AutoUni – Schriftenreihe

Philipp Andreas Rosen

Beitrag zur Optimierung von Wasserstoffdruckbehältern

Thermische und geometrische Optimierung für die automobile Anwendung

AutoUni – Schriftenreihe

Band 113

Reihe herausgegeben von/Edited by Volkswagen Aktiengesellschaft AutoUni Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volkswagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monographien und Dissertationen im Rahmen der "AutoUni Schriftenreihe" kostenfrei zu veröffentlichen. Die AutoUni ist eine international tätige wissenschaftliche Einrichtung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes Wissen auf Hochschulniveau erzeugt und vermittelt.

Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabdingbar ist. Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und die Förderung des Wissensaustausches. Zusätzlich zu der fachlichen Weiterbildung und Vertiefung von Kompetenzen der Konzernangehörigen, fördert und unterstützt die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die Veröffentlichung der Dissertationen ist eines davon. Über die Veröffentlichung in der AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehörigen, sondern auch für die Öffentlichkeit zugänglich.

The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen Group the opportunity to publish their scientific results as monographs or doctor's theses within the "AutoUni Schriftenreihe" free of cost. The AutoUni is an international scientific educational institution of the Volkswagen Group Academy, which produces and disseminates current mobility-related knowledge through its research and tailor-made further education courses. The AutoUni's nine institutes cover the expertise of the different business units, which is indispensable for the success of the Volkswagen Group. The focus lies on the creation, anchorage and transfer of knew knowledge.

In addition to the professional expert training and the development of specialized skills and knowledge of the Volkswagen Group members, the AutoUni supports and accompanies the PhD students on their way to successful graduation through a variety of offerings. The publication of the doctor's theses is one of such offers. The publication within the AutoUni Schriftenreihe makes the results accessible to all Volkswagen Group members as well as to the public.

Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Brieffach 1231 D-38436 Wolfsburg http://www.autouni.de

Weitere Bände in der Reihe http://www.springer.com/series/15136

Philipp Andreas Rosen

Beitrag zur Optimierung von Wasserstoffdruckbehältern

Thermische und geometrische Optimierung für die automobile Anwendung

Mit einem Geleitwort von Prof. Dr.-Ing. Thomas von Unwerth

Philipp Andreas Rosen Wolfsburg, Deutschland

Zugl.: Dissertation, Technischen Universität Chemnitz, 2017

Einreichungstitel: Beitrag zur thermischen und geometrischen Optimierung von Wasserstoffdruckbehältern für die automobile Anwendung

D93

Die Ergebnisse, Meinungen und Schlüsse der im Rahmen der AutoUni – Schriftenreihe veröffentlichten Doktorarbeiten sind allein die der Doktorandinnen und Doktoranden.

AutoUni – Schriftenreihe ISBN 978-3-658-21123-3 ISBN 978-3-658-21124-0 (eBook) https://doi.org/10.1007/978-3-658-21124-0

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

»Ich bin davon überzeugt, meine Freunde, daß das Wasser dereinst als Brennstoff Verwendung findet, daß Wasserstoff und Sauerstoff, [...], zur unerschöpflichen und bezüglich ihrer Intensität ganz ungeahnten Quelle der Wärme und des Lichts werden. Der Tag wird nicht ausbleiben, wo die Kohlenkammern der Steamer und die Tender der Lokomotiven statt der Kohle diese beiden Gase vielleicht in komprimiertem Zustand mitführen werden [...].«

(Aus: Jules Vernes "Die geheimnisvolle Insel", Wien 1876, S. 370)

Geleitwort

Die Dissertation von Herrn Philipp Rosen mit dem Titel "Beitrag zur thermischen und geometrischen Optimierung von Wasserstoffdruckbehältern für die automobile Anwendung" ist in einem äußerst aktuellen Themenbereich, der alternativen Antriebstechnik für den Individualverkehr, angesiedelt. Damit trifft diese Arbeit den Puls der Zeit, in der die Automobilindustrie vor einem großen Wandel steht, mit der Frage welche Antriebstechnologien zukünftig zum Einsatz kommen werden.

Die Dissertation liefert einen Beitrag zum Thema der Wasserstoffinfrastruktur für die Fahrzeugbetankung, was sich nicht zuletzt auf den gesamten Energiesektor bezüglich regenerativer Energien und der Möglichkeit zur Speicherung selbiger auswirken kann, sollten Brennstoffzellenfahrzeuge in großer Stückzahl zum Einsatz kommen.

Philipp Rosen zeigt in seiner Dissertation Möglichkeiten zur Optimierung von Druckwasserstoffspeichern im automobilen Umfeld auf. Hierbei geht er insbesondere auf die Herausforderung ein, Tanksysteme ausreichender Größe in das Fahrzeugpackage zu integrieren, sowie auf die thermodynamischen Besonderheiten, die bei der Nutzung eines derartigen Speichersystems durch Betankung und den Fahrbetrieb entstehen.

Mit Hilfe des von Philipp Rosen entwickelten Modells zur Speicherdimensionierung in großen Parameterräumen wird eine effizientere Auslegung in der frühen Konzeptphase ermöglicht. Hierbei können je nach Entwicklungsfokus (z.B. Low Budget oder maximale Reichweite) optimierte Dimensionen berechnet oder mögliche Kompromisse zwischen den vorgegebenen Parametergrenzen aufgezeigt werden. Durch die Einbindung der Speicherdimensionierung kann das Gesamtfahrzeugpackage ganzheitlich bewertet werden und somit der, v.a. bei alternativen Antrieben wichtigen Entwicklungsgröße Reichweite, besser gerecht werden.

