into practice its contents and build better web
applications, and to advance your career as a result.

xxi

Introduction

Rich Internet applications (RIAs), or web applications, are those web sites that blur the bound-
ary between the web browser and standard desktop applications. Managing your e-mail through
web sites such as Google Gmail, Yahoo! Mail, and Microsoft Windows Live Hotmail is every bit
as simple and intuitive as using a desktop e-mail client such as Microsoft Outlook or Apple Mail.
Web page refreshes are not expected when performing actions, and if a new message is received
by the mail server, we expect to see it appear in our inbox immediately.

Building web sites that behave in this way is seen as a departure from the traditional
model on the Web, where performing actions such as a submitting a form or clicking a link to
refresh an online forum to see the latest posts were considered the norm. It is this difference
that has led some to label these RIAs as Web 2.0, as if an upgrade to the Web were taking place.

In some respects an upgrade has been taking place, but not an upgrade of the Web itself.
The improvements are actually in the web browsers we use to browse our favorite sites.
Gradually over the past few years, features have been added to each of the major web brows-
ers. Additionally, some attempts at conformance among browser manufacturers have meant
that finally, through the power of JavaScript and standardized Document Object Model (DOM)
scripting, live page updates are possible using data loaded dynamically from the web server.
The Web is no longer a static place.

I have written this book primarily to help you harness the power of JavaScript to add
dynamic components to your pages and to create entire RIAs of your own. (I assume you
already have some knowledge of HTML, CSS, and JavaScript.) With great power comes great
responsibility, however. I put emphasis on ensuring that you understand the importance of
creating a responsive user experience that excites, rather than frustrates, your site visitors.
I also stress that you have the ability to apply creativity through your design, to make your
application look and behave superior to any static web site. You’ll see how you can use
custom-built user interface components that don’t sacrifice usability or accessibility,

By the end of this book, you should have the confidence to build your own web site or RIA,
safe in the knowledge that it has been constructed in a robust, reliable, efficient, beautiful, and
highly accessible manner.

P A R T 1

Best Practices

In this first part of the book, I will present some tried-and- tested guidelines for building

rich Internet applications (RIAs). Applying these guidelines will allow you to build the foun-

dations of a web site structure that’s scalable from a single page with a few lines of code

up to many thousands of pages and thousands of lines of code. I will show you how to fol-

low best practices in a sensible, pragmatic way that won’t make the tasks of application

maintenance and bug fixing daunting—during construction or in the future.

3

C H A P T E R 1

Building a Solid Foundation

If you’re reading this book, chances are that you have felt the proud sense of achievement that
comes with building and releasing a web site. Perhaps you completed the project solo; per-
haps you built it as part of a team. Maybe it’s a simple site, with just a few pages you’re using
to establish a presence for yourself on the Internet for an audience of a few of your friends, or
maybe it’s a cutting- edge rich Internet application (RIA) with social networking features for a
potential audience of millions. In any case, congratulations on completing your project! You
deserve to feel proud.

Looking back to the start of your project with the knowledge and experience you have gar-
nered, I bet you can think of at least one thing that, if done differently, would have saved you
from bashing your head against the wall. If you’re just starting out in the web development
industry, it might be that you wish you had kept a backup of a previous version of your files,
because it cost you precious time trying to recover your changes after an unexpected power
outage. Or it might be that you wish you hadn’t decided to rely on that third- party software
library that seemed like it would be up to the task at the start of the project, but soon proved
itself to be a huge waste of time and effort. In the course of my own career, I’ve been in exactly
these situations and come out the other side a little wiser. I’ve learned from those mistakes
and fed that new knowledge back into the next project.

Based on my experiences and what I’ve learned from others, I’ve developed an effective,
sensible approach to web development. This approach, along with a handful of smart tech-
niques thrown in the mix, should minimize those head- bashing moments and ensure things
run more smoothly right from the get- go all the way through to the launch of your next web
site or application.

