Beginning
Ethereum
Smart Contracts
Programming

With Examples in Python, Solidity,
and JavaScript

Wei-Meng Lee

Apress’

Beginning Ethereum
Smart Contracts
Programming

Wei-Meng Lee

Apress’

Beginning Ethereum Smart Contracts Programming: With Examples in Python,
Solidity, and JavaScript

Wei-Meng Lee
Ang Mo Kio, Singapore

ISBN-13 (pbk): 978-1-4842-5085-3 ISBN-13 (electronic): 978-1-4842-5086-0
https://doi.org/10.1007/978-1-4842-5086-0

Copyright © 2019 by Wei-Meng Lee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image Photo by Bryan Garces on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250853. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5086-0

I dedicate this book with love to my dearest wife (Sze Wa)
and daughter (Chloe), who have to endure
my irregular work schedule, for their companionship
when I am trying to meet writing deadlines!

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccussesssnssssnsssassssnsssassssassssasssansssansssnssssnsssassssanssas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: Understanding BIOCKCNAINcccumssansmsssnssssansssssnsssssnsssssnsssssnsssssnnssssnnsss 1
Motivations Behind BIOCKCNAIN..........cocoviinnniics s 2
Placement OF TFUSTSccvvvecerierrrese e e e 2

TPUST ISSUEBS ...ttt s r e s re e e e e e re s r e e e e s 3
Solving Trust Issues Using Decentralization..........c.c.ccoverrisennsesnessnnse s sessessssenens 4
Example of Decentralization...........c.cccvvcernenennnennse s 4
Blockchain As a Distributed LEAQEN........cccvvrrvrierirnrirse e sse s se s saessssessesaens 8

HOW BIOCKCH@IN WOTKS........coiuiiiiiriissesn s s s 9
Chaining the BIOCKS.....c.civiiriererenirserere s ses s s e s sae s s e saesae e s e saesaesessessesnens 10
T3 RS 12
Broadcasting TranSaACHONSc.ccvvvvvrinienn s s s 12

THe MINING PrOCESSccvvverieriirirsire st sas e se e se s s e s se s sae st e e sae s sse e ssesaesaesssenaenaes 13
PrOOf OF WOTKccviecerree s s 16
Immutability of BIOCKCNAINSccocveeriierinesincserese e s s sessesens 16
Blockchain in More Detailcccovrrnnmnneniss s s snes 17
TYPES OF NOUES ...t s e s se s s r e s s e s s b e e p et s e ae s ae e e e naennen 19
Merkle Tree and Merkle ROOL..........ccccinnnn s 21

Uses of Merkle Tree and the Merkle ROOL.........c.cocovnnnnnnncs s 22

£ 11114 7R 23

TABLE OF CONTENTS

Chapter 2: Implementing Your Own Blockchain Using Python.........c..cccennnsnnnnnnnans 25
Our Conceptual Blockchain Implementation............ccovvrcrncnnicnncccrsevn e 25
0btaining the NONCE ... e e e e 27
INSTAINNG FIASKcveireriecicsir et r s e p s s p e r e nne s 28
Importing the Various Modules and LiDrari€s........ccocvvrvrreeneriersensesnessessesseesessessesseessessennes 29
Declaring the Class in PYINON...........ccccvvrinnrrrire s sesss s s ssesssessesaessssessessessssessessenes 29
FiINAING the NOMNCEoeeeee ettt a e s a e s s e a e e s n 31
Appending the Block to the BIOCKCNAIN...........cccecrieererieririe s 32
Adding TraNSACLIONScceceereeririirsie e rerrer e r e s s s e e s ae s e e e a e s ae s e e nesne e e eanan 32
Exposing the Blockchain Class as @ REST APL.........cccccvverevnnnsenesssessesessessssessessessssessessenes 33
Obtaining the Full BIOCKCNAIN.........ccccviererirrerseresesesseressessssesessessessssessessesssssssessessesssssnsessens 33
Performing MiNING......cocco i r e s na e e s 34
Adding TranSACLIONScvceireriiriirsir e s a e s n e ne e e n 35
Testing Our BIOCKCN@IN ..ot st se s st stssesesneseseas 36
Synchronizing BIOCKCRAINScccccviviiinicner e 41
Testing the Blockchain with Multiple NOdES........ccccoovcrvrrennsnncrr s 45
Full Listing for the Python Blockchain Implementation...........c.coocoveenninnesnsscsscseseereees 51
SUMIMAIY ...ttt e s e R e e e e e e e R e e s e e nen e e e Re e Re e nen e e nsnnnns 59

