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Introduction

Welcome to Beginning Ethereum Smart Contracts Programming!

This book is a quick guide to getting started with Ethereum Smart Contracts
programming. It first starts off with a discussion on blockchain and the motivations
behind it. You will learn what is a blockchain, how blocks in a blockchain are chained
together, and how blocks get added to a blockchain. You will also understand how
mining works and discover the various types of nodes in a blockchain network.

Once that is out of the way, we will dive into the Ethereum blockchain. You will
learn how to use an Ethereum client (Geth) to connect to the Ethereum blockchain and
perform transactions such as sending ethers to another account. You will also learn how
to create private blockchain networks so that you can test them internally within your
own network.

The next part of this book will discuss Smart Contracts programming, a unique
feature of the Ethereum blockchain. Readers will be able to get jumpstarted on Smart
Contracts programming without needing to wade through tons of documentation. The
learn-by-doing approach of this book makes you productive in the shortest amount
of time. By the end of this book, you would be able to write smart contracts, test them,
deploy them, and create web applications to interact with them.

The last part of this book will touch on tokens, something that has taken the
cryptocurrency market by storm. You would be able to create your own tokens and
launch your own ICO and would be able to write token contracts that allow buyers to buy
tokens using Ethers.

This book is for those who want to get started quickly with Ethereum Smart
Contracts programming. Basic programming knowledge and an understanding of
Python or JavaScript are recommended.

I hope you will enjoy working on the sample projects as much as I have enjoyed
working on them!
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CHAPTER 1

Understanding Blockchain

One of the hottest technologies of late is Blockchain. But what exactly is a blockchain?
And how does it actually work? In this chapter, we will explore the concept of blockchain,
how the concept was conceived, and what problems it aimed to solve. By the end of this
chapter, the idea and motivation behind blockchain would be crystal clear.

Tip  For the clearly impatient — A blockchain is a digital transaction of records
that’s arranged in chunks of data called blocks. These blocks link with one another
through a cryptographic validation known as a hashing function. Linked together,
these blocks form an unbroken chain — a blockchain. A blockchain is programmed
to record not only financial transactions but virtually everything of value. Another
name for blockchain is distributed ledger.

Hold on tight, as I'm going to discuss a lot of concepts in this chapter. But if you
follow along closely, you'll understand the concepts of blockchain and be on your way to
creating some really creative applications on the Ethereum blockchain in the upcoming
chapters!

Tip Ethereum is an open-source public blockchain that is similar to the Bitcoin
network. Besides offering a cryptocurrency known as Ether (which is similar

to Bitcoin), the main difference between Bitcoin and itself is that it offers a
programming platform on top of the blockchain, called Smart Contract. This book
focuses on the Ethereum blockchain and Smart Contract.

© Wei-Meng Lee 2019
W.-M. Lee, Beginning Ethereum Smart Contracts Programming,
https://doi.org/10.1007/978-1-4842-5086-0_1



CHAPTER 1  UNDERSTANDING BLOCKCHAIN

Motivations Behind Blockchain

Most people have heard of cryptocurrencies, or at least, Bitcoin.

Note The technology behind cryptocurrencies is blockchain.

To understand why we need cryptocurrencies, you have to first start with
understanding a fundamental concept - trust. Today, any asset of value or transaction is
recorded by a third party, such as bank, government, or company. We trust banks won'’t
steal our money, and they are regulated by the government. And even If the banks fail,
itis backed by the government. We also trust our credit card companies - sellers trust
credit card companies to pay them the money, and buyers trust credit card companies to
settle any disputes with the sellers.

Placement of Trusts

All these boil down to one key concept - placement of trust. And that is, we place our
trust on a central body. Think about it, in our everyday life, we place our trusts on banks,
and we place our trusts on our governments.

Even for simple mundane day-to-day activities, we place our trusts in central bodies.
For example, when you go to the library to borrow a book, you trust that the library
would maintain a proper record of the books that you have borrowed and returned.

