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To the order and beauty of nature,
and its finely crafted control laws.



Preface

This book presents aeroservoelasticity (ASE) as a well-formed discipline with a
systematic framework. While many research articles have appeared on the special
applications of ASE–such as active flutter suppression and gust load alleviation–
there are no textbooks and monographs on the general and systematic procedure to
be followed in the modeling and analysis of aeroservoelastic systems. This book is
a first step in trying to fill this important gap in the aerospace engineering literature.
This book introduces the basic math modeling concepts and highlights important
developments involved in structural dynamics, unsteady aerodynamics, and con-
trol systems. It also attempts to evolve a generic procedure to be applied for ASE
system synthesis. The treatment includes finite-element structural modeling and de-
tailed unsteady aerodynamic modeling at various speeds for deriving the necessary
aeroelastic plants, with sample control applications to active flutter suppression, load
alleviation, and adverse ASE coupling.

A general aeroelastic plant is derived via the finite-element structural dynamic
model, unsteady aerodynamic models for various regimes in the frequency domain,
and the associated state-space model by rational function approximations. For more
advanced models, the full-potential, Euler, and Navier – Stokes methods for treating
transonic and separated flows are also briefly addressed. Essential ASE controller
design and analysis techniques are introduced to the reader. Introduction to robust
control-law design methods of LQG/LTR and H2/H∞ synthesis is followed by a
brief coverage of nonlinear control techniques of describing functions and Lyapunov
functions.

The fundamental concepts are presented in such a way that the most important
features can be easily deduced. The breadth of coverage is sufficient for a thorough
understanding of ASE.

The focus of this book is on aeroservoelastic modeling, including a brief pre-
sentation on robust and optimal control methods that can be applied to important
aeroservoelastic design problems. It is not possible to give a more comprehensive
ASE treatment in a single book, and it is envisaged that a future book can be devoted
to more advanced topics such as adaptive and nonlinear control design techniques.

This book is aimed at graduate students and advanced researchers in aerospace en-
gineering, as well as professional engineers, technicians, and test pilots in the aircraft
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viii Preface

industry and laboratories. The reader is assumed to have taken basic undergraduate
courses in mathematics and physics—particularly calculus, complex variables, lin-
ear algebra, and fundamental dynamics—and is encouraged to review these concepts
at several places in the text.

A book on ASE is difficult to write due to the breadth of topics it must necessarily
address. While this book covers the essentials of modeling aspects of ASE with some
control applications, it gives sufficient motivation to a reader with specific research
interests to further explore the relevant topics. Furthermore, the treatment of topics is
such that a novice can quickly build up his/her understanding of ASE without much
difficulty. References are selected keeping both the types of readers in mind.

This book has been long in writing, with the intention first having occurred to
the author about 15 years ago. Not having access to the industrial codes for finite-
element and unsteady aerodynamics necessary for building such an exposition, and
not finding the time to write one’s own codes, the project continued to be delayed
until about 2 years ago, when courage was finally gathered for this purpose. Testing
and validating the codes for the many examples in the book was itself a formidable
task, which required many hours of patient programming.

I would like to thank Walt Eversman for his course on aeroelasticity, and for
advising me in my graduate studies. The editorial and production staff of Birkhäuser
have offered many constructive inputs during the preparation of the manuscript, for
which I am indebted to them. I am also grateful to The MathWorks, Inc. for providing
the latest MATLAB/Simulink version utilized for the examples throughout the book.

November 2014 Ashish Tewari
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Chapter 1
Aeroservoelasticity

1.1 Introduction

Aeroservoelasticity (ASE) is the interface of unsteady aerodynamics, structural dy-
namics, and control systems, and is an important interdisciplinary topic in aerospace
engineering. It is a study of dynamic interactions among air loads, structural defor-
mations, and automatic flight control systems commonly experienced by the modern
aircraft. The relevance of ASE to modern airplane design has increased consider-
ably with the advent of flexible, lightweight structures, increased airspeeds, and
closed-loop automatic flight control. Since aeroservoelasticity lies at the interface
of aerodynamics, structures, and control, its impact on aircraft design and operation
requires a thorough understanding of these core areas as far as they contribute to
building an accurate mathematical model (Fig. 1.1).

While aeroelastic interactions have been studied for nearly a century, the impact
of an active control system on dynamic aeroelasticity is a relatively new topic, and
has come into focus with the advent of modern fly-by-wire designs. In such aircraft,
the controller bandwidth can encroach the upon aeroelastic modal spectrum, thereby
leading to resonance-like behavior in certain flight conditions. The most common
example of such an interaction between the control and aeroelastic systems is the
closed-loop flutter—a catastrophic dynamic coupling between the elastic motion,
the unsteady aerodynamic loading, and a controller-actuated surface. Many airplane
accidents (such as Taiwan IDF fighter and Lockheed YF-22 prototypes) have been
blamed on unforeseen and unstable ASE couplings. In order to understand how such
a phenomenon can remain unforeseen in the modern technical era, let us consider
a well-designed car with the best engine, chassis, and electronics, and thoroughly
tested for the most adverse road conditions that can be expected. However, when put
into production, the same car could experience poor performance and even engine
stalling due to a minor feature such as cable routing. In such a case, engine vibration
at a certain speed can interact with the natural frequency of one of the spark plug
cables, thereby leading to its coming loose and causing an even greater engine vi-
bration. The engine controller would detect the poor combustion as a lean or cold
mixture condition, and try to correct it by increasing the fuel volume injection. The