Chapter 3: Connecting to the Ethereum Blockchain........c...cccivnsssennnnsssssnnssssssnnnnnns 61

Downloading and InStalling GEhccecverirnirirer e s sa e sneenes 62
Installing Geth for MACOS..........cc v sae e e e naenae s 62
Installing Geth for WiNAOWS.........cuvvrriererenerserese s sesessessesessessessessssessessesssssssessessessssensessens 63
INStAlliNG GELH Or LINUX.....ecvveerereerersereresresesseressesessesessessesesessessesessessessesssssssessesaesssssnsessens 64

Getting Started With GEtN.........ccccvvrierrrrrre e s s nre s 64
Examining the Data Downloaded............ccooerircerrenerirrir st 65
Geth JAvaSCript CONSOIE........ccverererrerere e rer e r e e se e sr e s aesaesa e e s e saesae e e e nnenaens 66
SYNC MOUES ...veveeeererrerresere s e s e e s e s sae e s e s e saesaese e e e aesaesa e e e e saesae e e e naesaenae e nnenannan 68
LT3 4= O 69

TABLE OF CONTENTS

Chapter 4: Creating Your Own Private Ethereum Test Network...........ccccuvnssnnnnnnnans 71
Creating the Private Ethereum Test NEetWOrK ..o 71
Creating the GENESIS BIOCK.........cccuvirnvernieninnsern sttt 72
Creating a Folder for Storing Node Data...........cccoceernirninnninsrnnnne s 73
Initiating @ BIOCKChAIN NOUE........ccccererierrer e s 74
Starting Up the NOTESccevverereereriereresessessesessesessessessesessessessessesssssssessessessssessessessssssnessesaes 76
MaNAJING ACCOUNTS.......ccuiieiere s e e e s e e e e e R b e e e e nennas 88
REMOVING ACCOUNTScoeireitiirsire et e 90
Setting the COINDASEcccveriinir e 90
1101 4= o OSSOSO 91
Chapter 5: Using the MetaMask Chrome EXtension.........ucseeeeemnsesssssssssssssnsssessssssas 93
What IS METaMASK?covierirerncsersse s s nennis 93
How MetaMask Works Behind the SCeNe........c.ccoverresrnsenrese e 94
INStalliNg MELAMASKcccrveerereeree s 95
Signing in t0 MetaMasK..........ccoereerrnirreserr e 97
Selecting ETthereum NEWOIKSccoccvvermrenernesne e s se s e senns 103
GELEING ETNEIS....viecceeecer s 104
Creating Additional ACCOUNTS........c.ccovrereresernse s 111
Transferring EtNEIS ... 113
RECOVEING ACCOUNTScoveerrreererresesresesessesessesessssessssesessesessssessssesessessssssnssssesssssssnssnsnssnsssnnes 117
Importing and EXPOrting ACCOUNTScovceverererrinerrnesesese s sn s sessesenns 120
EXPOrtiNG ACCOUNTS......cceiuieriiesrncse e ra e 120
IMPOtING ACCOUNTS......civieriiisrrre e r e ne e nr s 124
L1134 7R 126
Chapter 6: Getting Started with Smart Contract..........cccccurcemmrnsssnnnnnsssssnnnnsssnnn 127
Your First Smart CONTraCt...........ccccoerriiescrrrres e 127
Using the REMIX IDE ..o s s 128
Compiling the Contract..........ccvcrinnicnr s 131
Testing the Smart Contract Using the JavaScript VMcccvvevvinrenennnensessesesessessensenes 133
Getting the ABI and Bytecode of the Contractcceveevrvrvriennsnsnse v 136

vii

TABLE OF CONTENTS

Loading the Smart Contract onto Geth........c.ccccvcvvrirninrn e 139
Testing the CONTraCLccccvevevrrre e s a e nnes 142
Calling the Contract from Another NOGEccvcervverrerieriennsersere s see e ene s 144