The key theme is that we trust institutions but don’t trust each other. We trust our
government, banks, even our library, but we just don’t trust each other. As an example,
consider the following scenario. Imagine you work at a cafe, and someone walks up
to you and offers you a US ten-dollar bill for two cups of coffee. And another person
who offers to pay you for the two cups of coffee using a handwritten note saying he
owes you ten dollars. Which one would you trust? The answer is pretty obvious, isn’t it?
Naturally you would trust the US ten-dollar bill, as opposed to the handwritten note.
This is because you understand that using the ten-dollar bill, you can use it elsewhere
to exchange for other goods or services, and that it is backed by the US government. In
contract, the handwritten note is not backed by anyone else (except perhaps the person
who wrote it), and hence it has literally no value.
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Now let’s take the discussion a bit further. Again, imagine you are trying to sell
something. Someone comes up to you and suggests paying for your goods using the
currencies as shown in Figure 1-1.

| AA3905431

Figure 1-1. Currencies from two countries

Would you accept the currencies as shown in the figure? Here, you have two different
currencies - one from Venezuela and one from Zimbabwe. In this case, the first thing
you consider is whether these currencies are widely accepted and also your trust in these
governments. You might have read from the news about the hyperinflation in these two
countries, and that these currencies might not retain its value over time.

And so, would you accept these currencies as payment?

Trust Issues

Earlier on, I mentioned that people trust institutions and don’t trust each other. But even
established economies can fail, such as in the case of the financial crisis of the United
States in 2007-2008. Investment bank Lehman Brothers collapsed in September 2008
because of the subprime mortgage market. So, if banks from established economies can
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collapse, how can people in less developed countries trust their banks and governments?
Even if the banks are trusted, your deposits may be monitored by the government, and
they could arrest you based on your transactions.

As we have seen in the example in the previous section, there are times when people
don’t trust institutions, especially if the political situation in that country is not stable.

All these discussions bring us to the next key issue - even though people trust
institutions, institutions can still fail. And when people lose trust in institutions, people
turn to cryptocurrencies. In the next section, we will discuss how we can solve the trust
issues using decentralization, a fundamental concept behind cryptocurrency.

Solving Trust Issues Using Decentralization

Now that you have seen the challenges of trust - who to trust and who not to trust, it
is now time to consider a way to solve the trust issues. In particular, blockchain uses
decentralization to solve the trust issue.

In order to understand decentralization, let’s use a very simple example that is based
on our daily lives.

Example of Decentralization

To understand how decentralization solves the trust issue, let’s consider a real-life example.
Imagine a situation where you have three persons with DVDs that they want to share
with one another (see Figure 1-2).
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Figure 1-2. Sharing DVDs among a group of people

The first thing they need to do is to have someone keep track of the whereabouts
of each DVD. Of course, the easiest is for each person to keep track of what they have
borrowed and what they have lent, but since people inherently do not trust each other,
this approach is not very popular among the three persons.

To solve this issue, they decided to appoint one person, say B, to keep a ledger, to
hold a record of the whereabouts of each DVD (see Figure 1-3).
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Figure 1-3. Appointing a particular person to keep the records

This way, there is a central body to keep track of the whereabouts of each DVD. But
wait, isn’t this the problem with centralization? What happens if B is not trustworthy?
Turns out that B has the habit of stealing DVDs, and he in fact could easily modify the
ledger to erase the record of DVDs that he has borrowed. So, there must be a better way.

And then, someone has an idea! Why not let everyone keep a copy of the ledger
(see Figure 1-4)? Whenever someone borrows or lent a DVD, the record is broadcast to

everyone, and everyone records the transaction.



CHAPTER 1 UNDERSTANDING BLOCKCHAIN

DVD Person
1

DVD Person

2
3

Figure 1-4. Getting everyone to keep the records

We say that the record keeping is now decentralized! We now have three persons
holding the same ledger. But wait a minute. What if A and C conspire to change the
records together so that they can steal the DVDs from B? Since majority wins, as long
as there is more than 50% of the people with the same records, the others would have
to listen to the majority. And because there are only three persons in this scenario, it is
extremely easy to get more than 50% of the people to conspire.

The solution is to have a lot more people to hold the ledger, especially people who
are not related to the DVDs sharing business (see Figure 1-5).
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DVD Person — DVD Person
2 8
3G

Figure 1-5. Getting a group of unrelated people to help keep the records

This way, it makes it more difficult for one party to alter the records on the ledger,
and that in order to alter a record, it would need to involve a number of people altering
the record all at the same time, which is a time-consuming affair. And this is the key idea
behind distributed ledger, or commonly known as blockchain.

