MonoGame
WNENEY

Build a Multi-Platform 2D Game and
Reusable Game Engine

Jarred Capellman
Louis Salin

ApPress’

MonoGame Mastery

Build a Multi-Platform 2D Game
and Reusable Game Engine

Jarred Capellman
Louis Salin

Apress’

MonoGame Mastery

Jarred Capellman Louis Salin
Cedar Park, TX, USA Cedar Park, TX, USA
ISBN-13 (pbk): 978-1-4842-6308-2 ISBN-13 (electronic): 978-1-4842-6309-9

https://doi.org/10.1007/978-1-4842-6309-9

Copyright © 2020 by Jarred Capellman, Louis Salin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Rita Fernando

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6308-2. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6309-9

To my wife, Amy, for always supporting me through
thick and thin.
—Jarred Capellman

To my kids, in the hope that they pursue their dreams.
—Louis Salin

Table of Contents

About the AUthOrsS.........cccccummsmmmmssnsmmsssssmssssssssss s sas s ssnnnnns xi
About the Technical REVIEWETcccccssssemsmssansssssnsssssssssssnsssssasssssnnss xiii
Acknowledgments.........cccuuussssnmmnnmmmmmssssssssssssnnnmesssssssssssnnnsnesssssssnnnnns XV
INtroductioncccccnsemmmnsnmmsssnnmssssnmsssnsmsssnnssssnsssssnsssssnnnnssnnnnssnnnnnnns Xvii
Chapter 1: Introduction..........cccevnnemmnnnnnssesnmmmssessmmmsssssessssnssssmms 1
WhO ThiS BOOK IS FOI?......oeeeeeereeree s 2
What This BOOK IS NOL ... 2
Reader ASSUMPLIONSccccveriniinnene s se s s s s 3
What IS MONOGAMEccoerrererrierrnesrsesese s s s s s sssessessssssessnnes 4
MonoGame Compared t0 ENQINES.......ccccvvvrierennsnienesn s sessessessessssessessesees 6
Game Types Best Suited for MONOGAMEc.ccvvvververererennerserersesessesessessssesessens 6
Vertical SHOOTENS ... 7
Horizontal SNOOTENS ... 8

SidE SCIOIIEIS ... s 10

310 (=0 o o R 11
PUZZIE ...ttt e e 12
L2 (T SRS 13
Organization of THiS BOOKccucvrerererrenseriersssssessessessssessessessesssssssessessessssensesses 14
{10 LT 11T O 15
SUMIMANY.....eeeeererereee e e e e e re e e e e 16

TABLE OF CONTENTS

Chapter 2: Configuring the Dev Environmentccccevnnnnnnnnnnsssnnnnns 17
Development Environment Configurationcccvvvnecnecnnccvnscseneccciscenens 18
Platform AgNOSLICccucvererirrrc s e 18

Set Up Your Windows Development Environment.............ccocviniennencrniennnn 18

Set Up Your macOS Development ENVIronment..........cceevveveeververerenensensensens 22

Set Up Your Linux Development Environmentccccveevievvnnsenierenensensenens 27
Additional TOOKING......coiviirierern e s 28
L0103 29
Visual Studio EXIENSIONSccoveoerercrerecresererenese e 32
SUMMANY....eeieeereserre e se s e e se s e re e e e ne s 34
Chapter 3: MonoGame Architectureccccrmmsemmmmnssssnnnmssssssnssssssnnnns 35
Mon0Game ArChiteCLUTE.........ucveerrererreerinese s e 35
PIPEIINE ADP . it 35
GAME ClASS....cerrrreerreserrness s r s s sn e nranis 38

Your First Rendered PiXelS ... 40
Creating the Solution and Project.........c.ccoevvrvrinennnnseniene e sessessenns 40
Diving into the PrOJECT........cccvvviererirsere e s 43
Diving into MaiNGAME.CScovverierrerrrririerers s e s s s saeses e saesaes 45
EXECULION OFAEY ...ttt s 49
1] 4= O 50
Chapter 4: Planning Your Game ENgineccuucemrmnsssnnnssssssssnssssssnnnnes 51
Game ENGINE DESIGN.....ccoceeerererieerirerers e ses e se e se e e ses e ens 51
Player INPUL ...t s 52
Artificial Intelligence (Al)ccvcvierernnnieresr e 53
VT L0 =] S 53
Graphical RENAEIINGcc.eveverrererererrererereeses e re e ssssessessessesessessessesssssssessees 53
L0 g Lo 2 1=T 1o (=T 13T S 54