© Springer Science+Business Media, LLC 2015 1
A. Tewari, Aeroservoelasticity, Control Engineering,
DOI 10.1007/978-1-4939-2368-7_1



2 1 Aeroservoelasticity

Aeroelastic Plant 

Disturbance 
Inputs

Flight 
Controller 

C
on

tro
l S

ur
fa

ce
 A

ct
ua

to
rs

Sensors

Aircraft 
Structure

A
er

od
yn

am
ic

s 

Measurement Noise

Structural Deformation 

Air Loads 

Pilot 
Inputs 

Control 
Inputs 

Output Signals 

Outputs 

Fig. 1.1 Block diagram of a typical aeroservoelastic system

result would be an even rougher idle with black smoke, fouled spark plugs and in-
jectors, and possibly an engine failure. Troubleshooting such a condition would be a
nightmare, and the fix is either an expensive redesign of the engine, a reprogramming
of the fuel controller, or an identification and change of the culprit natural frequency
by merely redesigning the cable routings and clamps. If a mathematical model is
constructed of such a dynamic interaction between electromechanical connectors,
fuel control system, and engine dynamics, such a model is likely to be a formidable
interdisciplinary exercise.

ASE is a fledgling discipline when compared to the other traditional aerospace
areas of aerodynamics, structures, propulsion, and flight mechanics. Its formal be-
ginning can be traced to the early 1970s, when ways of addressing the problem
of flutter were being investigated in earnest due to the several new aircraft designs
evolving in that era. Highly maneuverable fighters such as the Lockheed F-16 and
the McDonnell Douglas F/A-18, as well as efficient passenger transports such as the
Boeing-767 and the Airbus A-320 that were being developed, had inbuilt automatic
flight control systems, which could be programmed relatively easily to achieve sec-
ondary tasks, such as active flutter suppression and maneuver/gust load alleviation.
Prior to that era, a passive redesign of the structural components was the only way
to avoid flutter, whose analysis often required thousands of hours of painstaking
and dangerous flight flutter testing, and wind-tunnel tests of aeroelastically scaled
models, thereby increasing the already high costs of prototype development. Conse-
quently, flutter analysis and prevention was a stumbling block in developing novel
aircraft configurations.
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In order to overcome the inadequacy of passive techniques, and to fly at a velocity
greater than the open-loop flutter velocity for greater speed and efficiency, the concept
of active flutter suppression was developed in the 1970s [2, 3, 126, 143, 152]. Herein,
an automatic control system actuates a control surface on the wing, in response to
the structural motion sensed by an accelerometer, which increases the flutter speed
in a closed loop by changing the stability characteristics of the open-loop system.

Active flutter suppression requires accurate knowledge of the aeroelastic modes
that cause flutter, which are then actively changed in such a way that closed-loop
flutter occurs at a higher flight velocity. Although the classical flutter of a high
aspect-ratio wing—such as that of a Boeing 747 or an Airbus A-380—is caused
by an interaction between the primary bending and torsion aeroelastic modes, the
flutter mechanism of a low aspect-ratio wing, such as that of an F/A-18 (or F-
22) fighter airplane is rather more complicated, comprising a coupling of several
higher aeroelastic modes. In order to actively suppress flutter, it is necessary that an
accurate aeroelastic model based on modeling of the unsteady aerodynamic forces
as a transfer matrix be derived. The most common method of obtaining the unsteady
aerodynamic transfer matrix is the use of optimized rational function approximations
[43, 50, 85, 175] for its terms, fitted to the frequency-domain aerodynamic data in
the harmonic limit. After the transfer matrix is derived, a linear, time-invariant, state-
space model for the aeroelastic system, including the control surface actuators, can be
obtained. The multivariable feedback controller for active flutter suppression can then
be designed by standard closed-loop techniques, such as eigenstructure assignment
and linear optimal control [168]. Since it is crucial that the derived control laws must
be robust with respect to modeling uncertainties and measurement noise in a wide
range of operating conditions, robust and adaptive controllers are specially sought
for a practical application.

The first practical demonstration of active flutter suppression was carried out by
the US Air Force in 1973 in their Load Alleviation and Mode Stabilization (LAMS)
program, which resulted in a Boeing B-52 bomber flying 10 knots faster than its
open-loop flutter velocity. This was accompanied by flight flutter testing of aeroelas-
tic drones under NASA-Langley’s Drones for Aeroelastic Testing (DAST) program.
These pioneering developments in active flutter suppression received an impetus
at NASA-Langley and Ames laboratories [4, 5, 118, 122] with novel control laws
developed at Ames being tested and further developed in Langley’s transonic dy-
namics wind tunnel. These developments in the 1970s were greatly enabled by the
optimal control theory advancements [131, 163] of that era. ASE design and anal-
ysis efforts continued in the 1980s and 1990s [116, 117, 191], which were given a
further boost by the newly developed robust multivariable control theory [62, 108].
Buoyed by their early achievements in active flutter suppression, the US Air Force
and Rockwell, initiated the ambitious Active Flexible Wing (AFW) program [113,
127], wherein the objective was to utilize favorable aeroservoelastic interactions to
produce performance, stability, and control improvements on a highly flexible and
overly instrumented wind-tunnel wing model, employing multiple control surfaces
and gain scheduled control laws. The survey paper of Mukhopadhyay [119] gives an
excellent overview of how the seemingly independent technical developments over
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the preceding half century in the otherwise disparate areas of structural dynamics, un-
steady aerodynamics, and control systems, converged and came into a sharp focus in
the field of aeroservoelasticity. An offshoot of aeroservoelastic design is the evolving
area of multidisciplinary optimization for synthesizing lightweight wing structures
[102], an example of which was the first forward-swept wing experimental prototype,
the Grumman X-29A [65].