Blockchain As a Distributed Ledger

Now that we have a better idea of a distributed ledger, we can now associate it with
the term - blockchain. Using the DVD rental example, each time a DVD is borrowed
or returned, a transaction is created. A number of transactions are then grouped
into a block. As more transactions are performed, the blocks are linked together
cryptographically, forming what we now call a blockchain (see Figure 1-6).
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A borrows DVD 6 from C

v B borrows DVD 7 from A _  Block

\ Chaining of

blocks, hence the
name blockchain

Figure 1-6. Transactions form a block, and then blocks are then chained

Based on what we have discussed, we can now summarize a few important points:

o Centralized databases and institutions work when there is trust in the
system of law, governments, regulatory bodies, and people.

e A decentralized database built on the blockchain removes the need
for the trust in a central body.

e Ablockchain can be used for anything of value, not just currencies.

How Blockchain Works

At a very high level, a blockchain consists of a number of blocks. Each block contains a

list of transactions, as well as a timestamp (see Figure 1-7).
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Figure 1-7. Every blockchain has a beginning block known as the genesis block

The blocks are connected to each other cryptographically, the details in which we
will discuss in the sections ahead. The first block in a blockchain is known as the genesis
block.

Note Every blockchain has a genesis block.

So, the next important questions is - how do you chain the blocks together?

Chaining the Blocks

Before we discuss how blocks in a blockchain are chained together, we have to discuss

a key concept in blockchain - hashing. A hash function is a function that maps data of
arbitrary size to data of fixed size. By altering a single character in the original string, the
resultant hash value is totally different from the previous one. Most importantly, observe
that a single change in the original message results in a completely different hash,
making it difficult to know that the two original messages are similar.
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A hash function has the following characteristics:

o Itis deterministic - the same message always results in the same
hash.

o Itis a one-way process - when you hash a string, it is computationally
hard to reverse a hash to its original message.

o [Itis collision resistant - it is hard to find two different input messages
that hash to the same hash.

We are now ready to discuss how blocks in a blockchain are chained together. To
chain the blocks together, the content of each block is hashed and then stored in the next
block (see Figure 1-8). That way; if any transactions in a block is altered, that is going to
invalidate the hash of the current block, which is stored in the next block, which in turn
is going to invalidate the hash of the next block, and so on.
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Transaction Transaction Transaction

Transaction Transaction Transaction
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Figure 1-8. Chaining the blocks with hashes
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Observe that when hashing the content of a block, the hash of the previous block is
hashed together with the transactions. However, do take note that this is a simplification
of what is in a block. Later on, we will dive into the details of a block and see exactly how
transactions are represented in a block.

Storing the hash of the previous block in the current block assures the integrity of the
transactions in the previous block. Any modifications to the transaction(s) within a block
causes the hash in the next block to be invalidated, and it also affects the subsequent
blocks in the blockchain. If a hacker wants to modify a transaction, not only must he
modify the transaction in a block but all other subsequent blocks in the blockchain. In
addition, he needs to synchronize the changes to all other computers on the network,
which is a computationally expensive task to do. Hence, data stored in the blockchain
is immutable, for they are hard to change once the block they are in is added to the
blockchain.

Up to this point, you have a high-level overview of what constitutes a blockchain and
how the blocks are chained together. In the next section, you will understand the next
important topic in blockchain - mining.

Mining

Whenever you talk about blockchain or cryptocurrencies, there is always one term that
comes up - mining. In this section, you will learn what is mining, and what goes on
behind the scene.

Mining is the process of adding blocks to a blockchain. In a blockchain network,
such as the Bitcoin or Ethereum network, there are different types of computers known
as nodes. Computers on a blockchain that add blocks to the blockchain are known as
miner nodes (or mining nodes, or more simply miners).

We will talk about the different types of nodes later on in this course, but for now, we
want to talk about a particular type of node, known as the miner node. The role of the

miner node is to add blocks to the blockchain.
But how are blocks added?

Broadcasting Transactions

When a transaction is performed, the transaction is broadcasted to the network (see
Figure 1-9).