TABLE OF CONTENTS

o)] [S 54
State ManagemeNt.........coivvvvrrerernserser e s se e e ene s 54
Implementing the Architecture of the ENginec.ccoevvnvrnesnsncnesssiniennens 58
Creating the Project.........ccvcvicrninnssn e 58
Creating the State ClaSSESc.cvreverrerverereresrersesessssesessessesessessessesssssssessees 59
Creating the Scaler and Window Managementccccveeveverreriereressensensenns 62
L 1)1] 71
SUMMANY..c..eitiie s s s e b e e e s p e e e aennan 74
Chapter 5: Asset Pipelineccccuinnmmemmmmmnmnnnnnssssssssnsmnsssssssssssssnss 75
MonoGame AsSet PIPEIINE.........ccccvviniinini e 75
ContentManager Classovurrnsererenesnsmsessesessse s s s sessesessssessnnes 76
MonoGame Pipeling TOOcccerernininiennrns e 78
Integrate the Asset Pipeline into the ENgine..........ccovcevennescrnsesnsesenesessnsennns 79
BaseGameState ... 79
MAINGAMEc.veeeereerree s rn s 81
Add a Player Sprite t0 the GAMEccevvvrirrnrrrr e 82
Reviewing the NEW ASSEIScccvierrinieniennrinsene s se s sesse s ssesesesaesaes 83
Adding the New Assets to Qur Content...........c.ccovevrnrernsesnnesesesessesssseens 85
Game Code ChANGESccovererrenerrnesensesesrsse s ss s e s sessessssasessnnes 89
Running the AppliCation..........ccccuecererrnnennesn s 91
1] 4= O 93
Chapter 6: Input..........cccccnrniinmmnnmisssnnmmssssssssss s sannns 95
Discussing the Various Input Mechanismscccceovnvnvnnnnnsnnnnesnsensenens 96
Keyboard Stateccccvvcrnienrerrrc st 96
MOUSE STALEcovrrrrieecri i 100
Gamepad State ... ——————— 101

vii

TABLE OF CONTENTS

Scrolling BaCKgroUNG..........covcerrerierersnsersesesssssssessessessssessessesssssssessessessssensessens 103
Creating a Generic Input Man@gerccoveererrnrenenesenssesssesese e sessesenns 111
ShoOtiNG BUIIEEScvereereererere et rere e s s e se s e sr e e s s s e e snesne s 118
SUMMAIY..c..citiiiire e s b e e p e e s R r e e e nne s 123
Chapter 7: AUAIOcccviiimmmmmmnnnnrissssssssssssnsssessssssssssssnnnseessssssnnnnnnnnnness 125
Refactoring the ENQINe.........cccoveernennnenmnsscrssessse e s sennes 125
Code Organizationccoveevnreseresesnsssessesesese s sessesesennes 131
AUGIO ...ttt 133
Playing @ SOUNALrACK.........ccovenerrnnerrsesesrese s se e sssse s s e sessesnssenens 135
SOUNA EffECTS .ovvverrrcsereserse s s 140
SUMMAIY.c.ueiteiriere e s e s sa e e e e s b s e e e s e aesae e e e naenne s 145

Chapter 8: Particlesuuveeeennninnmmsmssssssssnsnsmsssssssssssssssssssssssssssssssssnns 147

Anatomy 0f @ PartiCle........cccerririine s 149
Learning with an Online Particle Eitor.........cccovvririninsninienssrccness e 150
Different Shapes of Particle EmIitterscoocvvvvrvecrncnnccrececrccvereens 152
Adding a Particle System t0 OUr GAMEcccreeerrrerererereserere e 153
o 1 (T SR 154
EmitterParticleStatecco v 159
IEMIEITYPE. e s 163
CONEEMILEEITYPE. ... e 164
o 0T 1] TR 166
Adding a Missile and Smoke Trail to Our GAMEcccveerereerererrererenerensesesenens 172
Creating a Dev Game State 10 Play With...........cccoverreennienresernscsesesereene 172
Adding the Missile Game Object to Qur Game...........covrrieseneressssesesenens 184
SUMMANY....ceiveerercresese s s e s se s s e e nensenenns 189

viii

TABLE OF CONTENTS

Chapter 9: Collision Detectionccccussueemnnsssssnnnmsssssnnsssssssssssssssnns 191
TECHNIQUES ...t e 193
AABB (Axis Aligned Bounding BoX)........cccouurieriernsnnensessessnsessessessssssessessens 195
0BB (Oriented Bounding BOX).......ccccocvurverenenmnnnerinsesessesesssessssesessesessesessnses 196