Mit den durchgeführten Materialuntersuchungen und den daran anknüpfenden CFD-Simulationen zeigt Philipp Rosen nicht nur die thermischen Besonderheiten der Wasserstoffbetankung auf, sondern weist auch einen möglichen Weg zur thermischen Optimierung von Druckwasserstoffspeichern. Die durch den gezielten Einsatz von wärmeleitfähigkeitssteigernden Füllstoffen erreichten Ergebnisse beschränken sich dabei nicht nur auf die thermische Verbesserung der Basismaterialien eines Druckspeichers, mit der eine Reduzierung der Materialbelastung und gesteigerte Reichweiten einhergehen. Darüber hinaus wird auch eine deutliche Reduktion der Permeation von Wasserstoff erreicht. Somit kann durch die Verwendung partikelgefüllter Polymere das Polymerportfolio um diejenigen erweitert werden, die bis dato aufgrund schlechter Permeationseigenschaften unberücksichtigt blieben.

Chemnitz

Prof. Dr.-Ing. Thomas von Unwerth Leiter der Professur Alternative Fahrzeugantriebe an der Fakultät Maschinenbau der Technischen Universität Chemnitz

Vorwort

Die vorliegende Arbeit entstand während meiner Anstellung in der Konzernforschung der Volkswagen AG in enger Zusammenarbeit mit dem Institut für Automobilforschung der Technischen Universität Chemnitz.

Ich bedanke mich herzlich bei Herrn Prof. Dr. Thomas von Unwerth für die wissenschaftliche Betreuung der Arbeit sowie der Übernahme des Erstreferats. Weiterhin bedanke ich mich bei Herrn Prof. Dr.-Ing. habil. Prof. E. h. Prof. Lothar Kroll, für die Anfertigung des Zweitgutachtens.

Ich bedanke mich bei den Mitarbeitern und Studenten der Volkswagen AG sowie der TU Chemnitz, die mich auf dem Weg zur Erstellung der Dissertation begleitet haben.

Mein besonderer Dank gilt Herrn Dr. Michael Kahlich, der die Betreuung dieser Arbeit seitens der Volkswagen AG übernommen hat. Er stand mir jederzeit für Fragen und Diskussionen mit seiner Erfahrung zur Seite. Er vermittelte mir während der sehr bereichernden Zusammenarbeit eine große Wissensbasis zum Themenbereich der Wasserstoffspeicherung und ermöglichte so die Entstehung dieser Arbeit. Aber auch darüber hinaus entstand eine Freundschaft für die ich sehr dankbar bin.

Herrn Dr. Henning Volkmar danke ich für das entgegengebrachte Vertrauen und die Unterstützung, auf die ich beim Erstellen der Doktorarbeit jederzeit zählen konnte.

Meinem Kollegen Herrn Jörg Hain danke ich herzlich für die Beratung und Unterstützung bei werkstofflichen Fragen im Bereich Kunststoffe und für die Kontaktherstellung zum Technikum des Instituts für Recycling der Ostfalia Hochschule für angewandte Wissenschaften in Wolfsburg. Den dortigen Mitarbeitern Till Quabeck und Olaf Jung danke ich besonders für Ihre Geduld sowie für Rat und Tat bei der Materialaufbereitung, -verarbeitung und -prüfung.

Weiterhin danke ich meinen Kollegen Herrn Robert Ellmerich für die Unterstützung bei den Messungen zur thermischen Charakterisierung der Kunststoffproben sowie Herrn Sebastian Hagemann für die Unterstützung bei den FEREM-Aufnahmen der Kunststoffproben.

Mein Dank gilt außerdem Herrn Renner und Herrn Antonowitz von der Leichtbau-Zentrum Sachsen GmbH für die gute Zusammenarbeit und die Unterstützung bei den fasergerechten FEM-Simulationen sowie die lehrreichen fachlichen Gespräche.

Des Weiteren bedanke ich mich bei den Herrn Sturmbichler, Fraer und Henne der Ensinger GmbH für die unkomplizierte Zusammenarbeit.

Für motivierende, inspirierende und erfrischende Gespräche sowie Diskussionen sowohl fachlich als auch abseits von Promotion und Studium danke ich außerdem: Franciska, Kai, der Habichtgruppe, Tobias, Peter, Konstantin, Levent.

Besonders hervorheben möchte ich jedoch die bedingungslose Unterstützung, die ich während meiner gesamten Studien- und Promotionszeit durch meine Eltern und meinen Bruder erfahren durfte. Vielen Dank!

Philipp Rosen

Inhaltsverzeichnis

1	Einle	itung und Zielsetzung	1
2	Wass	erstoff als Energieträger und seine Eigenschaften	5
	2.1 2.2	Eigenschaften Sicherheit	5 7
3	Wass	erstoffspeichertechnologien	11
	3.1 3.2 3.3	Speicherung in chemischen Verbindungen Speicherung durch Oberflächenadsorption Speicherung in Reinform 3.3.1 Kryogene Speicherung (LH ₂) 3.3.2 Kryokomprimierte Speicherung (CCH ₂) 3.3.3 Komprimierte Speicherung (CGH ₂)	12 16 17 18 20 22
	3.4	3.3.4 Potenzielle Geometrievarianten für Druckwasserstoffspeicher Energetische und monetäre Betrachtung	25 27
4	Grun	dlagen	31
	4.1 4.2	Normen und Vorschriften	31 32 35 35 38 40 41
	4.3	Grundlagen zur Auslegung von FKV-Bauteilen	44
5	Geon	etrieoptimierung von CGH2-Speichern	49
	5.1	Konventionelle Drucktankgeometrien 5.1.1 Modellbeschreibung 5.1.2 Beschreibung der Parameter und Größen 5.1.3 Validierung der Modellberechnungen 5.1.4 Modellapplikationen 5.1.4.1 Zylinderbewertung in großen Parameterräumen 5.1.4.2 Fahrzeugintegration an einem Bauraumbeispiel 5.1.4.3 Kaufmännische Betrachtung	49 50 51 52 53 54 55 57
	5.2	Alternative Drucktankgeometrien 5.2.1 Voruntersuchungen mit isotropen Werkstoffeigenschaften	57 61

