_—

T et ‘*
A as

L)

The Definitive Guide
to Jakarta Faces in
Jakarta EE 10

Building Java-Based Enterprise
Web Applications

Second Edition

Bauke Scholtz
Arjan Tijms

Apress:

The Definitive Guide
to Jakarta Faces In
Jakarta EE 10

Building Java-Based Enterprise
Web Applications

Second Edition

Bauke Scholtz
Arjan Tijms

Apress’

The Definitive Guide to Jakarta Faces in Jakarta EE 10: Building Java-Based
Enterprise Web Applications

Bauke Scholtz Arjan Tijms
Willemstad, Curacao Amsterdam, Noord-Holland, The Netherlands
ISBN-13 (pbk): 978-1-4842-7309-8 ISBN-13 (electronic): 978-1-4842-7310-4

https://doi.org/10.1007/978-1-4842-7310-4

Copyright © 2022 by Bauke Scholtz and Arjan Tijms

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Laura Berendson

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Shutterstock (www.shutterstock.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7310-4

Table of Contents

About the AUtROrS.........ucmmsmmmsemmimmmsssasss s Xi
About the Technical ReVIEWETccusssssssssssssassssnssssnssssssssnsssassssasssssssssnsssansssnsnsas Xiii
Chapter 1: History........cccciinnmmmmmmnmssmnmmmssssnmmmssssnmmssssssmmsssssssmsssssssnsssssssssssssnnnssnsss 1
IN the BEGINNING.ccciiierieriresrse st e e s r e e re e a e ne e nnnna e s 1
The AdoIESCENT YEAIScccciiiirce e 4
LTI (0T L) R 7
REJUVENATLION ...t s e s e p e e nnan 12
Chapter 2: From Zero to Hello Worldccccusseemmmnssssnnnmsssssssssssssssssssssssssssssssssssenss 17
INStalling JAVA SE JDK ... e 17
What ADOUt JAKAMA EE? ..o e nneens 18
INSTAIING WIlAFIY ... s 18
INSTAIING ECHIPSE ...viveerreerrresisiseresesssess s s n s nr e e 19
CONFiGUIING ECHIPSE..ucivireerrierrnsesssese s sr s e sr s s sn s s sn s srn s 20
Integrating Application Server in ECHIPSE........cccvivrininnnsinsene s sessessessens 21
Creating New Project in EClIPSE.....c.cuvvrrvererisiinsine s sesse s ses s sss e e sassessesaessssessesne s 26
Adjusting Deployment DESCHIPIONS.......vvrrriererrsersere e sessere e ses s s ssssessessessessssessessessssessessens 37
Configuring JAKArtA FACES.......ccvrvvrrreriererisssrseresesessessessesssssssessessessssessessssssssssessesaessssnnsesaens 40
Creating the Backing Bean Classccevivrrverierenensensesenssssssesessessssessessesssssssessessessssessessens 40
Creating the FACEIETS File.......ccceevrcrierere e s sa e sre e s e ssesnens 43
Deploying the PrOJECTcoviervriere s serene sttt sa s sae s a e 46
10153 P2 1 1 T X o S 52
Configuring DAtASOUICE........cccvrerererrerere st serse s s e s sre e s e s saesae e s e saesaesa e e naesnens 53
Configuring JaKarta PErSiSTENCEccvvevererreriereresserere e sessesse s sessessessessesesessesaessssessesaens 54