£ 1134 7 146

Chapter 7: Testing Smart Contracts Using Ganache........c.cccceremsssennnsssssssnsssssssnnnss 147

Downloading and Installing GANACNE............cccoerererrerererere e 147
Command-Line INTEITACEcoeoereeeerrererere e 148
Graphical USer INTEIfaCe.........ccviiririnerr e s 150

Creating @ SMart CONTraCtcccvverrnesrescr e 153
Deploying the Contract 10 GANACKEccovevrecer s 154
EXaMining GANACKEcc.cocrreerererereser s s 156
Testing the CONTIACT ..o 159

Connecting MetaMask t0 GANACKEccccveeernrerrnisere s 161

11T 111 1T o OSSOSO 167

Chapter 8: Using the web3.js APIScccinnsnmmmmmsssssnnmmsssssssssssssssssssssssssssssssnsnees 169

WRAL IS WED3.JS?...retrererierterererse e sese s s s e se s e s sae s s e s saesa e e s saesae s s e naesaesae e snenaesaesassennesneses 169
INSTAIlING WED3.JS e s 170
Testing the web3.js Using MetaMask...........cccvverrinninnennsenses e s ssssssessessesnas 171
Testing the web3.js Without MetaMask.........c.ccccevrinrnnnnninsn s 175

Deploying Contracts USING WED3.JScccouverreririnrnieninesine s sesss s sessesenns 178
Interacting with a Contract USing WeD3.jScccvvvrrrierienrsnrere e s s s e ssesne s 184
Sending Ethers to Smart CONIACESccovverierrrerrerierreseserseresesessesesessesessessessessssessessens 191

SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 198

Chapter 9: Smart Contract Eventscccccccnninnsssmssnnnnnnnnssssssssssssnsssssssssssssssnnns 199

What Are EVents in SOlIAItY?cccvverecernerresersse s s sessssesssnens 199
Adding Events to the ProofOfExistence Contract...........ccuevvvenrienmrssennsesesesessssesesesessenens 200
Deploying the CONTIaCL...........ccoveeerenernesrse s 203

viii

TABLE OF CONTENTS

Handling Events USing WeD3.jS.....cccuviiiini e sse s s s s s saenns 204
Testing the Front ENG..........ccoviiireninr i sae s s 208
Notarizing the Same DOCUMENT TWICE.......cccvvrrererrrrersereresessesessessssessessessesessessesssssssessesses 213
Sending Incorrect AMOUNt Of ETNEKcovcvvvriererrrere e ssesnens 215

£ 11134 7 219

Chapter 10: Project — Online Lotteryccccimmmmmmnmmssssnnnmssssssnsssssssssssssssssssssssssnnnss 221

How the Lottery GAME WOIKS........coveerreerrereree e se s s 221
Defining the Smart CONtractoooererrerrer s 223
0] 51 10 (0] T 224
Betting @ NUMDEN ..o s 225
Drawing the Winning Number and Announcing the Winners...........ccocvvnisnvncninsnicnenne, 227
Getting the Winning NUMDEX ... 229
Killing the CONIIaCt ..o e e 230

Testing the CONIACT.........ccccccrreerererer s se e nnn e 230
Betting 0n @ NUMDEToceeeer e 231
Viewing the Winning NUMDET ... s 236
Examining the Contract on Etherscan ..o 237
Killing the CONTraCT........c..coc o 239
Adding Events to the Contract ... 243

Creating the Web Front EN ... s sessesenns 247
Returning Ethers Back to the Owner at the End of the Game..........c.coccoreerncrnccserescnnnnes 253
Making the Game Run INdefinitelyc.ccovieerenrecrrerree s 255

B30T 111 T o SRS 256

Chapter 11: Creating Your TOKENScccusseenmmssssnnnssssssssnssssssssnsssssssnsssssssansssssssnnnns 297