LS 0 1= 198
UNITOIM GrIdS.....cvceccreresrseese e 199
QUAAEIEES ... 200
03 T=T g 1= T 0 T 203
Adding Enemies t0 Our GAMEcccevervneninsnsnsese e snes 203
Rotating Our CROPPELc..cueoereerce ettt se e 206
SPINNING BIAUES.......coveirecrice e 208
Making the Choppers MOVE..........ccorererrnernserineses s sesse e e sessesessenens 209
Adding an Explosion Particle ENgine............ccccovevvinsnnniennsnsessesnessssessennens 216
Adding Collision Detectionccccurevvinvnininnnsnr e 219
BoUNAING BOXES.....coiiirereriirirserese s s ss s s s ssssessesnens 220
AABB Collision DeteCction........c.cccceeererererrererenesreseressese s sesesenns 229
SUMMANY....eieerieereree e n e pe e e e 234
Chapter 10: Animations and Text.......ccccerrrrmmmmsssnssnnnnnesssssssssnsnsnnnnnes 237
A Bit 0f RefaCtoring........ccccvverevnririere s sese s s s ssesessessesnes 238
ANIMALIONS ... 242
01 (TR 1T O 242
TEXEUE AUAS ... 244
Animation DOWNSIAES........cccoevereriiirerr s 245
State MaCKINES.........ccoevrrrrr s 246
AniMation ENQINEcovvvvniennnrierere e sessese s ssssessessessessssessessens 248
Animating Our Fighter PIane........c.ccoevvvervrierenesserenesessesessessssessessesssssssessesnes 255

ix

TABLE OF CONTENTS

TEXE 1ottt e bR 262
FONTS....eic s e 262
Adding Fonts to the Content Pipelingcccevvevvvnvrienienensensensesesessenensens 263
Fonts AS GAME ODJECLS......cvververerererrerrere s s seesesessesaesessessessessesessesnens 264
TraCKING LIVES....eecerereereererierersesesseressessessssessessessssessessessessssessessesassssssssessens 266
GAME DVcveececere s e 267

SUMMAIY . veitetrereresee s ressesesersessesae e ssessesaesessesaesaess e e ssesaesassessessesasssssensessens 270

Chapter 11: Level DeSign....c.ccccerrrmsssmmnmmssssssssssssssssssssssssssssssssnnnsssssnns 271

LEVEI EQILOrS ..c.vceceeeeeeeecresee e 272
What IS @ LEVEI? ... 273
I T | T 275
Level Readers, Levels, and Our Gameplay Statecccevvevvrierivnenccnienne, 277

AdAING TUITETS ... e 286
Game Art and OFiginS........covecrerrererenmrnsesessesesese s sese s sessesessesessasessnns 287
TUITEE BUIIELS ... e 299
ColliSion DETECHiON.........ccecrerererereree s 306
L0 T T T N o T 311
L0 (01T < 311

Reviewing Our LeVel DESIgNccccovvererenerrnsmsesesesesesessesesssses s sessssessssessnnes 312

Improving the GAMEPIAYccveervrernresrrese e 313

SUMMAIY . .eitetrierere st e s s se s e s sa e e e e e ae e aesae e e e eaesae e e e nannaees 315

1T = 317

About the Authors

Jarred Capellman has been professionally
developing software for over 14 years and is
Director of Engineering at SparkCognition

in Austin, Texas. He started making QBasic
text-based games when he was 9 years old. He
learned C++ a few years later before studying
OpenGL with the eventual goal of entering
the gaming industry. Though his goal of
professionally developing games didn’t come
to fruition, he continued deep diving into

frameworks such as MonoGame, Vulkan, and
DirectX as an important part of his free time.
When not programming, he enjoys writing music and is working on his DSc
in Cybersecurity, focusing on applying machine learning to security threats.

Louis Salin has been a developer for more
than 15 years in a wide variety of fields,
developing on Windows in the early days in
C, C++, and eventually C# before working as
a developer on Linux-based web applications
using different scripting languages, such as
Ruby and Python. His early love for coding
comes from all the time he spent as a kid
copying video games written in Basic from
books borrowed from the library. He wrote

his first game in high school and took many
classes in computer graphics.