iii

TABLE OF CONTENTS

Creating the Jakarta Persistence ENtitycccovivvrrniniennnnine s sessesessssessessessesessessensens 54
Creating the Jakarta Enterprise BEANS SEIVICE.........ccvvrerrererrerieressssensesessssessessessessssensensens 57
Adjusting the HElIo WOrIdooverenerrcr e 59
Chapter 3: COMPONENtScccccemrrmssennmmsssssnnnmssssssnsessssssssessssssseessssssssessssnsnsssssnnnnssss 63
Standard HTML COMPONENLScccceieririerircrire e ssesesss e ses e ssesessssessssesesssnens 66
STANAAIT COTE TAYS ...ueueereuererererserersesereeesessesessesessesesesse e ssesesss e ses e e ssesessesesensesessenessenssssseensenens 71
) {308 OO 74
Restore View Phase (First PRASE).......ccoverererrersenenesisese s s ssanes 75
Apply Request Values Phase (Second Phase)..........ccovererenernserensesesesesessesessesessesesessssessenens 75
Process Validations Phase (Third Phase).........cccevrrenrenrnnennnenesesessesesse e seseenes 76
Update Model Values Phase (FOUrth PhaSe)cccoveerrenermenerensenesesesese s 77
Invoke Application Phase (Fifth PRASe)........cccuoerrerrnnenneserese s 77
Render Response Phase (Sixth PRASE).......c.cccvreermrnenerencrensesere e 78
AJAX LITE CYCIR....erveerereeerreerreseseseses s s e e ne s nrnnis 79
VIieW BUIIA TIME ...veueerieceireerisse s ss s s s sn s se s e e nsnnis 79
View RENAEr TIME ..o 81
L L R 81
LT 0 OO 83
PHASE EVENIS.......cooeeeeeeceec e e 84
Component SYSTEM EVENTS ..o s sensnnens 86
Custom Component SYStem EVENTSccocueeiiserismnnsesnne s s sssssss e ssssessssenens 91
B2 7= T =T ST SRO 92
Manipulating the COMPONENT TrEEcvvvvirierere vt sr e saesr e sa e naennes 98
Chapter 4: Form Components.........ccccurussssnmmnssssssssssssssssssssssssssssssssnssssssssssssssssnnnss 103
Input, Select, and Command COMPONENTSccocreriiinrninie s snens 103
Text-Based Input COMPONENTSccviriiinirnrr e e 104
File-Based Input COMPONENL.........cccoiiiirirerrrrre s s sne s 111
Selection COMPONENTScocviririere e s a e e s e e e s ae s ae e e e aennen 113
BT (=03 11 T =T R 123

iv

TABLE OF CONTENTS

SEIECHEEM GIOUPS... e iveererrereesersersesresessersessesas e s e sae e s e s saesa e e s e s aesae e e e s aesae s e e e e aesaesae e e e naenaes 127
Label and Message COMPONENTS.........ccoverrerininirnsesissese e se s sessesens 129
Command COMPONENES.......cccuciiieirir e e e e r e s r s e nns 132
LT U0 S 143
Ajaxifying COMPONENTScceceriierireserese s r e sr s ra e 145
L AT T0 (0 T 2 - VOSSN 152
= I 1T 1P 153
STALRIESS FOMMIS ... 157
Chapter 5: Conversion and Validationccccccnnsmmmnsmsmsssssmssssmsssssssssssssssssssnes 159
L0 L0 I 0= 160
<F:CONVEENUMDEI>.......ecceeeee e e 162
<F:CONVEDALETIMES ... e 165
Standard Validators...........ccoveeerenernsesnesesese s 170
<f.validateLongRange>/<f:validateDoubleRange>..........c.cccuoerrenrnscnnnenesencsensesesesenennes 172
<fvalidateLength>/<f:validateRegeX> ..o s 173
<fvalidateReqUIrEA> ..o 174
<f.validateBean>/<f:validateWholeBean>.............ccccoererrrererenenenesnsesenesese s 175
IMmediate AHFDULEccoeeereeereer e 181
CUSTOM CONVEITEIS....ueeereeressesessese s s e e s e sr s e e n e e e e 183
CuStOM ValIdATOrSc.cceeriiccini s 193
CUSTOM CONSIFAINTS.......ccovieirierererisses e 196
[T (0] Ty T T OO 198
Chapter 6: Output Components........ccciuummmmmmssssnnmmsssssssnmssssssnnsssssssnsssssssnnsessssnnnnss 201
Document-Based Output COmMPONENts........ccovcrinriinnn s esaens 201
Text-Based Output COMPONENTS........ccvceinierrninnree s sr e snssenens 203
Navigation-Based Output COMPONENTS.......ccccovververiereierrerere s s s ssessssessesaens 208
Panel-Based Output COMPONENTScccvcrverererreriereresessese s sessessessessssesessessssesessessessssessesaens 210
Data Iteration COMPONENT ... e 215
Editable <h:dataTables>c.coeevererernensnnssr s es 221
Add/Remove Rows in <h:dataTable>cccovrinnnnnnnnsssee s 227