		5.2.2	FKV-gei	rechte Auslegung potenzieller Speichergeometrien	63
			5.2.2.1	Multizellenspeicher	64
			5.2.2.2	Konischer Speicher	73
6	Ther	misch op	timierte	Typ IV Zylinder	89
	6.1	Materia	al- und Ve	ersuchsauswahl	
	6.2	Proben	herstellun	<u>σ</u>	
	6.3	Versuc	hsergebni	sse gefüllter Linermaterialien	
		6.3.1	Mechani	sche Kennwerte	
		6.3.2	Thermis	che Kennwerte	105
		6.3.3	Permeati	ion	110
		6.3.4	Morphol	logische Analyse der gefüllten Polymere	111
			6.3.4.1	Mikroskopie	111
			6.3.4.2	Feldemissions-Raster-Elektronenmikroskopie	114
		6.3.5	Zusamm	enfassung der Versuchsergebnisse	118
	6.4	Gefüllt	e Matrixw	verkstoffe	121
	6.5	Potenzi	ial gefüllte	er Kunststoffe (CFD-Simulation)	121
		6.5.1	Modella	ufbau	122
		6.5.2	Simulati	onsergebnisse	123
7	Zusa	mmenfas	ssung und	l Ausblick	131
8	Litera	atur			135
9	Anha	ng	•••••		151
	9.1	DOE-T	argets mi	t Definition Nettospeicherdichten	151
	9.2	Annahı	nen zur K	Lostenbetrachtung	155
	9.3	Probek	örpergeon	netrien	156
	9.4	Ergänz	ungen zur	n konventionellen Zylindermodell	157
	9.5	Ergebn	isse der F	EM-Simulationen - Multizellenspeicher	161
		9.5.1	Annahm	en zur FKV-gerechten Auslegung	161
		9.5.2	Ergebnis	sse der FEM-Simulationen - Multizellenspeicher	162
		9.5.3	Ergebnis	sse der FEM-Simulationen - Konischer Speicher	164
		9.5.4	Ergebnis	sse der Fertigungsversuche - Konischer Speicher	166
	9.6	Detailli	ierte Versi	uchsergebnisse	167
	9.7	Ergänz	ende mikr	roskopische oder FEREM Aufnahmen	170
	9.8	Weiter	e Ergebnis	sse und Annahmen zur Materialbewertung	171
	9.9	Ergänz	ungen zur	CFD-Simulation	172

Abbildungsverzeichnis

Abb. 1.1:	Brennstoffzellenfahrzeug Audi A7 Sportback h-tron quattro	3
Abb. 2.1:	Vergleich zwischen idealem und realem Gasverhalten [12]	6
Abb. 2.2:	Vereinfachte Darstellung der Zündenergien unter Normalbedingungen von	
	Wasserstoff und Methan in Luft, Abbildung nach [16], [17]	7
Abb. 3.1:	Entwicklung der gravimetrischen Speicherdichte vom Basismaterial zum	
	System für Karbazol	15
Abb. 3.2:	Speicherdichten für kryogene und komprimierte Speicherung in	
	Abhängigkeit des Drucks (Daten nach [7])	18
Abb. 3.3:	Flüssigwasserstoffspeicher der Fa. Linde für 4,6 kg Wasserstoff, [68]	19
Abb. 3.4:	Speichersystem für kryokomprimierten Wasserstoff (CcH ₂) der BMW AG	
	für 7,1kg Wasserstoff, [70]	20
Abb. 3.5:	Simulation erreichbarer H ₂ -Dichten in Abhängigkeit der Fahrzeugnutzung	
	am Beispiel eines 8 kg CcH ₂ -Speichersystems, Simulationsergebnisse n. [71],	
	[72]; Isobare n. [7]	21
Abb. 3.6:	Klassifizierung der Zylindertypen für Druckgasbehälter	23
Abb. 3.7:	Automotives Zweitanksystem zur Druckwasserstoffspeicherung bei 700 bar	~ ′
		24
Abb. 3.8:	Auswahl alternativer Tankgeometrien für Druckgase aus der Literatur,	
	(1): $[89]$; (2): $[90]$; (3): $[91]$; (4): n. $[92]$; (5): $[93]$; (6): $[95]$; (7): $[96]$;	•
	(8): [9/]	26
Abb. 3.9:	Gravimetrische und volumetrische Speicherdichte (links) bzw. W1E-	
	Effizienz (rechts) ausgewahlter Wasserstoffspeicher auf Systembasis nach	20
ALL 2 10.	[40]	28
AUD. 5.10.	Energiaeufwand: Datan nach [16]	20
Abb 3 11.	Kostenstruktur eines 700 bar Wasserstoffdrucktanksystems mit jeweils 2	20
AUD. 3.11.	Typ III_ (links) und Typ IV_7ylindern (rechts): angenommene Stückzahl	
	500 000 Stk /Jahr: Daten nach [101]	30
Abb. 4.1:	Schematische Darstellung des Druckverlaufes einer Betankung (links):	50
	Beispielhafte Betankungstabelle (rechts, Auszug): nach [108]	33
Abb. 4.2:	Stationäre Wärmeleitung durch eine ebene Wand (links): Wärmeleitung in	00
	wandnahen ruhenden Fluidschichten und ebener Wand (rechts)	36
Abb. 4.3:	Messprinzip der Flashmethode	38
Abb. 4.4:	Messaufbau zur dynamischen Differenzkalorimetrie (DDK, engl. Differential	
	Scanning Calorimetry, DSC), Bild der Fa. Netzsch Gerätebau GmbH [116]	39
Abb. 4.5:	Prinzipdarstellung der Teilschritte der Permeation	40
Abb. 4.6:	Schematischer Messaufbau zur Messung der Gasdurchlässigkeit nach	
	DIN 53380-2, [121]	41
Abb. 4.7:	Versagenskriterien nach Cuntze, nach [135]	46
Abb. 4.8:	Zusammenhang zwischen AWV-Winkel und Hauptkräfteverhältnis für ein	
	Laminat mit drei Faserrichtungen (AWV und 0° oder 90°); Grenzkurve mit	
	Entfall der dritten Richtung; nach [129]	47
Abb. 4.9:	Funktionsweise (links) und Ausführungsbeispiel (rechts; Radialflechter Typ	
	RF 1/144-100, mit freundlicher Genehmigung der August Herzog	
	Maschinenfabrik GmbH & Co. KG, [139]) einer Radialflechtmaschine	48