12



CHAPTER 1 UNDERSTANDING BLOCKCHAIN

Transaction 3

Mining Node 1 block

Transaction 2

|~

Transaction 1 7 Transaction 3
Transactions =~~~
Transaction2 —— are Mining Node 2 block

broadcasted
Transaction3 —— to the

) network \
Transaction 4 7 Transaction 4
\- { /

Mining Node 3 block

Transaction 1

Figure 1-9. Transactions are broadcasted to mining nodes, which then assemble
them into blocks to be mined

Each mining node may receive them at different times. As a node receives
transactions, it will try to include them in a block. Observe that each node is free to
include whatever transactions they want in a block. In practice, which transactions get
included in a block depends on a number of factors, such as transaction fees, transaction
size, order of arrival, and so on.

At this point, transactions that are included in a block but which are not yet added
to the blockchain are known as unconfirmed transactions. Once a block is filled with
transactions, a node will attempt to add the block to the blockchain.

Now here comes the problem - with so many miners out there, who gets to add the
block to the blockchain first?

The Mining Process

In order to slow down the rate of adding blocks to the blockchain, the blockchain
consensus protocol dictates a network difficulty target (see Figure 1-10).
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Figure 1-10. Hashing the block to meet the network difficulty target

In order to successfully add a block to the blockchain, a miner would hash the
content of a block and check that the hash meets the criteria set by the difficulty target.
For example, the resultant hash must start with five zeros and so on.

As more miners join the network, the difficultly level increases, for example, the

hash must now start with six zeros and so on. This allows the blocks to be added to the

blockchain at a consistent rate.

But, wait a minute, the content of a block is fixed, and so no matter how you hash it,

the resultant hash is always the same. So how do you ensure that the resultant hash can
meet the difficulty target? To do that, miners add a nonce to the block, which stands for

number used once (see Figure 1-11).
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Figure 1-11. Adding a nonce to change the content of the block in order to meet

the network difficulty target

The first miner who meets the target gets to claim the rewards and adds the block to

the blockchain. It will broadcast the block to other nodes so that they can verify the claim

and stop working on their current work of mining their own blocks. The miners would

drop their current work, and the process of mining a new block starts all over again.

The transactions that were not included in the block that was successfully mined will be

added to the next block to be mined.

REWARDS FOR MINERS

In the case of Bitcoin, the block reward initially was 50 BTC and will halve every 210,000
blocks. At the time of writing, the block reward is currently at 12.5 BTC, and it will eventually
be reduced to 0 after 64 halving events. For Ethereum, the reward for mining a block is

currently 2 ETH (Ether).
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BLOCKS ADDING RATES

For Bitcoin, the network adjusts the difficulty of the puzzles so that a new block is being mined
roughly every 10 minutes. For Ethereum, a block is mined approximately every 14 seconds.

Proof of Work

The process in which blocks are mined and added to the blockchain is known as the
Proof of Work (PoW). It is difficult to produce the proof but very easy to validate. A good
example of Proof of Work is cracking a combination lock - it takes a lot of time to find the
right combination, but it is easy to verify once the combination is found.

Proof of Work uses tremendous computing resources - GPUs are required, while
CPU speed is not important. It also uses a lot of electricity, because miners are doing the
same work repeatedly - find the nonce to meet the network difficulty for the block.

A common question is why you need to use a powerful GPU instead of CPU for
mining? Well, as a simple comparison, a CPU core can execute 4 32-bit instructions per
clock, whereas a GPU like the Radeon HD 5970 can execute 3200 32-bit instructions per
clock. In short, the CPU excels at doing complex manipulations to a small set of data,
whereas the GPU excels at doing simple manipulations to a large set of data. And since
mining is all about performing hashing and finding the nonce, it is a highly repetitive
task, something that GPU excels in.

Tip When a miner has successfully mined a block, he earns mining fees as well
as transaction fees. That’s what keeps miners motivated to invest in mining rigs
and keep them running 24/7, thereby incurring substantial electricity bills.

Immutability of Blockchains

In a blockchain, each block is chained to its previous block through the use of a
cryptographic hash. A block’s identity changes if the parent’s identity changes. This in
turn causes the current block’s children to change, which affects the grandchildren, and
so on. A change to a block forces a recalculation of all subsequent blocks, which requires
enormous computation power. This makes the blockchain immutable, a key feature of
cryptocurrencies like Bitcoin and Ethereum.
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