The main challenge in ASE mathematical analysis and design is in deriving a
suitable unsteady aerodynamic model of aircraft wings and tails (or canards). The
aeroelastic plant for flutter suppression of a thin wing-like surface is derived at sub-
sonic and supersonic speeds using small-disturbance, potential aerodynamic models
[7, 21, 61, 194, 180, 181] with a harmonic (frequency response) theory. Such a
model is linear, and can be directly employed in developing an aerodynamic trans-
fer matrix, and finally a linear, time-invariant state-space model through analytic
continuation in the Laplace domain. However, there are important flow regimes
where such a linearized model is inapplicable. The ASE applications which involve
unsteady separated flows and transonic shock-induced flows, are inherently nonlin-
ear in nature and require advanced computational fluid dynamics (CFD) modeling
techniques [45, 166]. An example of nonlinear aeroelasticity is the post-stall buffet
arising due to a sudden and large increase in the angle of attack, either by an abrupt
maneuver, or a vertical gust. The ASE plant for such a case is further complicated
by the separated wake and/or leading-edge vortex from the wing interacting with the
tail, resulting in an irregular and sometimes catastrophic deformation of the tail—
either on its own or driven by rapid and large deflections of the elevator. Such a
wing-tail-elevator coupling of a post-stall buffet, or a shock-vortex interaction re-
quires a fully viscous flow modeling that is only possible by a Navier–Stokes method.
Another example of nonlinear ASE is the control of unsteady control surface buzz
and shock-induced flow separation encountered by an aircraft maneuvering in the
transonic regime, leading to nonlinear flutter or limit-cycle oscillation (LCO) [18,
99]. An appropriate CFD model in such a case would require a full-potential code
[73, 162], coupled inviscid/boundary-layer method [46], or a Navier–Stokes method
[123, 195], depending upon the geometry, structural stiffness, Mach number, and
Reynolds number. Sometimes, semiempirical models are devised from wind-tunnel
test results for separated and shock-induced flows [47, 156], because they do not
require unsteady CFD computations to be performed in loop with structural dy-
namic and control-law calculations. However, the veracity of such a correlation
must be checked carefully before being deployed in ASE design and analysis. The
use of CFD models (Euler/Navier–Stokes) to derive linearized aerodynamic transfer
functions/matrices has also been suggested in the literature [12, 136, 197]. This is
evidently aimed at using the same linearized model for a range of flight conditions
(Mach number, angle of attack, etc.) rather than having to repeat a CFD computation
for every such condition. The coefficients of the approximation can be adjusted by
an auto-regressive moving average (ARMA) model [137, 197], which brings such
a method quite close to an adaptive control application (albeit in the open loop).
However, approximating a nonlinear system by a linear transfer function can be in-
accurate, even in a narrow range of operating conditions. An alternative method is
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to employ flight-test data for deriving an ASE model, such as the neural-network
identification method proposed by Boely and Botez [26].

Transonic flutter/buffet analysis is fraught with shock-induced oscillations, and is
thus inherently nonlinear. It is also crucial in the aeroelastic stability analysis of most
of the modern transport type aircraft, because their cruising speeds are just under
the sonic speed. Fortunately, the nonlinear effects of transonic flutter are accurately
captured by a transonic small-disturbance (TSD) model, even for a thick supercritical
wing [176, 199] of a modern airliner. This fact offers the promise of coupling the
aeroelastic stability analysis with a TSD code [14, 37, 76]. Alternative methods
proposed for the time-linearized (low-frequency) transonic case involve a field-panel
TSD method [105], or a full-potential method [130] applied in a doublet-lattice
[61] type calculation of aerodynamic influence coefficients relating the pressure and
normal velocity (upwash) in the harmonic limit. However, while such an approach
can be applied to relatively lower natural frequencies of the primary bending and
torsion modes of a high aspect-ratio wing (like that of a modern subsonic airliner), the
concept of time linearization would fail when applied to the much higher frequencies
of a low aspect-ratio, fighter-type wing, which is much stiffer in both bending and
torsion.

Despite the early successes in demonstrating active flutter suppression/load al-
leviation, ASE has remained largely an experimental area [151] and has still not
reached operational status on any aircraft. This remarkable failure is mainly due to
the difficulty of designing a multivariable control system, which is sufficiently ro-
bust to the parametric uncertainties in the underlying unsteady aerodynamic model.
Clearly, the aircraft designers and operators are reluctant to take risks until (what
might be considered) suitably reliable ASE modeling and analysis methods become
prevalent.

Due to the inherent uncertainty of an unsteady aerodynamic model, a closed-loop
controller for ASE application must be quite robust to modeling errors. Furthermore,
such a controller must also adapt to changing flight conditions. Hence, an ASE
control law must not only be robust, but also self-adaptive, which renders it mathe-
matically nonlinear even for a linear aeroelastic plant of the subsonic and supersonic
regimes. Furthermore, designing a control law based upon nonlinear aeroelastic
iterative models can be a very cumbersome and computationally intensive process.
Instead, adaptive control techniques can be used for extending the subsonic and super-
sonic linear feedback designs to predict and suppress the transonic flutter. Adaptive
control has been an area of active research in the past few decades [10, 89], and
many useful design techniques have emerged that can be applied to ASE. However,
these remain “application specific” (rather than general), if not completely ad hoc in
many cases. Thus, ASE control-law derivation for a particular case is as challeng-
ing as the problem of aeroelastic modeling. For this reason, ASE has remained a
formidable technological problem. For a linear aeroelastic plant, a high-gain linear
feedback generally gives robustness with respect to modeling uncertainties in the
control bandwidth, but degrades the response to the high-frequency measurement
noise. Several linear feedback strategies are in vogue for striking a compromise be-
tween robustness to plant uncertainty and noise rejection. These include the linear
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quadratic Gaussian (LQG) compensation with loop-transfer recovery (LTR) [108],
H2/H∞ control [64], and structured singular value synthesis [30, 42].