Abb.	5.1:	Modellskizze zur Berechnung konventioneller Drucktankgeometrien	. 50
Abb.	5.2:	Berechnung: Einfluss der Zylinderabmessungen auf die spezifische	
		Zylindermasse für Typ III Zylinder; Beispielhaft eingetragene reale Zylinder	
		aus Tab. 5.1	. 54
Abb.	5.3:	Erweiterte Darstellung der Berechnungsergebnisse für Typ IV Zylinder mit	
		Beispielen zur Packagerelevanz in drei Bauraumgrößen (I, II, III)	. 56
Abb.	5.4:	Alternative Tankgeometrien für Druckgase aus der Literatur,	
		(1): Rohrbündel [89]; (2): Schalenmodell [90]; (3): Flachzylinder [91];	
		(4): Darmstädter Bauweisenkonzept [92]; (5): Multizellenspeicher [93]	. 57
Abb.	5.5:	Berechnungen zur Potenzialabschätzung der Geometrievariante (2) aus	
		Abb. 5.4	. 59
Abb.	5.6:	Prinzipdarstellung Multizellenspeicher (links; Querschnitt) und	
		rotationssymmetrischer konischer Speicher (rechts)	. 61
Abb.	5.7:	Bauraumdarstellung (links) und Simulationsergebnisse (rechts) zum	
		Multizellenspeicher für p _{Nenn} = 700 bar bezogen auf Typ III-Zylinder;	
		Ergebnisse nach [148]	. 62
Abb.	5.8:	Bauraumdarstellung (links) und Simulationsergebnisse (rechts) zum partiell	
		konischen Speicher für $p_{Nenn} = 700$ bar bezogen auf Typ III-Zylinder;	
		Ergebnisse nach [148]	. 63
Abb.	5.9:	Modellaufbau des Multizellenspeichers zur FEM-Simulation	. 64
Abb.	5.10:	Simulation des Multizellenspeichers: Resultierende Gesamtanstrengung	
		(Eff _{res}) bei Prüfdruck 1050 bar der besten Variante aus manueller	
		Variantenrechnung (V00)	. 66
Abb.	5.11:	Simulation des Multizellenspeichers: Einzelanstrengungen für die Kriterien	
		für Faser- und Zwischenfaserbruch bei Prüfdruck 1050 bar der besten	
		Variante aus erster manueller Variantenrechnung (V00)	. 67
Abb.	5.12:	Auswertung der Variantenrechnung zwei (V02); Ergebnisse zur	
		Gesamtanstrengung (Eff _{res}) gegenüber Faserversagen unter Zug (Eff _{II} ²) der	60
	- 10	Varianten mit maximalem Volumen und $0.9 < \text{Eff}_{\text{res}} < 1$. 69
Abb.	5.13:	Simulation des Multizellenspeichers: Resultierende Gesamtanstrengung	
		(Eff _{res}) bei Prufdruck $p_{Pruf} = 1050$ bar der besten Variante (#533) aus	70
	E 14.	Variantenrechnung drei (V03)	. /0
ADD.	5.14:	Simulation des Multizellenspeicners: Laminatanstrengung für Faserzug	
		(EII _{II}) bel Bersidruck 15/5 bar der besten Variante (#555) aus	71
4.66	5 15.	Variantenrechnung drei (V05)	. /1
ADD.	5.15:	Drüfdruch n. = 1050 har der besten Variente (#522) aus Varientenrechnung	
		d_{roi} (V02)	72
Abb	5 16.	Bauraumdarstellung (links) und Simulationsergehnisse (rechts) zum	. 12
ADD.	5.10.	Multizellenspeicher bei veröndertem Bauraum	73
۸hh	5 17.	Vorüberlegung zur Modellerstellung aus Sicht der Mechanik und Fertigung	. 73 74
Abb.	5.18:	Prinzindarstellung der Vorgehensweise zur Modellerstellung	75
Abb	5.19:	Modellverfeinerung des konischen Speichers zur Berücksichtigung	.,5
	2.1/1	unterschiedlicher Wandstärken	. 76
Abb.	5.20:	Ergebnisse der resultierenden Gesamtanstrengung (Effrechei Prüfdruck	. , 0
		$p_{Prijf} = 1050$ bar) und der Belastung durch Faserzug (Eff ₁ ^Z bei Berstdruck	
		$p_{\text{Berst}} = 1575 \text{ bar}$ zur Simulation des konischen Speichers mit	
		unterschiedlichen Faserwinkeln	. 77