WHat ArE TOKENS?.....vviecccirisisssse s sr s 257
How Tokens Are IMPIEMENTEU?ccccvrerererrerreresr s e ses e sse e s s s sssses e ssesaesassessesaes 259
Minting NEW TOKENScoceiiriirsiene e s a e s s s ae s s 259
BUINING TOKENSeeviiirieste e res e s s s s sa e s a e s s e e s s g e b s b s e s e e nesaenanan 259
Units Used Internally in Token CONtractS........cccevevervrierenensensenesssessesessesessessessessssessessees 260
ERC20 TOKEN StANMArdcccoeeerererinseisesesisssssse s e sesssssssssssens 261

ix

TABLE OF CONTENTS

Creating TOKEN CONTIACEScccvivieriererenserere s sere e s s e sessesse e ss s e s e s saesessesaesnesasessesnees 263
Deploying the TOKEN CONTrACT.........ccvcvrerererierrere s s e se e s sae e s saesnes 272
Adding Tokens 10 MetaMasK..........c.ccucrrereriniinne s s e 275
BUYING TOKENS ..veveeeereriereesenersessesessessessessssessessessssessessssasssssessessesssssssessssssnsssessesasssssessesaes 279
Creating an IC0 PAQE.........cccvvererererrereressssessessesse e s e ssesaessssessesaesaesessessesaesssnsssesaessessnsesneses 284

£ 1134 7 287

1T - 289

About the Author

Wei-Meng Lee is the founder of Developer Learning
Solutions, a technology company specializing in hands-on
training of blockchain and other emerging technologies.
He has many years of training expertise, and his courses
emphasize a learn-by-doing approach. He is a master

at making learning a new programming language or
technology less intimidating and fun. He can be found

speaking at conferences worldwide such as NDC, and he
regularly contributes to online and print publications such
as DevX.com, MobiForge.com, and CoDe Magazine. He is active on social media on his
blog learn2develop.net, on Facebook at DeveloperLearningSolutions, on Twitter
@weimenglee, and on LinkedIn at leeweimeng.

About the Technical Reviewer

Chaim Krause is a lover of computers, electronics,
animals, and electronic music. He’s tickled pink when

he can combine two or more in some project. The vast
majority of his knowledge is through self-learning. He
jokes with everyone that the only difference between what
he does at home and what he does at work is the logon

he uses. As a lifelong learner, he is often frustrated with
technical errors in documentation that waste valuable time
and cause unnecessary stress. One of the reasons he works
as the technical editor on books is to help others avoid

those same pitfalls.

xiii

Acknowledgments

Writing a book is immensely exciting, but along with it comes long hours of hard work
and responsibility, straining to get things done accurately and correctly. To make a book
possible, a lot of unsung heroes work tirelessly behind the scenes.

For this, I would like to take this opportunity to thank a number of special people
who made this book possible. First, I want to thank my acquisitions editor - Joan Murray,
for giving me this opportunity. Thanks for attending my session at NDC Minnesota 2018,
and for your trust in me!

Next, a huge thanks to Jill Balzano, my associate editor, who was always very patient
with me, even though I have missed several of my deadlines for the book. Thanks, Jill, for
your guidance. I could not finish the book without your encouragement and help!

Equally important is my technical editor - Chaim Krause. Chaim has been very
eager-eyed editing and testing my code and never fails to let me know if things do not
work the way I intended. Thanks for catching my errors and making the book a better
read, Chaim!

Last, but not least, I want to thank my parents and my wife, Sze Wa, for all
the support they have given me. They have selflessly adjusted their schedules to
accommodate my busy schedule when I was working on this book. I love you all!

Introduction

Welcome to Beginning Ethereum Smart Contracts Programming!

This book is a quick guide to getting started with Ethereum Smart Contracts
programming. It first starts off with a discussion on blockchain and the motivations
behind it. You will learn what is a blockchain, how blocks in a blockchain are chained
together, and how blocks get added to a blockchain. You will also understand how
mining works and discover the various types of nodes in a blockchain network.

Once that is out of the way, we will dive into the Ethereum blockchain. You will
learn how to use an Ethereum client (Geth) to connect to the Ethereum blockchain and
perform transactions such as sending ethers to another account. You will also learn how
to create private blockchain networks so that you can test them internally within your
own network.

The next part of this book will discuss Smart Contracts programming, a unique
feature of the Ethereum blockchain. Readers will be able to get jumpstarted on Smart
Contracts programming without needing to wade through tons of documentation. The
learn-by-doing approach of this book makes you productive in the shortest amount
of time. By the end of this book, you would be able to write smart contracts, test them,
deploy them, and create web applications to interact with them.