Separated and shock-dominated flows nonlinearly interact with the aircraft struc-
ture, resulting in unstable oscillations, hysteresis, or limit cycles. While there are
some papers and monographs on nonlinear aeroelastic modeling, such as Dowell
and I’lgamov [41], their emphasis is on structural nonlinearities rather than on aero-
dynamic ones. Furthermore, the control aspects of ASE are seldom covered in such
articles. Thus it is important to include nonlinear aerodynamic effects in a discussion
on ASE, which is one of the tasks of this book. Control of nonlinear aeroelastic plants
requires either describing function approximations [158, 182], Lyapunov-based con-
trollers [60, 132], feedback linearization [78], or a sliding-mode (variable structure)
control [53]. Furthermore, the issue of robustness is important for nonlinear plants
[77]. Adaptation of controller parameters for both linear and nonlinear plants in-
troduces a further complexity in the ASE design and analysis, and can be handled
by gain scheduling, self-tuning regulation, model reference adaptive laws [10], or
recursive backstepping [89], depending upon the specific application. There is little
mathematical treatment of nonlinear ASE effects in the literature, and a future book
is planned to cover this important gap.

The present book is a monograph on the basic concepts relevant to ASE modeling
and analysis. Chapter 2 addresses the problem of basic structural modeling, whereas
Chap. 3 is largely devoted to the techniques employed in deriving frequency-domain
(or harmonic) aerodynamics of low-speed, subsonic, transonic, and supersonic flight
regimes. It also covers the discussion of unsteady vortex-lattice model as an example
of a simple potential flow model that can be applied to large amplitude movements
(flapping) of an airfoil with thickness and camber. Such a treatment is somewhat
a departure from what is considered the traditional aerodynamics of an oscillating
flat-plate wing, which is commonly used in most linearized ASE models. The ob-
jective of such a model is its possible application in flapping-wing flight. Chapter 4
is concerned with the derivation of transient aerodynamic models by rational func-
tion approximations (RFA) that can be readily converted to state-space, linear time
invariant (LTI) aeroelastic models. Chapter 5 is a presentation of linear control law
derivation and analysis techniques, with some typical aeroseroelastic application
examples. Finally, Chap. 6 is a discussion of nonlinear ASE topics. The chapters
are organized in such a way that a reader can directly go to a specific topic without
having read a previous one. However, for comprehensive understanding, it would
be ideal to read the chapters sequentially. A basic knowledge of aerodynamics and
control theory is assumed of the reader. Furthermore, familiarity with numerical
methods [111, 154, 165] will also be helpful. The reader will find the bibliography
arranged alphabatically, and thus easy to refer to. While it is impossible to list all the
relevant references on this active and productive research topic, some thought has
been applied to select useful articles for the benefit of the reader.



1.2 An Illustrative Example 7

xc

M
U

c

M
x

x

Fig. 1.2 A pitching airfoil with trailing-edge control surface

1.2 An Illustrative Example

While the general aeroelastic motion of an aircraft wing involves many degrees of
freedom (Chap. 2), in order to illustrate the concept of aeroservoelasticity, let us
consider a two-dimensional wing section (airfoil) that can only rotate about a fixed
axis by an angle α (called the angle of attack). The airfoil is equipped with a trailing-
edge control surface that can rotate by an angle β relative to the airfoil’s chord plane,
as shown in Fig. 1.2. The entire setup is mounted on a frictionless torsional spring of
stiffness kα , whereas the control surface hinge is also frictionless and has a rotational
spring of stiffness kβ . The hinge line of the control surface is located at a distance
of xc behind the pitch axis. The mass of the control surface is mc, and the distance
of the control surface’s center of mass behind its own hinge line is xβ (Fig. 1.2).
The moment of inertia of the setup about the pitch axis is Iα , whereas that of the
control surface about its hinge is Iβ . The setup is placed in a uniform, incompressible
flow of speed U and density ρ. The control surface is equipped with a direct current
(DC) motor that can apply a torque u about the control surface hinge line relative to
the airfoil. The linearized equations of motion of the structure can be expressed as
follows, by either Newton’s second law, or the energy approach:

Mq̈ + Kq = Q + (0, 1)T u, (1.1)

where q = (α,β)T is the generalized coordinates vector, Q = (Mα ,Mβ)T is the
generalized air loads vector, and M, K are the following generalized mass and stiffness
matrices, respectively, of the structure:

M =
⎛
⎝ Iα mcxcxβ

mcxcxβ Iβ

⎞
⎠ , (1.2)
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K =
⎛
⎝kα 0

0 kβ

⎞
⎠ . (1.3)