About the Technical Reviewer

Simon Jackson is a long-time software
engineer and architect with many years

of Unity game development experience,

as well as an author of several Unity game
development titles. He loves to both create
Unity projects and lend a hand to help educate
others, whether it’s via a blog, vlog, user group,
or major speaking event.

His primary focus at the moment is with
the XRTK (Mixed Reality Toolkit) project;
this is aimed at building a cross-platform
Mixed Reality framework to enable both VR and AR developers to build
efficient solutions in Unity and then build/distribute them to as many

platforms as possible.

xiii

Acknowledgments

There were two big drivers for bringing me to focus my career on
programming. The first being my father who handed me a QBasic book
when [was 9 years old. He supported my passion for programming
throughout my childhood, buying books and updated versions of Visual
Basic and Visual C++ every release. The other was John Carmack. When I
first played Wolfenstein 3D in 1992, I was mesmerized at how immersive
the game was. A few years later seeing John Carmack on the cover of
the Wired magazine, reading how he and John Romero had created and
transformed the first-person-shooter genre, I knew [wanted to achieve
that level of impact in my career.

—TJarred Capellman

Many events in my life brought me to this point, where I get to thank
the people who have helped me and believed in me. My father bought me
my first computer and enrolled me in a Basic class in sixth grade, where I
learned how to draw lines and circles on the screen.

Years later, Richard Egli, my computer graphics professor in college,
brought me to my first SSIGGRAPH conference where I learned how deep
the rabbit hole goes. Thank you for believing in me.

Finally, I'd like to thank Jarred, my coauthor, for giving me a chance to
help him write this very book.

—Louis Salin

Introduction

Building video games has an undeniable appeal in the imagination of
many people coming from various backgrounds. Many children want
to be game designers when they grow up and many programmers have
learned the art of writing code thinking that they would, one day, create
their own game.

Creating a video game is both an expressive art form and a series
of logical challenges that must be solved. A game programmer needs
to be creative while materializing the content of their imagination on a
computer monitor, and at the same time, they must constantly solve the
many physical constraints placed upon them as they shape their game. For
those of us that enjoy solving problems and have a penchant for art, this is
a dream field, whether as a hobby or, professionally, as a full-time job.

There has never been a better time for regular people than today to
write video games! While hobbyists around the world have built games
since the 1970s, the amount of deep technical knowledge required has
diminished and the barrier of entry has dropped much lower in the
last few years. Game tooling and game engines now abstract away the
complexities of getting something drawn on a screen, while computers
have gotten so powerful that programmers do not have to be so precise
anymore in the way they handle memory management and the game
performance. Furthermore, getting a video game published on gaming
consoles and computers has become much more accessible today to
anyone with the perseverance to bring their game to completion, as can be
seen with the sheer number of indie games found on the market.

Software developers today have a wide array of technologies to choose
from when building their game. One of these choices is MonoGame, a
framework for creating powerful cross-platform games.

xvii

INTRODUCTION

In this book, we aim to take experienced C# programmers through
a journey as we explain game development basics and build a small
two-dimensional vertical shooter video game from scratch, using
MonoGame as our framework. By the end of this book, our readers will
not only have built a reusable game engine that they will be able to use
in their future games, but they will also have gained valuable knowledge
to give them a leg up in their future projects, whatever framework or
engine they decide to use.

xviii

CHAPTER 1

Introduction

Chances are by reading this opening line you are at the very least intrigued
to start learning about developing a game from scratch. This book was
written to take you from this thought to fruition utilizing the MonoGame
Framework. We will start by providing you, the reader, a strong foundation
in the MonoGame architecture and continuing through with sprites,
sound, and collision detection before wrapping up with separation of
concerns preparing you for future developments.

Unlike other books on game development, this book will evolve
with each chapter building on the last with a project-based approach as
opposed to snippets of code here and there. For this book we will start
from scratch on a vertical shooter akin to those of the late 1980s and early
1990s. The vertical shooter game type is a great starting point for aspiring
game developers as it contains all the elements found in modern games:

e Multilayered scrolling backgrounds

e Collision detection of projectiles and enemies
o Computer-controlled enemies

e Sprites

o Player input

o Event-based sound effects

e Level structure

© Jarred Capellman, Louis Salin 2020 1
J. Capellman and L. Salin, MonoGame Mastery,
https://doi.org/10.1007/978-1-4842-6309-9_1

https://doi.org/10.1007/978-1-4842-6309-9_1#DOI

CHAPTER 1 INTRODUCTION

In addition, this book will dive into proper engine design and game
tooling that are arguably overlooked in many game development books.
In this chapter, you will learn about

e MonoGame at a high level
o Difference between MonoGame and game engines
e Game types suited to MonoGame

o What to expect from the book and previews of the
chapters to come

Who This Book Is For?