Abb. 5.21	: Ergebnis der Laminatanstrengung für Faserzug (Eff _{II²}), der resultierenden	
	Laminatanstrengung (Eff _{res}) und der Verformung (u) der optimalen Variante	
	des konischen Zylinders	80
Abb. 5.22	: Vergleich der beiden Faserwinkel $\beta_z = 54^\circ$ und $\beta_z = 57^\circ$ im Zylinder für die	
	Verformung (u), Faserzug (Eff_{II}^{z}) und der resultierenden Laminatanstrengung	
	(Eff _{res})	81
Abb. 5.23	: Modellaufbau des partiell konischen Speichers	82
Abb. 5.24	: Ergebnis der Laminatanstrengung für Faserzug (Eff _{II} ^z), der resultierenden	
	Laminatanstrengung (Eff _{res}) und der Verformung (u) der optimalen Variante	
	des partiell konischen Speichers	83
Abb. 5.25	: Liner-Demonstratoren zur Durchführung von Flechtversuchen;	
	Demonstrator 1: übersteigerte Proportionen für Grenzversuche,	
	Demonstrator 2: skaliertes vereinfachtes Modell des partiell konischen	
	Speichers	84
Abb. 5.26	: Fertigungsversuch 1 mit Liner-Demonstrator 1 mit konstantem	
	Flechtaugendurchmesser sowie konstanter Geschwindigkeit: Fotos: LZS	85
Abb. 5.27	: Fertigungsversuch 2 an Liner-Demonstrator 1 mit variablem	
	Flechtaugendurchmesser sowie konstanter Geschwindigkeit	86
Abb. 5.28	: Fertigungsversuch 4 an Liner-Demonstrator 2 mit variablem	
	Flechtaugendurchmesser sowie variabler Geschwindigkeit: Fotos: LZS	88
Abb. 6.1:	Prinzindarstellung des Diffusionsweg d` in Partikelgefüllten Polymeren nach	
	[176] (a und b), [177] (c bis d) bzw. [178] (b)	95
Abb. 6.2:	Vorgehensweise bei der Materialcompoundierung	97
Abb. 6.3:	Ergebnisse Zugprüfung: Auf $\varphi = 0$ Vol% normierte Zugfestigkeit σ_m für PE	
	und PA über ieweils ermitteltem Füllgrad ϕ	99
Abb. 6.4:	Ergebnisse Zugprüfung: Auf $\omega = 0$ Vol% normierter Zugmodul E ₄ für PE	
	und PA über ieweils ermitteltem Füllgrad o	100
Abb. 6.5:	Ergebnisse Biegeprüfung: Auf $\varphi = 0$ Vol% normierte Biegefestigkeit σ_{fm} für	
	PE und PA über jeweils ermitteltem Füllgrad φ	101
Abb. 6.6:	Ergebnisse Biegeprüfung: Auf $\varphi = 0$ Vol% normierter Biegemodul E _f für	
	PE und PA über jeweils ermitteltem Füllgrad φ	102
Abb. 6.7:	Prozentuale Abweichung zwischen Biegemodul Ef und Zugmodul Ef für PE	
	und PA über den Nennfüllgrad	103
Abb. 6.8:	Ergebnisse Kerbschlagprüfung: Auf $\varphi = 0$ Vol% normierte	
	Kerbschlagzähigkeit a_{cA} für PE und PA über jeweils ermitteltem Füllgrad ϕ	104
Abb. 6.9:	Ergebnisse zur Vicat Erweichungstemperatur VST für PE über jeweils	
	ermitteltem Füllgrad ω : PA alle VST > 200 °C (außerhalb Messbereich)	105
Abb. 6.10	: Wärmeleitfähigkeit λ unter Verwendung der konstanten (ρ_{konst}) und der	
	temperaturabhängigen (ρ_{th}) Dichte t für PE und PA für unterschiedliche	
	Temperaturbereiche	106
Abb. 6.11	: Ergebnisse zur spezifischen Wärmekapazität c für PE und PA in	
	Abhängigkeit der Temperatur 9 und des Füllgrades ø	107
Abb. 6.12	: Ergebnisse zur Temperaturleitfähigkeit a für PE und PA in Abhängigkeit der	
	Temperatur ϑ und des Füllgrades φ .	108
Abb. 6.13	: Ergebnisse zur Wärmeleitfähigkeit λ für PE und PA in Abhängigkeit der	
	Temperatur ϑ und des Füllgrades ω	109
Abb. 6.14	: Ergebnisse Permeationsprüfung: Auf $\omega = 0$ Vol% normierte Permeabilität P	107
	von Wasserstoff durch PE und PA über jeweils ermitteltem Füllgrad o	110
	ϕ	0