The generalized aerodynamic loads vector consists of the pitching moment Mα , and
the control surface hinge moment Mβ . For simplicity, it is assumed that the aerody-
namic moments can be modeled primarily as first-order lag (or circulatory) effects of
the unsteady wake shed by the airfoil, as well as the noncirculatory contributions of
the aerodynamics to inertia (called the apparent mass effect), damping, and stiffness.
Such a model of unsteady aerodynamics is given by the following relationship in the
Laplace domain:

Q(s) = 1

2
ρU

(
a1 + a2s + a3s

s + b

)⎧⎨
⎩
A1

A2

⎫⎬
⎭w(s), (1.4)

where s represents the Laplace variable, and w(s) is the following upwash (flow
velocity component normal to the wing) at a specific location on the airfoil:

w(s) = (C1, C2, C3, C4)

⎧⎨
⎩

q(s)

sq(s)

⎫⎬
⎭ , (1.5)

and A1,A2, a1, . . . , a3, b,C1, . . . ,C4 are constant aerodynamic parameters (in addi-
tion to ρ and U ). Equations (1.4) and (1.5) result in the following relationship for
the generalized unsteady aerodynamic loads:

Q(s) = G(s)

⎧⎨
⎩

q(s)

sq(s)

⎫⎬
⎭ , (1.6)

where the aerodynamic transfer matrix is given by

G(s) = 1

2
ρU

(
a1 + a2s + a3s

s + b

)⎧⎨
⎩
A1

A2

⎫⎬
⎭ (C1, C2, C3, C4) . (1.7)

The simple aeroelastic model considered here leads to a state-space representation
given as follows:

ẋ = Ax + Bu, (1.8)

y = α = Cx + Du, (1.9)

where x = (qT , q̇T , xa)T is the state vector,

A =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0

−M̄
−1

K̄ M̄
−1

C̄d − 1
2ρUba3M̄

−1

⎧⎨
⎩
A1

A2

⎫⎬
⎭

(C1, C2) (C3, C4) −b

⎤
⎥⎥⎥⎥⎥⎦

, (1.10)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

M̄
−1

(0, 1)T

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.11)

C = (1, 0, 0, 0 0) ; D = 0, (1.12)

M̄ = M − 1

2
ρUa2

⎧⎨
⎩
A1

A2

⎫⎬
⎭ (C3, C4) , (1.13)

C̄d = 1

2
ρU

⎧⎨
⎩
A1

A2

⎫⎬
⎭ [a2(C1, C2) + (a1 + a3)(C3, C4)] , (1.14)

K̄ = K − 1

2
ρU (a1 + a3)

⎧⎨
⎩
A1

A2

⎫⎬
⎭ (C1, C2) . (1.15)

The matrices K̄, C̄d , M̄ are the generalized stiffness, damping, and mass matrices of
the aeroelastic system, which reduce to K, 0, M, respectively, for the in vacuo case
(ρ = 0). It is to be noted that the order of the aeroelastic system is increased by one
due to the aerodynamic state, xa(t), arising out of the lag term, a3s/(s + b), which
augments the (last row and column of the) dynamics matrix A. The given aeroelastic
plant is controllable with the motor torque input, which can be verified from the rank
of the controllability test matrix for the pair (A, B) [168].

The aeroelastic stability is determined from the eigenvalues of A:

| sI − A |= 0

at a certain flight condition. Let Iα = 10, Iβ = 1 kg m2, kα = 40, kβ = 9 N m/rad,
mc = 0.1 kg, xc = 0.3 m , xβ = 0.1 m, and the aerodynamic parameters be the
following:

ρ = 1.225 kg/m3 ; A1 = 0.5 ; A2 = −0.0268,

C1 = 1.0 ; C2 = 0.7067 ; C3 = 0.5 ; C4 = 0.3387,

a1 = 1.0 ; a2 = 0 ; a3 = −2.0 ; b = 0.05.
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Fig. 1.3 Initial reponse of a pitching airfoil with trailing-edge control surface and a linear feedback
control law

It can be easily shown that the aeroelastic plant is unstable at any speed U due to the
unsteady aerodynamic characteristics associated with the wake (modeled here as a
simple time lag).

In order to stabilize the plant, the following linear feedback control law is tried
for U = 10 m/s:

u = −(8.2703, 0.4301, −3.2839, 0.3131)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α

β

α̇

β̇

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

This feedback control law stabilizes the closed-loop system, which is shown by
the initial response to a unit angle-of-attack perturbation (caused by a vertical gust)
plotted in Fig. 1.3. For a practical implementation of such a control law, there must
be angle and rate sensors mounted on the airfoil pitch axis and the control surface
hinge line, whose combined electrical signals are fed to a multichannel amplifier for
driving the control surface motor. Alternatively, a single output y can be selected,
which results in a linear combination of all the state variables. Such an output could
be the normal acceleration measured by an accelerometer placed at a point on the
control surface (the reader can show such a plant will be observable [168]). However,
the derivation of the control law in that case will require the design of an observer,
which can reconstruct the information about the state variables from the knowledge
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of the input u and the output y. The reader is advised at this point to refresh the
definitions of stability, controllability, and observability of linear systems [84].

The gains of the amplifier—indicated above for U = 10 m/s—can be individu-
ally adjusted with a changing flight speed U (or atmospheric density ρ), until the
desired closed-loop response is obtained. An adjustment of the controller gains with
a changing operating condition is called adaptation. Instead of a human operator, a
separate control system—called adaptation mechanism—can be devised such that
the gains are automatically adjusted to the correct values with changing flight speed
and density. Such a control system which has the capability of self-modification in
order to always achieve the desired closed-loop behavior is called an adaptive control
system. A modern flight control system has an inbuilt adaptive mechanism, which
can sense a change in the flight condition by pressure and temperature sensors, and
applies a correction to the feedback gains.