This book is targeting the aspiring game developer who wants to make

a 2D game. Royalty-free game assets for sound, music, textures, and
sprites will be provided (all created by yours truly), thus allowing the
book to focus on the programming and architecture components of game
development without worrying about cranking out game assets.

What This Book Is Not

While we will review game types as it relates to what pairs well with
MonoGame, this book will not go over game design principles, asset
creation, or the game development life cycle. There are numerous
resources available including entire books devoted to these individual
components and are outside the scope of this book.

CHAPTER 1 INTRODUCTION

Reader Assumptions

While no game development experience is required, there is an
expectation that you are a seasoned C# programmer. While MonoGame
is easy to get started with due to the architecture and the simple design,
the framework is written in C#. In addition, the project we will be
iterating on throughout this book utilizes many core aspects of the C#
programming language such as inheritance and reflection. If you find
yourself reviewing the accompanied source code and are struggling, I
suggest picking up C# Programming for Absolute Beginners also from
Apress to close the gaps.

From a development machine standpoint, this book will review how
to configure a MonoGame development environment on both macOS and
Windows with Visual Studio. Linux can also be used as a development
environment with Visual Studio Code; however, Windows will be the
preferred environment for the scope of this book due to the tooling Visual
Studio for Windows offers.

With all of the assets provided with this book in formats MonoGame’s
pipeline can natively read (more on this feature in Chapter 5), no other
tools are required. Experience with tools such as Photoshop, 3ds Max, and
Audition will come in handy for your future development efforts even if it
is simply a beginner skill level.

At the time of this writing, version 3.8 of MonoGame is the latest
production version available, which was released on August 10, 2020. This
version will be used for all code samples and snippets throughout this
book. Versions 3.8.x or later may be available by the time you are reading
this; however, based on the road map, samples should continue to work
without issue.

CHAPTER 1 INTRODUCTION

What Is MonoGame

MonoGame at the highest level is a C# Framework that provides
the developer a canvas to quickly create the game of their dreams.
MonoGame is open source (Microsoft Public License) and royalty-
free (over 1000 games have been published to various stores). While
MonoGame does offer 3D support, the community by and large uses its
powerful 2D support almost exclusively, and that will be the focus in this
book (for 3D games the use of Unity or Unreal Engine is recommended).
MonoGame's source code is available on GitHub (https://github.com/
MonoGame/MonoGame).

Like many frameworks and engines available today, MonoGame like
C# is cross-platform. MonoGame currently runs on

e Windows Desktop (7/8.x/10)
e Universal Windows Platform
e MacOS

e Linux

o PlayStation 4

e XboxOne

e Nintendo Switch

e Android (4.2 or later)

e 1i0S

For PlayStation 4, Xbox One, and Nintendo Switch, it should be noted
that additional developer agreements are required before publishing to the
respective stores.

Given MonoGame’s underlying usage of C#, as new platforms become
supported by C#, MonoGame should not be far behind.

https://github.com/MonoGame/MonoGame
https://github.com/MonoGame/MonoGame

CHAPTER 1 INTRODUCTION

Throughout the book, we will review any platform-specific
considerations such as resolution and input methods (touch vs. keyboard,
for instance). Fortunately, designing around a cross-platform game does
not require much upfront effort with MonoGame.

MonoGame at a high level provides

e The Main Game Loop
o Handling Updates
e Rendering Method
o Content Manager
o Content Pipeline
e Support for OpenGL and DirectX

One of the best features of MonoGame’s design is this simplicity, unlike
other frameworks that have an extremely difficult learning curve to even
get the first pixel rendered. Over the course of this book, we will extend this
structure to support more complex scenarios and provide a rich expandable
engine to not only build on with each chapter but also provide a framework to
build your own game. In Chapter 3, we will deep dive into this architecture.