Best Practice Overview
Let’s start by considering what is meant by the term best practice. If you’ve been in the devel-
opment profession for long, you’ll have heard this expression being tossed around quite a lot
to justify a particular coding technique or approach. It is a bit of a loaded phrase, however, and
should be treated with caution. I’ll explain why.

CHAPTER 1 BUILDING A SOLID FOUNDATION4

Who Put the “Best” in Best Practice?
The landscape of web development is constantly changing. Browsers rise and fall in popular-
ity, feature adoption between them is not always in parallel, and the technologies we use to
construct web sites for display in such browsers are still fairly immature, constantly undergo-
ing revisions and updates. In an environment that is in flux, what we might consider to be a
 best- practice solution to a problem right now could be obsolete in six months’ time.

The use of the word best implies that a benchmark exists for comparison or that some
kind of scientific testing has been adopted to make the distinction. However, very rarely have
such tests been undertaken. You should consider carefully any techniques, technologies, and
components that have been labeled as best practice. Evaluate them for yourself and decide if
they meet a set of criteria that benefit you as a developer, the end users of your site, and if rel-
evant, the client for whom you are undertaking the work.

The guidelines, rules, and techniques I set out in this chapter are ones that I have person-
ally tried out and can attest to their suitability for real- world web development. I consider
them to be the best we have right now. Of course, some of these could be irrelevant by the time
you are reading this book, so my advice to you is to stay up-to- date with changes in the indus-
try. Read magazines, subscribe to blog feeds, chat with other developers, and scour the Web
for knowledge. I will maintain a comprehensive list of sources I recommend on my personal
web site at to give you a place to start.

By staying abreast of changes to these best practices, you should be able to remain at the
forefront of the web development industry, armed with a set of tools and techniques that will
help you make your day-to- day work more efficient, constructive, and rewarding.

Finally, don’t be afraid to review, rewrite, or refactor the code you write as you build your
sites. No one has built a web site from scratch without needing to make code alterations. Don’t
believe for a second that any code examples you see on the Web, or in this or any other book,
were written in a way that worked perfectly the first time. With that said, knowledge and expe-
rience make things easier, so practice every chance you get to become the best web developer
you can be.

Who Benefits from Best Practices?
The truth is that everyone should be able to benefit from the use of best practices in your code.
Take a look at the following lists, and use these criteria to assess any guidelines, techniques, or
technologies you come across for their suitability for your site.

Web Developers
Best practice starts at home. A site structure and code that work well for you and your web
developer colleagues will make all your lives a lot easier, and reduce the pain that can be
caused by poor coding.

CHAPTER 1 BUILDING A SOLID FOUNDATION 5

-

 and world regions without a lot of

Search Engines and Other Automated Systems
Believe it or not, a large percentage of site traffic is from automated machines and scripts, such
as search engines, screen scrapers, and site analysis tools. Designing for these robots is every
bit as important as for any other group of users.

End Users
The most important users of your code are your site visitors, so making your code work effec-
tively for them is the number one priority.

-

General Best Practices
If you’re like most developers, you probably want to spend as much of your time as possible
constructing attractive user interface components and great- looking web sites, rather than
refactoring your code base because of an unfortunate architectural decision. It’s very impor-
tant to keep your code well maintained. Without sensible structure and readability, it will
become harder and harder to maintain your code as time passes. Bear in mind that all the
guidelines in this chapter have been put together with a view to making things as easy on you,
the developer, as possible.

CHAPTER 1 BUILDING A SOLID FOUNDATION6

Define the Project Goals
The following are the two most important things to consider while coding a web page:

Bear in mind that the end users may not be human. If you were to check the server
request logs for one of your existing sites, you would discover that many of your site visitors
are actually search engine spiders, RSS readers, or other online services capable of reading
your raw page content and transforming it into something else.