The last part of this book will touch on tokens, something that has taken the
cryptocurrency market by storm. You would be able to create your own tokens and
launch your own ICO and would be able to write token contracts that allow buyers to buy
tokens using Ethers.

This book is for those who want to get started quickly with Ethereum Smart
Contracts programming. Basic programming knowledge and an understanding of
Python or JavaScript are recommended.

I hope you will enjoy working on the sample projects as much as I have enjoyed
working on them!

xvii

CHAPTER 1

Understanding Blockchain

One of the hottest technologies of late is Blockchain. But what exactly is a blockchain?
And how does it actually work? In this chapter, we will explore the concept of blockchain,
how the concept was conceived, and what problems it aimed to solve. By the end of this
chapter, the idea and motivation behind blockchain would be crystal clear.

Tip For the clearly impatient — A blockchain is a digital transaction of records
that’s arranged in chunks of data called blocks. These blocks link with one another
through a cryptographic validation known as a hashing function. Linked together,
these blocks form an unbroken chain — a blockchain. A blockchain is programmed
to record not only financial transactions but virtually everything of value. Another
name for blockchain is distributed ledger.

Hold on tight, as I'm going to discuss a lot of concepts in this chapter. But if you
follow along closely, you'll understand the concepts of blockchain and be on your way to
creating some really creative applications on the Ethereum blockchain in the upcoming
chapters!

Tip Ethereum is an open-source public blockchain that is similar to the Bitcoin
network. Besides offering a cryptocurrency known as Ether (which is similar

to Bitcoin), the main difference between Bitcoin and itself is that it offers a
programming platform on top of the blockchain, called Smart Contract. This book
focuses on the Ethereum blockchain and Smart Contract.

© Wei-Meng Lee 2019
W.-M. Lee, Beginning Ethereum Smart Contracts Programming,
https://doi.org/10.1007/978-1-4842-5086-0_1

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Motivations Behind Blockchain

Most people have heard of cryptocurrencies, or at least, Bitcoin.

Note The technology behind cryptocurrencies is blockchain.

To understand why we need cryptocurrencies, you have to first start with
understanding a fundamental concept - trust. Today, any asset of value or transaction is
recorded by a third party, such as bank, government, or company. We trust banks won'’t
steal our money, and they are regulated by the government. And even If the banks fail,
itis backed by the government. We also trust our credit card companies - sellers trust
credit card companies to pay them the money, and buyers trust credit card companies to
settle any disputes with the sellers.

Placement of Trusts

All these boil down to one key concept - placement of trust. And that is, we place our
trust on a central body. Think about it, in our everyday life, we place our trusts on banks,
and we place our trusts on our governments.

Even for simple mundane day-to-day activities, we place our trusts in central bodies.
For example, when you go to the library to borrow a book, you trust that the library
would maintain a proper record of the books that you have borrowed and returned.

The key theme is that we trust institutions but don’t trust each other. We trust our
government, banks, even our library, but we just don’t trust each other. As an example,
consider the following scenario. Imagine you work at a cafe, and someone walks up
to you and offers you a US ten-dollar bill for two cups of coffee. And another person
who offers to pay you for the two cups of coffee using a handwritten note saying he
owes you ten dollars. Which one would you trust? The answer is pretty obvious, isn’t it?
Naturally you would trust the US ten-dollar bill, as opposed to the handwritten note.
This is because you understand that using the ten-dollar bill, you can use it elsewhere
to exchange for other goods or services, and that it is backed by the US government. In
contract, the handwritten note is not backed by anyone else (except perhaps the person
who wrote it), and hence it has literally no value.

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Now let’s take the discussion a bit further. Again, imagine you are trying to sell
something. Someone comes up to you and suggests paying for your goods using the
currencies as shown in Figure 1-1.

| AA3905431

Figure 1-1. Currencies from two countries

Would you accept the currencies as shown in the figure? Here, you have two different
currencies - one from Venezuela and one from Zimbabwe. In this case, the first thing
you consider is whether these currencies are widely accepted and also your trust in these
governments. You might have read from the news about the hyperinflation in these two
countries, and that these currencies might not retain its value over time.