Chapter 2
Structural Modeling

2.1 Introduction

Aircraft have thin-walled, built-up structures for high strength-to-weight ratio and
stiffness. The transverse and longitudinal members share the external loads with the
outer skin panels in a semimonocoque construction. It would appear that an analysis
of such a structure requires a detailed model of each component, which specifies
the exact manner in which it is connected to the other members. Such a modeling
would be a daunting task, requiring enormous computational resources. Fortunately,
although a detailed analysis of individual structural components is indeed necessary
for structural design, it is not required for aeroelastic purposes where some simplify-
ing approximations can be made. Many aircraft components—such as the wings and
the fuselage—are designed to be slender and streamlined for a high lift-to-drag ratio.
The associated structures thus have small thicknesses and can be often idealized as
either solid beams or plates. Furthermore, the necessity of preserving aerodynamic
shape results in a much higher bending stiffness in the transverse (chordwise or radial)
direction, compared with that in the longitudinal (lengthwise or spanwise) direction,
which is achieved in practice by closely spaced ribs and frames. The resulting as-
sumption of chordwise rigidity is quite valuable in reducing the degrees of freedom
for a structural model. However, such a model would be inaccurate for wings with
very small aspect ratio where chordwise and spanwise bending stiffnesses would be
comparable. Another major simplification is the fact that any inelastic deformation
leading to buckling of skin panels under design loads is unacceptable from aerody-
namic design viewpoint. Therefore, an elastic stress–strain behavior is necessary, and
results in a linear load–displacement relationship—a valuable model from aeroelas-
tic perspective. However, post-buckling behavior of skin panels requires nonlinear
structural modeling, which is excluded from usual aeroelastic design and analysis.

The main emphasis of an aeroelastic model is upon wing-like structures, which
are quite thin in comparison with the chord and span. This offers a valuable modeling
simplicity, which combined with the chordwise rigidity of high aspect-ratio wings,
results in plane cross-sections remaining essentially plane due to a free warping of
the structure under twisting loads. Conversely, a bending load would not produce any
twisting deformation due to the same reason. Hence by Saint-Venant’s theory [68],

© Springer Science+Business Media, LLC 2015 13
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one can decouple bending and torsion, thereby leading to the very useful concepts of
shear center and elastic axis. Of course, such a decoupling is not possible for either
short beams, or plate-like structures where sectional warping invariably causes some
normal (bending) stresses. Furthermore, if shear deformations can be neglected due
to an essentially thin beam, the bending deformations can be treated by a simple
Euler–Bernoulli beam theory.

2.2 Static Load Deflection Model

Consider an elastic wing with an unloaded and undeformed mean surface defined by
z = s(x, y) and generated by smoothly joining the wing’s chord lines, camber lines,
or any other centroidal features of the cross-sections. If a concentrated load, P, is
now applied at a point, (ξ , η), located on the original mean surface, it will cause a
structural deflection, δ(x, y) such that a new equilibrium is achieved in the deformed
configuration given by the deformed surface, z = s ′(x, y). The deflection vector, δ,
can be regarded as a change of location of an original point on the surface, (x, y, z),
to its new position on the deformed surface, (x ′, y ′, z′), and is given by

δ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x ′ − x

y ′ − y

s ′(x ′, y ′) − s(x, y)

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

The deflection vector is thus based upon a one-to-one mapping of all points in the
closed set constituting the original surface to those on the deformed surface:

{(x, y, z) : x1 ≤ x ≤ x2; y1 ≤ y ≤ y2; z = s(x, y)}
→ {(x ′, y ′, z′) : x ′

1 ≤ x ′ ≤ x ′
2; y ′

1 ≤ y ′ ≤ y ′
2; z′ = s(x ′, y ′)} (2.2)

Such a map can be geometrically represented by the transformation

⎧⎪⎪⎨
⎪⎪⎩

x ′

y ′

s ′(x ′, y ′)

⎫⎪⎪⎬
⎪⎪⎭

= T(x ′, y ′, z′ : x, y, z)

⎧⎪⎪⎨
⎪⎪⎩

x

y

s(x, y)

⎫⎪⎪⎬
⎪⎪⎭

(2.3)

Since the mean surface of most wing-like structures is essentially flat, the deflection
at each point can be approximated by the displacement normal to the original surface,

δ(x, y) = z′ − s(x, y), (2.4)

as shown in Fig. 2.1. In such a case, the deformed mean surface may not turn out to
be flat, but can have a local curvature due to shear, twist, and spanwise and chordwise
bending.
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Fig. 2.1 Deformation of a wing-like structure under a concentrated load

The transformation matrix, T, in Eq.(2.3) produced by a general loading must
obey the material properties called constitutive relationships, and is also subject to
the geometric constraints (also called kinematical relationships, compatibility re-
quirements, or boundary conditions) on the structure. For a linearly elastic structure,
the constitutive relationships take the form of a linear stress–strain behavior, such as

τ = Cε, (2.5)

where τ and ε are the stress and strain vectors, respectively, experienced by an
infinitesimal structural element, and C denotes the matrix comprising the mate-
rial properties. The linear stress–strain behavior of the material produces a linear
relationship between the load and displacement of the structure, given by:

δ(x, y) = R(x, y : ξ , η)P(ξ , η), (2.6)

where R(x, y : ξ , η) is the matrix of flexibility influence-coefficient functions (also
called Green’s functions). By applying linear superposition, Eq. (2.6) can be extended
for the case of a continuously distributed load per unit area, p(ξ , η), as follows:

δ(x, y) =
∫∫

s

R(x, y : ξ , η)p(ξ , η)dξdη. (2.7)

Unfortunately, the flexibility influence-coefficient functions are rarely available in
a closed form for any but the most simple structures. Therefore, numerical ap-
proximations must be made for the integral relationship given by Eq. (2.7). Such
approximations are based upon a discretization of Eq. (2.7), whereby a continuous
structure with infinitely many degrees of freedom is converted into an equivalent
finite dimensional form. For example, the mean surface can be approximated by
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n flat elemental panels of individual dimensions, (Δξi ,Δηi), i = 1 . . . n. The load
distribution on the j th panel is then approximated by an average generalized load,
Pj = p(ξ , η)ΔξjΔηj acting at a given load point (such as the panel centroid) in each
panel. Similarly, the displacement, δ(x, y), averaged over the ith panel is taken as the
average deflection vector, δi , at a given collocation point, (xi , yi), i = 1 . . . n. The
discretized load–displacement relationship is then given for the ith panel as follows:

δi =
n∑

j=1

RijPj ; i = 1 . . . n . (2.8)

Often, the individual elements of the displacement and load vectors are identified as
generalized displacements,

δi =

⎧⎪⎪⎨
⎪⎪⎩

q1i

q2i

q3i

⎫⎪⎪⎬
⎪⎪⎭

, (2.9)

and generalized loads,

Pi =

⎧⎪⎪⎨
⎪⎪⎩

Q1i

Q2i

Q3i

⎫⎪⎪⎬
⎪⎪⎭

, (2.10)

respectively, corresponding to the individual degrees of freedom at each point. Then
Eq. (2.8) collected for all points takes the following vector-matrix form:

q = RQ , (2.11)

where the 3n × 3n influence-coefficient matrix, R, consists of Rij as its elements.
Here, we note that Pi denotes the vector of all generalized loads (Q1i ,Q2i ,Q3i)
acting on the ith panel, while Q is the generalized loads vector for the entire structure
derived by collecting all the generalized loads acting on all the panels. Similarly, the
generalized displacement vector on the ith panel, δi , is to be distinguished from the
overall generalized displacement vector of the structure, q.

By making simplifying assumptions for a typical aircraft, the number of general-
ized coordinates can be significantly reduced. Such idealizations include chordwise
rigidity, plate or beam-shaft approximations, and negligible streamwise loading on
the structure. Due to their smaller dimensions and high stiffnesses, control surfaces
are modeled simply by rotating angles about rigid hinge axes. Various definitions of
the generalized loads and generalized displacements are possible, depending upon
the idealizations and constitutive relationships used in deriving Eq. (2.11). There are
also various alternative techniques for deriving the load–displacement relationship
of Eq. (2.11) from constitutive relations and structural constraints. These include the
lumped parameters approximation, the finite-element method (FEM) (or Galerkin
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method), the assumed modes (or Rayleigh–Ritz ) method, and the boundary-element
method. Of these, the FEM is the most commonly employed due to its ease of im-
plementation and modeling efficiency. We shall have the occasion to consider some
examples of the FEM modeling a little later.

The influence-coefficient matrix,

R =

⎛
⎜⎜⎜⎜⎜⎝

R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

...
...

RN1 RN2 · · · RNN

⎞
⎟⎟⎟⎟⎟⎠

, (2.12)

with N = 3n, consists of influence coefficients, Rij , which are defined as the ith
generalized virtual coordinate, δqij , produced by an isolated generalized load at a
given point, Qj ,

δqij = RijPj . (2.13)

A virtual coordinate is an arbitrary, infinitesimal deflection in any of the three possible
directions at a given point due to an isolated generalized load, and must be compatible
with any kinematical constraints of the structure. The actual generalized coordinate,
qi , is a sum of all the virtual coordinates, δqij , caused by the generalized load, Qj ,
and is given by the ith row of Eq. (2.11),

qi =
N∑
j=1

δqij =
N∑
j=1

RijQj . (2.14)

Therefore, the discrete influence coefficient, Rij , can be understood as the ith virtual
generalized coordinate due to the j th unit generalized load. The reciprocal principle
of a linear structure requires that the ith virtual coordinate due to the j th unit load is
the same as the j th virtual coordinate caused by the ith generalized load, i.e.,

Rij = Rji , (2.15)

which implies that the matrix R is symmetric.
In order to determine the generalized loads from the generalized displacements

they actually produce an inversion of Eq. (2.11) is required as follows:

P = Kq, (2.16)

where K = R−1 is the generalized stiffness matrix of the structure. Both R and K
must be nonsingular and symmetric matrices. The element of [K], kij—called the
stiffness coefficient—is the ith generalized virtual load due to the j th unit generalized
displacement. The work done by a generalized virtual load,

δQi = kij qj , (2.17)
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in producing a generalized displacement, qj , is given by

Uij =
∫

δQidqj =
∫

kij qjdqj = 1

2
kij q

2
j = 1

2
δQiqj . (2.18)

When summed over all points on the structure, the net work done by all the static
forces is the total strain energy stored in the structure, given by

U =
N∑
i=1

N∑
j=1

Uij = 1

2
QT q = 1

2
qT Kq. (2.19)

The strain energy is the potential energy responsible for restoring the structure to its
original shape once the loading is removed, and its quadratic form given by Eq. (2.19)
is an important consequence of the linear elastic behavior. Since the external forces
must be balanced by equal and opposite internal forces for a static equilibrium, one
can regard U as the net work done by the internal, restoring (or conservative) forces.