Abb.	6.15:	Lichtmikroskopische Aufnahmen der verwendeten Füllstoffe Bornitrid,	
		Graphit und Mineral mit einheitlichem Maßstab	112
Abb.	6.16:	Lichtmikroskopische Aufnahmen eines Vielzweckprobekörpers: Material	
		PE-25-BN; Querschnitt über gesamte Breite b ₁ (vgl. Abb. 9.1)	113
Abb.	6.17:	Lichtmikroskopische Aufnahmen eines Vielzweckprobekörpers: Material a)	
		PA-25-G, b) PE-25-M: Ouerschnitt über gesamte Breite b ₁ (vgl. Abb. 9.1)	113
Abb.	6.18:	Feldemissions-Raster-Elektronenmikroskopie (FEREM) an der Bruchfläche	
		eines Vielzweckprobekörpers: Material PA-25-M mit Angabe der Position	
		der Aufnahme im Probenquerschnitt (vgl. Abb. 9.1)	114
Abb.	6.19:	Feldemissions-Raster-Elektronenmikroskopie (FEREM) an der Bruchfläche	
		eines Vielzweckprobekörpers: Material PA-25-BN mit Angabe der Position	
		(I-III) der Aufnahmen im Probenquerschnitt (vgl. Abb. 9.1)	115
Abb.	6.20:	Feldemissions-Raster-Elektronenmikroskopie (FEREM) an der Bruchfläche	110
12000	0.201	eines Vielzweckprobekörpers: Material PA-6.25-G mit Angabe der Position	
		(I-IV) der Aufnahmen im Probenquerschnitt (vol. Abb. 9.1)	116
Abb.	6.21:	Feldemissions-Raster-Elektronenmikroskonie (FEREM) an der Bruchfläche	110
1100.	0.211	eines Vielzweckprobekörners: Material PA-12 5-G mit Angabe der Position	
		(I-IV) der Aufnahmen im Probenquerschnitt (vol. Abb. 9.1)	117
Abb.	6.22:	Feldemissions-Raster-Elektronenmikroskopie (FEREM) an der Bruchfläche	
12000		eines Vielzweckprobekörpers: Material PA-25-G mit Angabe der Position (I-	
		IV) der Aufnahmen im Probenquerschnitt (vol. Abb. 9.1)	117
Abb.	6.23:	Zusammenfassung der Frgebnisse zu mechanischen und thermischen	11/
12000	0.201	Eigenschaften sowie zur Permeation und Kosten: Auf ungefülltes Polymer	
		normiert (Permeabilität, Dichte und Kosten als Kehrwert dargestellt)	120
Abb.	6.24:	Vernetztes CFD-Modell mit den Details: a) Wandaufbau mit <i>Prism Laver</i>	120
		Schicht im wandnahen Bereich und b) feinvernetzter kegelstumpfförmiger	
		Einströmbereich (Einströmwinkel 20°).	122
Abb.	6.25:	Ergebnisse der Betankungssimulation mit Simulationsende bei SOC = 100% .	124
Abb.	6.26:	Ergebnisse der Betankungssimulation mit Simulationsende bei Erreichen des	
		Non-Comm Zieldrucks $p_{7iel} = 734$ bar nach 150s und erreichtem SOC	125
Abb.	6.27:	Ergebnisse der Entnahmesimulation mit Simulationsende bei Erreichen des	
		Enddrucks $p_{Ende} = 20$ bar	128
Abb.	9.1:	Daten des Vielzweckprobekörpers nach DIN EN ISO 3167. [123]	156
Abb.	9.2:	Daten des kleinen Plattenprobekörpers P60	156
Abb.	9.3:	Daten des großen Plattenprobekörpers P200	157
Abb.	9.4:	Berechnung: Einfluss der Zylinderabmessungen auf die spezifische	
		Zylindermasse für Typ IV Zylinder	160
Abb.	9.5:	Simulation des Multizellenspeichers: Resultierende Gesamtanstrengung	
		(Eff _{res}) bei Prüfdruck 1050 bar der besten Variante mit Keilelement (#1531)	
		aus erster Variantenrechnung eins (V01)	162
Abb.	9.6:	Simulation des Multizellenspeichers: Laminatanstrengung für Faserzug	
		(Eff_{II}^{z}) bei Berstdruck 1575 bar der besten Variante aus manueller	
		Variantenrechnung (V00)	162
Abb.	9.7:	Simulation des Multizellenspeichers, Variantenrechnung 3 (V03): Ergebnisse	
		zu spezifischem Innenvolumen und spezifischer Masse der Varianten mit	
		resultierender Gesamtanstrengung 0,9 <eff<sub>res<1</eff<sub>	163
Abb.	9.8:	Neckmountkonzept für den Multizellenspeicher nach [148]	163

Ergebnis der Laminatanstrengung für Faserzug (Eff_{II}^{z}), Matrixzug (Eff_{\perp}^{z}),	
Matrixdruck (Eff_{\perp}^{d}) und der resultierenden Laminatanstrengung (Eff_{res}) des	
konischen Speichers	164
Ergebnisse der Sensitivitätsanalyse des Faserwinkels in Bezug auf das	
Ausdehnungsverhalten für den konischen Speicher	165
Fertigungsversuch 3 an Liner-Demonstrator 1 mit variablem	
Flechtaugendurchmesser sowie variabler Geschwindigkeit; Fotos: LZS	166
Erweiterte Lichtmikroskopische Aufnahme des verwendeten Füllstoffs	
Bornitrid zur Darstellung der Agglomeratbildung	170
Feldemissions-Raster-Elektronenmikroskopie (FEREM) an der Bruchfläche	
eines Vielzweckprobekörpers: Material PA-25-G mit Angabe der Position	
(III'-III'') der Aufnahmen im Probenquerschnitt (vgl. Abb. 9.1)	170
	Ergebnis der Laminatanstrengung für Faserzug (Eff _{II} ^z), Matrixzug (Eff ₁ ^z), Matrixdruck (Eff ₁ ^d) und der resultierenden Laminatanstrengung (Eff _{res}) des konischen Speichers