And so, would you accept these currencies as payment?

Trust Issues

Earlier on, I mentioned that people trust institutions and don’t trust each other. But even
established economies can fail, such as in the case of the financial crisis of the United
States in 2007-2008. Investment bank Lehman Brothers collapsed in September 2008
because of the subprime mortgage market. So, if banks from established economies can

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

collapse, how can people in less developed countries trust their banks and governments?
Even if the banks are trusted, your deposits may be monitored by the government, and
they could arrest you based on your transactions.

As we have seen in the example in the previous section, there are times when people
don’t trust institutions, especially if the political situation in that country is not stable.

All these discussions bring us to the next key issue - even though people trust
institutions, institutions can still fail. And when people lose trust in institutions, people
turn to cryptocurrencies. In the next section, we will discuss how we can solve the trust
issues using decentralization, a fundamental concept behind cryptocurrency.

Solving Trust Issues Using Decentralization

Now that you have seen the challenges of trust - who to trust and who not to trust, it
is now time to consider a way to solve the trust issues. In particular, blockchain uses
decentralization to solve the trust issue.

In order to understand decentralization, let’s use a very simple example that is based
on our daily lives.

Example of Decentralization

To understand how decentralization solves the trust issue, let’s consider a real-life example.
Imagine a situation where you have three persons with DVDs that they want to share
with one another (see Figure 1-2).

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Figure 1-2. Sharing DVDs among a group of people

The first thing they need to do is to have someone keep track of the whereabouts
of each DVD. Of course, the easiest is for each person to keep track of what they have
borrowed and what they have lent, but since people inherently do not trust each other,
this approach is not very popular among the three persons.

To solve this issue, they decided to appoint one person, say B, to keep a ledger, to
hold a record of the whereabouts of each DVD (see Figure 1-3).

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Figure 1-3. Appointing a particular person to keep the records

This way, there is a central body to keep track of the whereabouts of each DVD. But
wait, isn’t this the problem with centralization? What happens if B is not trustworthy?
Turns out that B has the habit of stealing DVDs, and he in fact could easily modify the
ledger to erase the record of DVDs that he has borrowed. So, there must be a better way.

And then, someone has an idea! Why not let everyone keep a copy of the ledger
(see Figure 1-4)? Whenever someone borrows or lent a DVD, the record is broadcast to

everyone, and everyone records the transaction.

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

DVD Person
1

DVD Person

2
3

Figure 1-4. Getting everyone to keep the records

We say that the record keeping is now decentralized! We now have three persons
holding the same ledger. But wait a minute. What if A and C conspire to change the
records together so that they can steal the DVDs from B? Since majority wins, as long
as there is more than 50% of the people with the same records, the others would have
to listen to the majority. And because there are only three persons in this scenario, it is
extremely easy to get more than 50% of the people to conspire.

The solution is to have a lot more people to hold the ledger, especially people who
are not related to the DVDs sharing business (see Figure 1-5).

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

DVD Person — DVD Person
2 8
3G

Figure 1-5. Getting a group of unrelated people to help keep the records

This way, it makes it more difficult for one party to alter the records on the ledger,
and that in order to alter a record, it would need to involve a number of people altering
the record all at the same time, which is a time-consuming affair. And this is the key idea
behind distributed ledger, or commonly known as blockchain.

Blockchain As a Distributed Ledger

Now that we have a better idea of a distributed ledger, we can now associate it with
the term - blockchain. Using the DVD rental example, each time a DVD is borrowed
or returned, a transaction is created. A number of transactions are then grouped
into a block. As more transactions are performed, the blocks are linked together
cryptographically, forming what we now call a blockchain (see Figure 1-6).

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

A borrows DVD 6 from C

v B borrows DVD 7 from A _ Block

\ Chaining of

blocks, hence the
name blockchain

Figure 1-6. Transactions form a block, and then blocks are then chained

Based on what we have discussed, we can now summarize a few important points:

o Centralized databases and institutions work when there is trust in the
system of law, governments, regulatory bodies, and people.

e A decentralized database built on the blockchain removes the need
for the trust in a central body.

e Ablockchain can be used for anything of value, not just currencies.