This kind of machine- based access is likely to become more widespread over the coming
years, as automatic content syndication, such as RSS feeds, becomes more commonplace. For
example, content from the popular knowledge- sharing site Wikipedia (

) is already being used in other places around the Web, including within Google Maps
(), where articles are placed according to the geographical position of
the content described in each article.

Yahoo! and other search engine companies have been pushing for some time for web
developers to incorporate extra context- specific markup within pages, so that they can better
understand the content and perhaps present the results in their search engine in a different
way. Recipes could be presented with images and ingredients, for example; movie- related
results could contain reviews and a list of where the movie is showing near you. The possibili-
ties of connecting your code together with other developers’ code online like this are vast. By
marking up your content in the correct way, you ensure the whole system fits together in a
sensible, coherent, connected way, which helps users get the information they are looking for
faster.

As for ensuring other developers (including yourself, if only for your own sanity when
you return to a project after a long break) can follow your code, you need to consider what the
usual site maintenance tasks might be. These usually fall into the following four categories:

 country- specific versions

By thinking about these tasks up- front, you reduce the likelihood of needing to refactor
your code or rearrange and split up files, so the job of maintenance is made easier. Welcome
back, sanity!

Know the Basic Rules
So how do we go about making sure that
rules of thumb seem to sum it up succinctly:

-
tations, and learn how to deal with them.

CHAPTER 1 BUILDING A SOLID FOUNDATION 7

browser.

-
ing to purpose, site structure, and/or language.

Let’s go through each of these basic rules in order.

Follow Mature, Open, and Well- Supported Web Standards
Back in the early 1990s, a very clever man who worked at the technology research organization

), Tim Berners- Lee,
invented what we know today as the World Wide Web. He developed the concepts of home
pages, Hypertext Markup Language (HTML), and interconnected hyperlinks that form the
foundation of web browsing. He also created the world’s first web browser to demonstrate his
invention.

the decision was made to redirect funding and talent toward building the recently completed
Tim Berners- Lee made the decision to create a separate

organization to manage the continuation of standards development for HTML and its related
technologies. This new organization, the

), was born in October 1994.

standards and practices relating to the Web. The three that are most useful to readers of this

Two popular browsers emerged in those early days of the Web: Netscape Navigator,
released in December 1994, and Microsoft’s Internet Explorer (IE), released in August 1995.
Both browsers were based on similar underlying source code and rendered web pages in a
similar way. Of course, a web page at the time was visibly very different from what we see
today, so this wasn’t particularly difficult for both to achieve.

Roll on a year to 1996, and things get a little more interesting. Microsoft introduced basic

a way for web developers to apply font and color formatting; text alignment; and margins,
borders, and padding to most page elements. Netscape soon followed suit, and competition
began to intensify between the two browser manufacturers. They both were attempting to

were ready for the mainstream.
Naturally, such a variation in browser support for standards led to confusion for web

developers, who often tended to design for an either/or scenario. This resulted in end users
facing web sites that displayed the message “This web site works only in Internet Explorer.
Please upgrade your browser.”

CHAPTER 1 BUILDING A SOLID FOUNDATION8

-
facturers and developers to follow. As developers, we must consider them only as useful as
their actual implementation in common web browsers. Over time, browsers have certainly
made strides toward convergence on their implementations of these web standards. Unfortu-
nately, older versions of browsers with poorer quality of standards adoption in their rendering
of web pages still exist, and these must be taken into account by web developers.

The principle here is to ensure you are up-to- date on common standards support in
-

dard is well supported, you should use it. If not, it is best avoided.

Deal with Cross- Browser Issues
Web browsers are regularly updated, and they quite often feature better support for exist-

recommendations.
Historically, browsers have varied in their implementations of existing recommendations.

This is also true of browser support for the newer recommendations. This means that develop-
ers must aim to stay up-to- date with changes made to browser software and be aware of the
features and limitations of different browsers.