Tabellenverzeichnis

Tab. 2.1:	Chemische und physikalische Eigenschaften von Wasserstoff	5
Tab. 3.1:	Überblick der prinzipiellen Speichermethoden für Wasserstoff, Inhalt n. [16]	
	und [33]	. 12
Tab. 3.2:	Zusammenfassung unterschiedlicher Permeationsgrenzwerte	. 25
Tab. 3.3:	Systemspeicherdichten in Abhängigkeit von Zylindertyp und Nenndruck;	
	Daten nach [40]	. 25
Tab. 4.1:	Auszug der Prüfungen n. EG 79/2009 für Zylinder und dessen Materialien	. 32
Tab. 4.2:	Zusammenfassung der wesentlich Änderungen zwischen der SAE J2601-	
	2014 und der SAE J2601-2010	. 34
Tab. 4.3:	Wärmeleitfähigkeiten ausgewählter Materialien	. 38
Tab. 5.1:	Vergleich zwischen realen Zylinderdaten (für 700 bar) und	
	Berechnungsergebnissen	. 52
Tab. 5.2:	Berechnung unterschiedlicher Varianten des Rohrbündelkonzeptes (1) bei	
	gleichen Sicherheitsbeiwerten für alle Materialien ($S = 1,2$) und Streckgrenze	
	nach [146] und [147]	. 58
Tab. 5.3:	Variationsparameter zur Durchführung der Optimierung des	
	Multizellenspeichers	. 66
Tab. 5.4:	Parameter zur Simulation des Multizellenspeichers nach manueller	
	Variantenrechnung (V00)	. 67
Tab. 5.5:	Optimierung des Parameterbereiches zur Simulation des Multizellenspeichers	
	in drei Variationsschritten	. 68
Tab. 5.6:	Zusammenfassung der Simulationsergebnisse für konventionelle Zylinder,	
	sowie der ermittelten besten Parameter der Variantenrechnungen V00 und	
	V03	. 71
Tab. 5.7:	Variationsparameter zur Durchführung der Optimierung des partiell	
	konischen Speichers	. 74
Tab. 5.8:	Optimierung der Faserwinkel in Längsrichtung sowie der Wandstärken für	
	einen konischen Speicher.	. 78
Tab. 5.9:	Optimierung der Faserwinkel in Längs- und Wandstärkenrichtung sowie der	
	Wandstärken für den konischen Bereich des partiell konischen Speichers	. 79
Tab. 5.10:	Einfluss der Faserwinkelspreizung in Wandstärkenrichtung für den	~ ~
	zylindrischen Bereich des partiell konischen Speichers	. 80
Tab. 5.11:	Parameter der optimalen Variante des partiell konischen Speichers	. 83
Tab. 6.1:	Zusammentassung der Materialauswahl: Basispolymere und Fullstoffe	. 93
Tab. 6.2:	Zusammentassung der mechanischen und thermischen Materialprufungen	. 93
1 ad. 0.3:	Ermittelte Fullgrade und Dichten (bei 21 °C) der Zielcompounds für die	00
т.ь.с.	Basispolymere PE und PA; Detail in Kap. 9.6, 1ab. 9.5 und 1ab. 9.6	. 98
1 ad. 0.4:	Zur Fenteraoschatzung angenommene thermische Langen- (α) und Volumeneusdehnungekeeffizierten (β) für DE und DA für unterschiedliche	
	volumenausuennungskoemizienten (p) für PE und PA für unterschiedliche	100
Tab <i>6 5.</i>	Starthadingungan dar CED Simulationen zur Datarlung	100
1 aD. 0.5:	Startbedingungen der CFD-Simulationen zur Betankung.	124
1 au. 0.0:	DOE Targets for Orboard Hydrogen Storage Systems for Light Duty	12/
1 ad. 9.1:	Valuates Stand 2000 nach [4]	151
	venicies Stanu 2009 nach [4]	131

Tab. 9.2:	Base Case Annahmen der Kostenbetrachtung nach für 700 bar CGH ₂ -	
	Systeme nach [101]	155
Tab. 9.3:	Übersicht der Parameter des konventionellen Zylindermodells	159
Tab. 9.4:	Übersicht der Materialkennwerte der UD-Einzelschicht zur FKV-gerechten	
	FEM-Simulation [150]	161
Tab. 9.5:	Details zur Bestimmung der realen Füllgrade durch Dichtebestimmung und	
	Glühverlustmessungen; PE	167
Tab. 9.6:	Details zur Bestimmung der realen Füllgrade durch Dichtebestimmung und	
	Glühverlustmessungen; PA	168
Tab. 9.7:	Ergebnisse (Mittelwerte) zu den mechanischen und thermischen	
	Materialuntersuchungen sowie die berechneten Kosten in absoluten Werten	
	für PE und PA	169
Tab. 9.8:	Materialkosten für der Füllstoffe bzw. Polymere bei einer angenommen	
	Abnahmemenge von ca. 10 bzw. 50 Tonnen pro Jahr [185]	171
Tab. 9.9:	Detaildaten der normierten Ergebnisse in Ergänzung zu Abb. 6.23	171
Tab. 9.10:	Gewählte Modelle der Verwendeten Continua für das CFD-Modell	172
Tab. 9.11:	Verwendete Materialeigenschaften zur CFD-Simulation; Daten aus [146] und	
	[107]	172