How Blockchain Works

At a very high level, a blockchain consists of a number of blocks. Each block contains a

list of transactions, as well as a timestamp (see Figure 1-7).

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Genesis Block Block 3

Transaction Transaction Transaction Transaction

Transaction Transaction Transaction Transaction

Transaction Transaction Transaction Transaction

Timestamp Timestamp Timestamp

Blockchain

Figure 1-7. Every blockchain has a beginning block known as the genesis block

The blocks are connected to each other cryptographically, the details in which we
will discuss in the sections ahead. The first block in a blockchain is known as the genesis
block.

Note Every blockchain has a genesis block.

So, the next important questions is - how do you chain the blocks together?

Chaining the Blocks

Before we discuss how blocks in a blockchain are chained together, we have to discuss

a key concept in blockchain - hashing. A hash function is a function that maps data of
arbitrary size to data of fixed size. By altering a single character in the original string, the
resultant hash value is totally different from the previous one. Most importantly, observe
that a single change in the original message results in a completely different hash,
making it difficult to know that the two original messages are similar.

10

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

A hash function has the following characteristics:

o Itis deterministic - the same message always results in the same
hash.

o Itis a one-way process - when you hash a string, it is computationally
hard to reverse a hash to its original message.

o [Itis collision resistant - it is hard to find two different input messages
that hash to the same hash.

We are now ready to discuss how blocks in a blockchain are chained together. To
chain the blocks together, the content of each block is hashed and then stored in the next
block (see Figure 1-8). That way; if any transactions in a block is altered, that is going to
invalidate the hash of the current block, which is stored in the next block, which in turn
is going to invalidate the hash of the next block, and so on.

Genesis Block Block 2 Block 3 Block 4

Ha

Transaction Transaction Transaction
Transaction Transaction Transaction

Transaction Transaction Transaction

Blockchain

Figure 1-8. Chaining the blocks with hashes

11

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Observe that when hashing the content of a block, the hash of the previous block is
hashed together with the transactions. However, do take note that this is a simplification
of what is in a block. Later on, we will dive into the details of a block and see exactly how
transactions are represented in a block.

Storing the hash of the previous block in the current block assures the integrity of the
transactions in the previous block. Any modifications to the transaction(s) within a block
causes the hash in the next block to be invalidated, and it also affects the subsequent
blocks in the blockchain. If a hacker wants to modify a transaction, not only must he
modify the transaction in a block but all other subsequent blocks in the blockchain. In
addition, he needs to synchronize the changes to all other computers on the network,
which is a computationally expensive task to do. Hence, data stored in the blockchain
is immutable, for they are hard to change once the block they are in is added to the
blockchain.

Up to this point, you have a high-level overview of what constitutes a blockchain and
how the blocks are chained together. In the next section, you will understand the next
important topic in blockchain - mining.

Mining

Whenever you talk about blockchain or cryptocurrencies, there is always one term that
comes up - mining. In this section, you will learn what is mining, and what goes on
behind the scene.

Mining is the process of adding blocks to a blockchain. In a blockchain network,
such as the Bitcoin or Ethereum network, there are different types of computers known
as nodes. Computers on a blockchain that add blocks to the blockchain are known as
miner nodes (or mining nodes, or more simply miners).

We will talk about the different types of nodes later on in this course, but for now, we
want to talk about a particular type of node, known as the miner node. The role of the

miner node is to add blocks to the blockchain.
But how are blocks added?

Broadcasting Transactions

When a transaction is performed, the transaction is broadcasted to the network (see
Figure 1-9).

12

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Transaction 3

Mining Node 1 block

Transaction 2

|~

Transaction 1 7 Transaction 3
Transactions =~~~
Transaction2 —— are Mining Node 2 block

broadcasted
Transaction3 —— to the

) network \
Transaction 4 7 Transaction 4
\- { /

Mining Node 3 block

Transaction 1

Figure 1-9. Transactions are broadcasted to mining nodes, which then assemble
them into blocks to be mined

Each mining node may receive them at different times. As a node receives
transactions, it will try to include them in a block. Observe that each node is free to
include whatever transactions they want in a block. In practice, which transactions get
included in a block depends on a number of factors, such as transaction fees, transaction
size, order of arrival, and so on.