Most browser users, on the other hand, tend not to be quite as up-to- date with new
browser releases as developers would wish. Even browsers that are capable of automatically
updating themselves to the latest version often require the user to authorize the upgrade first.
Many users actually find these notifications distracting to what they’re trying to achieve in
their web browser then and there, and so they tend to put off the upgrade.

As developers, we must be aware and acknowledge that there are many different web
browsers and versions of web browsers in the world (some 10,000 different versions in total,
and counting). We have no control over which particular piece of software the end user is
using to browse our pages, nor should we.

What we do know from browser statistics sites, such as Net Applications’ Market Share
(), is that the five main web browsers in the world today are

These five browsers account for around 99% of all access to web pages through the desktop.
However, just relying on testing in these browsers misses out on the burgeoning market in
mobile web browsing, for example, so it is worth staying up-to- date with the latest progress in
the web browser market.

Testing your pages across a multitude of browsers and operating systems allows you to
locate the portions of your code that cause different browsers to interpret it in different ways.
Minimizing these differences is one of the hardest tasks for any web developer and separates
this role from most other software- related professions. This is a task that needs to be attacked
from the get- go of a new project, as leaving it until too late can result in frantic midnight cod-
ing sessions and missed deadlines—never fun!

template or outline of the site before writing any page- specific code. Then test this bare- bones
structure in as wide a range of browsers on as many different operating systems, and with as
varied a range of monitor and window sizes, as possible. Tweak the code to ensure the tem-
plate displays correctly before adding any page- specific code or content.

CHAPTER 1 BUILDING A SOLID FOUNDATION 9

A particular source of variation is in the different interpretations of color within browsers.
Some support the reading of color profile information from image files; some don’t support

same image or color can appear slightly different in various browsers, so it’s worth checking
that your design doesn’t cause color mismatching to occur between objects on your page.

You should build and test individual page components one at a time in as many browsers
as possible during development. Again, by bringing most of the testing up- front to coincide
with development, you will experience fewer problems later on and have fewer bugs to squish.
By the end of a project, developers are often feeling the pressure of last- minute client requests
for changes, so minimizing bugs by this stage in the proceedings is a smart idea.

Assume Support for HTML Only
Your HTML markup must be visible and operate functionally in any available browser, device,

 plug- ins provide additional content, layout, or functionality over and above the HTML, the
end users should be able to access the content and a functional equivalent of the behavior in
a sensible way, without reliance on these technologies. For example, if you’re using a Flash
movie to provide an animated navigation menu for your site, you need to ensure the same
navigation is available through HTML; otherwise, you are preventing a whole group of users
from accessing your site.

Obviously, this has a massive impact on the way you develop your web pages. You will
build from the HTML foundations upward, ensuring no functionality gets lost when certain
browser features are switched off or are nonexistent. Each “layer” of code should be unob-

markup—each should be in a separate file and stand alone.
In the context of modern web applications, which are often written in such a way so that

the need for the page to refresh when sending a form. In this case, you must ensure that the

than a requirement.
You might hear this principle called progressive enhancement, referring to the adding or

layering of extra functionality on top of the HTML, or graceful degradation, referring to the fact
that the removal of features from the browser always results in a working web page. It is the
central principle of what is termed accessibility, which refers to providing access to a web page
regardless of browser or device.

This principle is best understood through real- life examples, so let’s go through two of
them now.

First, suppose that in your web application, you have a button that, when clicked,
launches a login modal dialog box within the page, as shown in Figure 1-1. After the user fills

-
tials to the server, and then to perform a refresh of certain page elements, instead of the entire
page, based on the user’s logged- in status as shown in Figure 1-2.

CHAPTER 1 BUILDING A SOLID FOUNDATION10

 Figure 1-1. A modal- style login box

 Figure 1-2. Successful login, loaded without a refresh if JavaScript is enabled

CHAPTER 1 BUILDING A SOLID FOUNDATION 11

structured such that the user would be taken to a separate page with the login form. Submit-
ting this form would post the data back to the server, causing a refresh, and the server- side
code would decide which page to send according to the user’s status—either successfully
logged in or not logged in. In this way, both scenarios are made to be functionally equivalent,
although their user flow and creative treatment could potentially be different.