2.3 Beam-Shaft Idealization

Consider a thin, high aspect-ratio wing with an essentially flat mean surface. Let
(x, y, z) be Cartesian coordinates, such that x is in the chordwise direction measured
from the elastic axis, y in the spanwise direction along the elastic axis on the mean
plane, and z is normal to the mean plane. Saint-Venant’s theory [68] postulates that
a point exists at each cross-section of a slender beam about which a twisting load
will produce a pure twist and a free warping, but no bending deformation. Such a
point is called the shear center. Conversely, if a vertical load P is applied directly
at the shear center, it will only cause pure bending deformation without any twisting
or warping of the beam. The elastic axis is the line joining the shear centers at all
spanwise locations. Assuming there is no bending in the chordwise (x) direction, and
that plane cross-sections remain plane in the deformed configuration, the resulting
structural displacement at any given point from the original (undeformed) shape can
be represented by a combination of the normal deflection of the elastic axis at the
given spanwise station, w(y), the twist angle of the section about the elastic axis,
θ (y), and the in-plane warp angle, φ(y), as depicted in Fig. 2.2. The net vertical
deflection at location (x, y) is thus given by

δ(x, y) = w(y) + x tan θ (y) , (2.20)

whereas the in-plane deformation due to warping is merely x tan φ(y). Since the
angles θ ,φ are small, one can apply the approximation tan θ � θ and tan φ � φ,
leading to the linear relationship

δ(x, y) = w(y) + xθ (y) . (2.21)
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Fig. 2.2 Deformation of a thin wing of large aspect ratio under a concentrated normal load

The warp angle φ is inconsequential for aerodynamic loading, thus we have no
need to model it any further. Since the structure is assumed to be linearly elastic, the
load and displacement are linearly related by

δ(x, y) = R(x, y : ξ , η)P (ξ , η), (2.22)

where R(x, y : ξ , η) is the flexibility influence-coefficient function (Green’s func-
tion). By applying linear superposition, Eq. (2.22) can be extended for the case of a
continuously distributed, normal load per unit area (pressure), p(ξ , η), as follows:

δ(x, y) =
∫∫

s

R(x, y : ξ , η)p(ξ , η)dξdη. (2.23)

The constitutive relations of the bending and twisting deformations are separately
derived by considering a segment of the structure. For this purpose, the spanwise
direction y is taken along the elastic axis, and bending deflection, w(y) measured
normal to the mean surface (called neutral axis ) as shown in Fig. 2.3a. The kinemat-
ics (or compatibility) of the bending and shearing deformations is based upon the
assumption that an originally plane section normal to the neutral axis must remain
plane after deformation. However, this section can undergo a rotation due to shear
deformation (shearing strain), β(y), such that the section is no longer normal to the
neutral axis. The bending slope, w′(y), and the rotation angle due to shear, β(y), thus
collectively produce the net rotation, α(y), according to the following kinematical
relationship:

α = w′ − β. (2.24)
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Fig. 2.3 Beam deflection geometry and static equilibrium of a beam segment

Equilibrium of a beam segment of infinitesimal length, dy, with a static lift load per
unit span, �(y), requires an internal shear force, S(y), and bending moment, M(y),
in order to balance the external load, �(y), as shown in Fig. 2.3b. Neglecting second
and higher order terms of dy results in the following linear equilibrium equations:

−S ′ = �, (2.25)

S +M ′ = 0. (2.26)

The bending and shear constitutive relationships of a material withYoung’s modulus
of elasticity, E, and shear modulus, G, are the following:

α′ = M

EI
, (2.27)

β = S

GK
, (2.28)
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Fig. 2.4 Twisting of a slender
shaft at a spanwise station, y

+ dy

dy

m

where I (y) is the area moment of inertia and K(y) the shearing constant of the beam
cross-section. The quantity EI (y) is called the bending stiffness and GK(y) the
shearing stiffness of the local beam cross-section. Substitution of Eqs. (2.27), (2.28),
and (2.24) into Eqs. (2.25) and (2.26) results in the following differential equations
for the beam:

(
EIα′)′′ = �, (2.29)

(
EIα′)′ +GK

(
α − w′) = 0, (2.30)

which must be solved for α(y) and w(y), subject to the boundary conditions of the
structure. The net strain energy of the wing semispan idealized as a beam of length
b/2 is then given by

U = 1

2

∫ b/2

0
EI

(
α′)2

dy + 1

2

∫ b/2

0
GK

(
α − w′)2

dy. (2.31)

For thin, slender structures, the shear deformation, β(y), can be neglected in
comparison with the bending slope, w′(y), leading to the following Euler–Bernoulli
beam equation:

(
EIw′′)′′ = �, (2.32)

which must be solved for bending deflection, w(y), subject to the boundary
conditions. The net bending strain energy is now simply the following:

U = 1

2

∫ b/2

0
EI

(
w′′)2

dy. (2.33)

Wherever possible to apply, Euler–Bernoulli assumptions are extremely valuable due
to the simplicity of the resulting model.

For a slender, shaft-like structure (Fig. 2.4), the twisting deformation, θ (y), by
shear of an originally straight edged element, is related to the local twisting moment,
τ (y), about the elastic axis by Saint-Venant’s theory [68] as follows:

τ = GJθ ′, (2.34)