Symbol- und Abkürzungsverzeichnis

Abkürzungen

Symbol	Beschreibung
AB	Amminboran
APRR	Average Pressure Ramp Rate (dt.: Durchschnittliche Druckrampe)
AWV	ausgeglichener Winkelverbund
BZ	Brennstoffzelle
CcH ₂	Cryo Compressed Hydrogen (dt.: kryokomprimierter Wasserstoff)
CEP	Clean Energy Partnership (Europäisches Projekt)
CFD	Computational Fluid Dynamics (dt.: numerische Strömungsmechanik)
CFK	Carbonfaserverstärkter Kunststoff (Kohlenstofffaserverstärkter Kunststoff)
CGH ₂	Compressed Gaseous Hydrogen (dt.: Druckwasserstoff)
CLT	Classical Lamination Theory (dt.: klassische Laminattheorie)
CNG	Compressed Natural Gas (dt.: Erdgas)
CNT	Carbon Nanotubes
COF	Covalent Organic Frameworks (dt.: kovalentorganische Rahmenstrukturen)
Com-Fill	Communication Filling (dt.: Betankung mit Kommunikation)
DDK	dynamische Differenzkalorimetrie (eng.: Differential Scanning Calorimetry)
DOE	U.S. Department of Energy
DSC	Differential Scanning Calorimetry (dt.: dynamische Differenzkalorimetrie, DDK)
dt.	deutsch
Eff ^(res)	resultierende Gesamtanstrengung (Laminat)
el.	elektrisch
EOL	End of Life (dt.: Lebensdauerende)
EOS	Equation of State (Zustandsgleichung)
FB	Faserbruch
FEM	Finite Elemente Methode
FEREM	Feldemissions-Raster-Elektronenmikroskopie
fl.	flüssig
FKV	Faserkunststoffverbund
Fzg	Fahrzeug

G	Graphit (Füllstoff)
Gew.	Gewicht (Gew%, Gewichtsprozent)
GFK	Glasfaserverstärkter Kunststoff
HD	Hochdruck
HDPE	Hochdichtes Polyethylen (Polymer)
J-T	Joule-Thomson (-Koeffizient; -Effekt)
Ke	Keilelement
konst.	konstant
LH_2	Liquefied Hydrogen (dt.: Flüssigwasserstoff)
Li-Ion	Lithium-Ionen (Batterie)
LOHC	Liquid Organic Hydrogen Carrier (dt.: flüssige (organische) Wasserstoffträger)
LPG	Liquefied Petroleum Gas (dt.: Flüssiggas / Autogas)
LW	Lastwechsel
LZS	Leichtbau-Zentrum Sachsen GmbH
М	Mineral (Füllstoff)
MBWR	Modified Benedict-Webb-Rubin (Zustandsgleichung)
mod	modifiziert
MOF	Metal Organic Frameworks (dt.: Metallorganische Rahmenstrukturen)
ND	Niederdruck
NT	Niedertemperatur
NWP	Nominal Working Pressure (dt.: nominaler Arbeitsdruck)
OEM	Original Equipment Manufacturer (hier: Automobilhersteller)
PA	Polyamid (Polymer)
PEM-BZ	Polymerelektrolytmembran-Brennstoffzelle
RHC	Reactive Hydride Composite (dt.: Reaktive Hydrid-Komposite)
RT	Raumtemperatur
RTM	Resin Transfer Molding (dt.: Harz-Injektions-Verfahren)
SOC	State of Charge (dt.: Füllstand H2-Tank / Ladezustand Batterie)
spez.	spezifisch
UD	unidirektional(e) (Schicht)
V	Version
WTE	Well-To-Engine (dt.: Energiequelle zu Motor; hier auch Brennstoffzelle)
WTT	Well-To-Tank (dt.: Energiequelle zu Tank)
ZFB	Zwischenfaserbruch

Zyl. Zylinder

Griechische Symbole

Symbol	Beschreibung	Einheit
α	Wärmeübergangskoeffizient	$\frac{W}{m^2 \cdot K}$
	Thermischer Längenausdehnungskoeffizient	<u>1</u> К
α	mittlerer thermischer Längenausdehnungskoeffizient	<u>1</u> К
β	thermischer Volumenausdehnungskoeffizient	<u>1</u> K
β	mittlerer thermischer Volumenausdehnungskoeffizient	$\frac{1}{K}$
β_i	Faserwinkel	0
Δ	Änderung; Differenz	-
δ	Wandstärke, Fluidschichtdicke	m
ϵ_{FM}	Biegedehnung	%
ε _y	Streckdehnung	%
η	Wirkungsgrad	%
θ	Temperatur	°C
κ	Adiabatenexponent	-
λ	Wärmeleitfähigkeit	$\frac{W}{m \cdot K}$
μ_{rk}	Reibbeiwert (reibungsbehafteter Kontakt)	-
ν	Querkontraktionszahl	-
ρ	Dichte	$\frac{kg}{m^3}$
$\overline{\rho}_{Zyl}$	spezifische Zylindermasse	kg I
σ	Spannung	MPa
σ_1	maximale Spannung in Faserrichtung des Laminates	MPa
σ_{a}	Axialspannung	MPa
σ_{FM}	Biegefestigkeit	MPa
σ_t	Tangentialspannung	MPa