As another example, suppose you have a page that contains a form used for collecting
payment information for an online booking system. Within this form, depending on the type
of credit card selected, you would like certain fields to display only if the user selects a credit

as shown in Figure 1-4. For instance,
the Issue Number field is applicable only to debit cards, and perhaps you want to display the
Valid from Date fields only for cards from certain suppliers. You probably also want to make it

the user performs certain actions within the browser, and we are able to assign code to execute
when these events are fired. We even have the power to cancel the event, meaning that if the
user attempted to submit a form, for example, we could cancel that submission if we decided
that form wasn’t suitable for submission because it had failed some validation tests.

the user selects a different radio button option. When this event is fired, we can execute a
piece of code that, depending on the card type selected, shows or hides the desired fields.

 Figure 1-3. A payment card form showing credit card fields

CHAPTER 1 BUILDING A SOLID FOUNDATION12

 Figure 1-4. A payment card form showing debit card fields

We also listen for the submit event of the form to fire and, when it does, we run a small

submission to fail if we decide the values entered are not up to scratch.
Now what happens when someone visits your web page with a browser that doesn’t sup-

in order to instantiate a change to the appearance of the page, the form must be submitted to
the server to allow the server to perform the kind of processing you had been performing using

In terms of usability, you might consider it odd to ask the users to submit the form after
they have selected their card type, as the fields are already displayed below. Probably the ideal
way to structure your page in this case is to have all of the fields existing in the page’s HTML,
and simply allow the users to fill in the information they have available on their card. When
they finally submit the form, the processing that exists on the server can validate their card
data and check whether they have entered a valid date, and if there is an error, reload the page
displaying an error message.

Name and Group Folders and Files Consistently
By establishing rules and conventions regarding the naming of folders, files, and their
contents, you make the task of locating files and code a lot easier for yourself and other devel-
opers. The task of maintenance and future additions is made simpler with a consistent naming
convention, ensuring developers always know how to name their assets. See the “Structuring

CHAPTER 1 BUILDING A SOLID FOUNDATION 13

Your Folders, Files, and Assets” section later in this chapter for some examples of directory
structures you might adopt.

Maintain a Tidy Code Base
You should ensure that the files and code associated with a project are the only ones necessary
for the web site to do its job—no more and no less. Over time, certain files may be superseded

I recommend that you purge all redundant files, folders, and code from your code base
on a regular basis during development. This reduces the size of the project, which aids com-
prehension of the code by other developers and ensures the end users of your site are not
downloading files that are never used, consuming bandwidth that they could potentially be
paying for.

To avoid problems with the accidental deletion of files or the situation where you later
require files you’ve deleted, you should consider using a source code management system.
Such a system will keep backups of changes made to project files and ensure you can always
revert to a previous version of a particular folder or file—even a deleted one. See the “Storing

section later in this chapter for more information.

Design Your Code for Performance
Your site visitors, whether they realize it or not, demand a responsive user interface on the
Web. If a button is clicked, the users expect some kind of reaction to indicate that their action
was recognized and is being acted upon.

of the end user’s machine or device. Your code needs to be lightweight and efficient so it
downloads quickly, displays correctly, and reacts promptly. Part 2 of this book focuses on per-
formance and explains how you can make your code lighter, leaner, and faster for the benefit
of your end users.

Don’t Use Technology for Its Own Sake
Within the wider web development community, you will often hear hype about new technolo-
gies that will make your web pages better in some way. Most recently, this hype has focused
around the -

can be less frequent. This became the favorite technique to be used by web developers on any
new project.