Seasoned developers at this point may be wondering what the
relationship between MonoGame and Microsoft’s XNA framework is. At a
high level, there isn’t a direct relationship. The underlying structure bulleted
earlier is retained and the use of C# as the language is where the correlations
end. MonoGame grew out of a desire from Jose Antonio Leal de Farias in
2009 to create XNA Touch. Similar to the effort on Mono Touch to bring
Mono to i0S, the goal was to bring XNA to iOS. By that point, XNA was
stagnating with the release of 4.0 in 2010 (which would be the last version
released) and an official statement ending support in 2013. From there XNA
Touch was renamed to MonoGame with support coming to Android, Mac,
and Linux shortly thereafter. MonoGame eventually made it to GitHub and
at the time of this writing has over 2200 forks with 267 contributors.

CHAPTER 1 INTRODUCTION

MonoGame Compared to Engines

MonoGame as mentioned is a pure framework. From the beginning of
development, the goals of MonoGame were to create a flexible, simple,
but powerful framework. The main design reason for this was to allow
MonoGame to be used in a wide range of genres and game types as
opposed to an engine that more often than not is tailored to a specific
genre (generally the genre that the game driving the engine’s development
was such as the Quake series).

An engine conversely like that of Unity, Unreal Engine, or id Tech,
to name a few, provides an end-to-end engine and editor with all of the
various components that make up a game engine such as rendering,
physics, level editors, and content pipelines with integrations into
modeling programs. Depending on the level of deviation from the
engine’s core, there may be very little for an implementer to have to
extend on their own. The engine approach allows a team of artists and
designers a canvas ready to start implementing the game as opposed
to waiting for the programmers to create the engine from scratch or
build on top of a framework such as MonoGame. Learning curves and
licensing fees of the aforementioned engines also should be taken into
consideration.

If you're reading this book, chances are you wish to dive a bit lower
level with a quick learning curve - this book should achieve that.

Game Types Best Suited for MonoGame

As mentioned previously, MonoGame is best suited for 2D games. With
the revival of classics from the 1980s and 1990s in addition to a return
to simple but fun games like Castle Crashers, this isn’t a hindrance, if
anything a benefit as the framework is set up for these game types.

CHAPTER 1 INTRODUCTION

MonoGame can be used in a wide range of game types; the following
are a few examples of types that work best. In addition, for each game
type, the pros and cons in comparison to the other types will be reviewed.
When planning a game, weighing all of the pros/cons of a particular type
should be a major part of your development efforts. For your first game
after completion of this book, choosing an easier to implement game type
is strongly suggested.

Vertical Shooters

Popularized by Capcom’s 1942 and enhanced into the 1990s as graphics
and gameplay advancements were made, vertical shooters can range
from more science-fiction ala Major Stryker or more grounded like that
of Raptor. As mentioned earlier in this chapter, for this book we will be
building a vertical shooter from the ground up; a screenshot of the game
from Chapter 4 is depicted in Figure 1-1.

Figure 1-1. Our 2D game from Chapter 4

CHAPTER 1 INTRODUCTION

There are some advantages and disadvantages to developing vertical
shooters:
Pros

o Easyto dive into.
o Controls are basic.
e Graphics are easy to implement.
o Level generation and tooling is simple.
o Alis easy to implement.
Cons
o Tired genre

o Need to generate some unique gameplay to
differentiate from Raptor and other well-known
vertical shooters.

Horizontal Shooters

Made popular by games like Einhander in the 1990s, similar to a vertical
shooter, but affords more variety in the gameplay. A great MonoGame
example of this is Pumpkin Games’ Paladin in Figure 1-2.

CHAPTER 1 INTRODUCTION

Figure 1-2. Pumpkin Games’ Paladin

There are some advantages and disadvantages to developing
horizontal shooters:
Pros

o Easyto dive into.
o Controls are basic.
o Level generation and tooling is simple.
e Aliseasyto implement.
Cons

o Graphics fidelity in this genre is required to be high due
to competition.

o Tired genre

o Need to generate some unique gameplay to
differentiate from other games.

CHAPTER 1 INTRODUCTION

Side Scrollers

Side scrollers are a genre that took off in the late 1980s and continues
to this day, offering a wide range of adventure and action games from
the horizontal perspective. MonoGame’s native support for sprites and
hardware-accelerated 2D graphics have made this an easy choice to
develop for.

Krome Studios’ Tasmanian Tiger 4 is a great example of fluid
animation and fast action using MonoGame as shown in Figure 1-3.