At this point, transactions that are included in a block but which are not yet added
to the blockchain are known as unconfirmed transactions. Once a block is filled with
transactions, a node will attempt to add the block to the blockchain.

Now here comes the problem - with so many miners out there, who gets to add the
block to the blockchain first?

The Mining Process

In order to slow down the rate of adding blocks to the blockchain, the blockchain
consensus protocol dictates a network difficulty target (see Figure 1-10).

13

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Block 2

Network
Difficulty target

Hash o
previous block

Transaction

Transaction

Transaction

Timestamp

Hash of
current block

The hash must
meet the
network
difficulty

target

Figure 1-10. Hashing the block to meet the network difficulty target

In order to successfully add a block to the blockchain, a miner would hash the
content of a block and check that the hash meets the criteria set by the difficulty target.
For example, the resultant hash must start with five zeros and so on.

As more miners join the network, the difficultly level increases, for example, the

hash must now start with six zeros and so on. This allows the blocks to be added to the

blockchain at a consistent rate.

But, wait a minute, the content of a block is fixed, and so no matter how you hash it,

the resultant hash is always the same. So how do you ensure that the resultant hash can
meet the difficulty target? To do that, miners add a nonce to the block, which stands for

number used once (see Figure 1-11).

14

CHAPTER 1

Block 2

Network
Difficulty Level

Nonce

Hash of
previous block

Hash of
Transaction

current block

UNDERSTANDING BLOCKCHAIN

The hash must

meet the
Transaction

target

Transaction

Timestamp

network
difficulty

Figure 1-11. Adding a nonce to change the content of the block in order to meet

the network difficulty target

The first miner who meets the target gets to claim the rewards and adds the block to

the blockchain. It will broadcast the block to other nodes so that they can verify the claim

and stop working on their current work of mining their own blocks. The miners would

drop their current work, and the process of mining a new block starts all over again.

The transactions that were not included in the block that was successfully mined will be

added to the next block to be mined.

REWARDS FOR MINERS

In the case of Bitcoin, the block reward initially was 50 BTC and will halve every 210,000
blocks. At the time of writing, the block reward is currently at 12.5 BTC, and it will eventually
be reduced to 0 after 64 halving events. For Ethereum, the reward for mining a block is

currently 2 ETH (Ether).

15

CHAPTER 1 UNDERSTANDING BLOCKCHAIN

BLOCKS ADDING RATES

For Bitcoin, the network adjusts the difficulty of the puzzles so that a new block is being mined
roughly every 10 minutes. For Ethereum, a block is mined approximately every 14 seconds.

Proof of Work

The process in which blocks are mined and added to the blockchain is known as the
Proof of Work (PoW). It is difficult to produce the proof but very easy to validate. A good
example of Proof of Work is cracking a combination lock - it takes a lot of time to find the
right combination, but it is easy to verify once the combination is found.

Proof of Work uses tremendous computing resources - GPUs are required, while
CPU speed is not important. It also uses a lot of electricity, because miners are doing the
same work repeatedly - find the nonce to meet the network difficulty for the block.

A common question is why you need to use a powerful GPU instead of CPU for
mining? Well, as a simple comparison, a CPU core can execute 4 32-bit instructions per
clock, whereas a GPU like the Radeon HD 5970 can execute 3200 32-bit instructions per
clock. In short, the CPU excels at doing complex manipulations to a small set of data,
whereas the GPU excels at doing simple manipulations to a large set of data. And since
mining is all about performing hashing and finding the nonce, it is a highly repetitive
task, something that GPU excels in.

Tip When a miner has successfully mined a block, he earns mining fees as well
as transaction fees. That’s what keeps miners motivated to invest in mining rigs
and keep them running 24/7, thereby incurring substantial electricity bills.

Immutability of Blockchains

In a blockchain, each block is chained to its previous block through the use of a
cryptographic hash. A block’s identity changes if the parent’s identity changes. This in
turn causes the current block’s children to change, which affects the grandchildren, and
so on. A change to a block forces a recalculation of all subsequent blocks, which requires
enormous computation power. This makes the blockchain immutable, a key feature of
cryptocurrencies like Bitcoin and Ethereum.

16