The problem is that sites were built so that they worked only with the Ajax technique, and so

with some mobile web browsers, users with restrictions in place in their office environment,
users with special browser requirements due to a disability, and external robots such as search
engine spiders—could not access the information that would normally have been provided

users with capable browsers were finding that if they remained on certain sites that relied heav-
ily on the Ajax technique, eventually their browser would become slow or unresponsive. Some
web developers, keen to jump onboard the new craze, forgot to code in a way that would prevent
memory leaks from occurring in the browser.

CHAPTER 1 BUILDING A SOLID FOUNDATION14

Build your sites on sound foundations and solid principles, ensuring you test and push
new technologies to usable limits before deciding they are a good choice for your project.

 and how to deal with memory leaks in

Markup Best Practice: Semantic HTML
HTML or XHTML forms the basic foundation of every web page. Technically, these are the
only web standards that need to be supported by all web browsers and user agents out there
in the wild. The term semantic in this context refers to applying the correct tags to match the
meaning behind the content (according to the dictionary, the word semantic literally means
meaning).

Knowledge of as many of the HTML/XHTML tags and attributes as possible will put you
in good stead. Make sure that your content is marked up with exactly the right tag for the con-
tent it encompasses: table tags for tabular data, heading tags for section headlines, and so on.
The more meaning you are able to give your content, the more capable web browsers, search
engine spiders, and other software will be at interpreting your content in the intended way.

It is advisable to include all semantic information in your markup for a page, even if

guideline is that you should code your markup according to how it would sound if read aloud.
Imagine the tag name were read aloud, followed by the contents of that tag. In fact, this is how
most screen reader browsers work, providing audio descriptions of web pages for those with
visual impairments.

For example, suppose you’ve built a web site for movie reviews, and you want to display
an image that denotes the movie has scored four out of five possible stars. Now consider how
you would want this information to be read aloud—something like, “rated four out of a pos-
sible five stars.” Say you put this text within the HTML, so that everyone can access it. But
you don’t want this text to be displayed on the page; you want only the image of four stars

 a attribute to the tag sur-

image displayed according to a specified size. The style rules for hiding portions of text in a
way that works for all browsers, including screen readers, are covered in the “Formatting Best

this:

Learn the HTML Tags
If you’re an experienced web developer who has worked on multiple sites, and you’ve been
marking up your content semantically, you’re already familiar with a whole host of tags: ,

, , , , and , to name a few. However, a number of less common tags are
rarely at the forefront of developers’ minds. Without some of these tags, you risk marking up
your documents in the wrong way, missing an opportunity to add meaning to your content for
the benefit of your users, search engines, and others.

CHAPTER 1 BUILDING A SOLID FOUNDATION 15

The following are a few tags that add important meaning for the browser or end user, but
are commonly forgotten:

: Abbreviation, used for marking up inline text as an abbreviation. In many browsers,
hovering the mouse over the text reveals the unabbreviated version.

: Acronym, used for marking up inline text as an acronym. In many browsers,
hovering the mouse over the text reveals the elongated version.

 for page. At first glance, you may think this tag should be
used to mark up postal addresses listed on the page. However, that is an incorrect usage
of the tag. It should be used only to mark up the contact details of the page author. (Of
course, a postal address could be part of that information.)

: Long quotation. An important point to note about block quotes that often
gets missed is that the tag may contain only block- level elements. Therefore, the quote
itself must, at the very least, be enclosed by a paragraph or other block- level element.

 and : Inserted and deleted copy. is used to show that one piece of con-
tent has been deleted. shows that another piece has been inserted into a page. For
example, these tags might be used on a blog post where the author has, after publication,
returned to the piece and edited it to alter a particular sentence. The tags can be used
to show this in a semantic way. Often, content within a tag will be rendered in the
browser as struck through with a line.

Keep these tags in mind as you code your pages. See if you can spot opportunities to work
them into your markup to denote the correct meaning of your content.

Tip Keep a reference list of tags and attributes on hand when developing, and revise that list occasionally.
A great online resource for XHTML tags and attributes can be found at .