Figure 1-3. Krome Studios’ Tasmanian Tiger 4

There are some advantages and disadvantages to developing side
scrollers:
Pros

o Diverse Gameplay is achievable.
Cons
e Graphics can be tricky to implement depending on the

gameplay.

10

CHAPTER 1 INTRODUCTION

e Al can also be tricky depending on the gameplay.

o Tooling can also be cumbersome to develop for.

Role Playing

Made popular by the Final Fantasy series on Super Nintendo, the 2D
isometric view has been used ever since for 2D role-playing games. A
popular example of this game type with MonoGame is ConcernedApe’s
Stardew Valley as shown in Figure 1-4.

H@FS @ N>

Figure 1-4. ConcernedApe'’s Stardew Valley

Pros
o Diverse Gameplay is achievable.
e Al can be easy to implement (depending on the level of

NPC interactions).

11

CHAPTER 1 INTRODUCTION

Cons

e Graphics handling of the tiles and sprites can be
cumbersome.

o Tooling can also be cumbersome to develop for.

Puzzle

Puzzle games especially on mobile given the popularity of Angry Birds and
Bejeweled among others in recent years coupled with MonoGame’s ease
of use are a perfect fit. An example of this game type using MonoGame is
Endi Milojkoski’s Raining Blobs as shown in Figure 1-5.

Figure 1-5. Endi Milojkoski's Raining Blobs

Pros
o Diverse Gameplay is achievable.

e Graphics can be easy to implement.

12

CHAPTER 1 INTRODUCTION

e Al can be easy to implement.
o Tooling can also be easy to implement.
Cons

e Achieving a unique and/or fun gameplay in the
crowded market can be extremely challenging.

Strategy

Strategy games commonly range between turn-based, real-time, and
strategy/role-playing game hybrids. While much more complex to design
and implement, they can provide a unique experience for gamers. Reason
Generator Inc’s Wayward Terran Frontier is a good example of utilizing
MonoGame to its fullest in Figure 1-6.

Figure 1-6. Reason Generator Inc’'s Wayward Terran Frontier

13

CHAPTER 1 INTRODUCTION

Pros
o Diverse Gameplay is achievable.
Cons

e Graphics can be tricky to implement depending on the
gameplay.

e Al can also be tricky depending on the gameplay.

o Tooling can also be cumbersome to develop for.

Organization of This Book

As stated at the start of this chapter, this book breaks down each of the
topics into manageable and isolated chapters. The following is an overview
of the book and the topics we will cover:

Chapter 2 details how to get your development environment setup
from start to finish for the remainder of the book. By the end of the chapter,
you will be able to run a blank MonoGame project. Both macOS and
Windows setup will be covered in detail. Linux will be discussed, but not
recommended going forward for the rest of the book.

Chapter 3 deep dives into the MonoGame architecture including going
into detail about 2D graphics, the game timer, and input. This chapter should
not be overlooked even if you have done game development in the past as it
will offer a deep insight into how MonoGame’s architecture is set up.

Chapter 4 starts the deep dive into creating an architecture that we will
be building off of for the remainder of the book. As with Chapter 3, this
chapter should not be skipped as the objects, managers, and Game class
changes will be described in detail.

14

CHAPTER 1 INTRODUCTION

Chapter 5 goes into detail of how the Asset pipeline works in
MonoGame. In addition, integration with the ContentManager into the
Game States will also be detailed. At the end of the chapter, we will render
our first sprite.

Chapter 6 covers the handling of input with both a keyboard and
mouse. In addition, platform-specific considerations will be reviewed to
handle gamepad and touch screen input.

Chapter 7 goes into how to add audio to our architecture and add
audio triggers to our event system. In addition, supporting background
music layers will also be discussed.

Chapter 8 deep dives into how to integrate particles into our
architecture to handle the bullet fire from both our player object and setup
for future enemy objects.

Chapter 9 reviews various methods of collision detection used in
games. For our project, we will use box collision and integrate it into our
architecture to handle not only player object collisions but also projectile
collisions.

Chapter 10 adds animations into our architecture and reviews
approaches used throughout the industry. At the end of the chapter,
animations of objects are added to the game.

Chapter 11 reviews the importance of level design and goes into detail
of how to add level loading to our game engine.

Code Samples

Code samples starting with Chapter 3 will be referenced throughout
each section. Outside of the code samples, there is also an Assets archive
that contains all of the music, sound effects, sprites, and graphics used
throughout the book.

15