TABLE OF CONTENTS

Select Rows in <h:dataTable> ... s 229
Dynamic Columns in <h:dataTables>ccocvcvverernrersenere e saesnes 231
ReSOUrce COMPONENTSccciiiirireerie st e st e 233
Pass-Through EIEMENTS ... s s 243
Chapter 7: Facelets Templatingccccceemmmmnnnmnnnsssssmmmmmmmmmsssssssssssseesssssssssnns 247
XHTIVMIL. ..ttt bbb e et 249
Template COmMPOSITIONS.......cccvverrirerese s sr e srnne e 250
Single Page APPlICALIONccvvriere e e e nan 254
Template DECOrationsSccvcvveriiinin e e 258
=T L OSSOSO RSP 260
Composite COMPONENTS ... e e e p e s e nns 268
Recursive Composite COMPONENT..........ccoviiririnnrnsn e 278
IMPIICIE EL ODJECLSveveeeecresesessesese e ses e e se s se s s sss e s s sesssnenns 282
Chapter 8: Backing Beansccccusseeunmsssssnnnmssssssnnsssssssnnsssssssnnsssssssnsssssssnnssssssnnnnss 287
Model, VIEW, 0 CONIOIBI?c.ciierireieerireree s s e sresessessse e ssess e s e ssesaessesnesnessnsssesaessensnnns 287
MaNAQEd BEANScccoeiiririe et e a e n e e 291
£ 670 0P 293
(@AY o]0 o LT BT 0] 0T o O 293
@SESSIONSCOPEU....ceuerrerrererrererressrserersessesessesessesessersessessesesessesaesassessessessesessessesasssssensessens 296
@ClieNtWINAOWSCOPEcoceruerrererrerererseserseressesessesessessesesessesaessssessessessssessessesasssssessessens 298
@CONVErSatioNSCOPEAccceruerrererrerierersesersererse s s re s e ssese s e s saesas e ssesaesaesee e saesasssssensesaens 299
@FIOWSCOPEU......eeereerrerresersersersesssseressessssessessessessssessessessessssessesasssssessessessesessessesssssnsensessens 302
@VIBWSCOPE. .. euereruerrerrrsersersersesssseressessesessessesssses e s e saess e e s e saesaesa s e ssesaesaesessesaesassssnnsesaens 306

L@ T TN TS Y0 01T o RS 314

L@ T0 =T 1 o =T o RS 316
WHiICh SCOPE 10 CNOOSE?ccvrvereerrerirereressesessersessessssessessessessssessessesssssssessesssssssessessesssssssesseses 318
Where IS @FIaSNSCOPEU?uceeererirccrre st st se s e sne e 319
Managed Bean Initialization and DeStruction ... 322
Injecting Jakarta Faces Vended TYPESccovveererrrrnnmresneneseseses s sessenenns 322

TABLE OF CONTENTS

Eager INHaliZation ... 325
I £ SO S OO PYS SN 328
Naming CONVENTIONS ..o st r s s st nne 330
Chapter 9: Exception Handlingcccciussmmmmmmsssssnmmmssssssnmsssssssnssssssssnssssssssssssssnnnnss 333
CUSTOM EFTOr PAJESc.evveeenrcerieerisesessese s sessesssse e s sessesesssssssssssesssssssssssssssssnsssssssssssnsssenns 334
Ajax Exception Handling ... s sssss s s ssssssessssessnns 336
ViewExpiredException HandliNg.........ccvvereininieniennsinsesese s s sessessessessssessessessesessessessens 342
I0EXCEPtion HANAINGcccceeuerreiererere s e e se s s e sessessesessessesaessssessessesassessesaesassssssnsesaens 346
EJBEXCEPtion HANAIINGc.coviiiererccin s se s s sre s e snens 347
Chapter 10: WebSocket PUSh..........ccccvimmmssmmmsssnsmsssssmsssssesssssssssssssssssssssnsssssnnsssas 355
[010X L0 o TS 355
ST T - S 357
SCOPES ANA USETS ...veeeeruerierieiersese st s st st s st s b e s s a e b e e s ae b et e e aennan 358
Channel Design HINES.......cccvvirirenerinsire s s s ss e s s sa e s saennes 360
ONE-TIME PUSH.....cee s 361
Stateful UL UPAALeS ...ttt s 363
Site-Wide Push NOtIfiCatioNnsccovrerererrrrcrreses e 365
Keeping Track of ACtIVE SOCKELScccvveererererese e 368
Client Side Event HaNAING..........cccvveernenmnenesnessse s s ssssssssenns 369
Breaking Down Mojarra’s f:websocket Implementationcccevivnvnininnnnsninennsensenens 372
Chapter 11: Custom Componentscccusemmsmmmsssmsssmssssssssssasssssssssssssassssnsssansssass 375
Component Type, Family, and RENAEIEr TYPEccccverererrerierersssessessessessssessessesssssssessessessssessesses 375
Creating New Component and RENAEIEN.........c..cccvrerrerernierire s sese e sesssesenns 383
Extending EXisting COMPONENt ..o st snens 391
Extending EXiSting RENUEIEccovveeerreerreerese s 399
Custom Tag HANGIEScoveeeresernesesese e 403
Packaging in @ Distributable JAR..........cccvvrrririne s 406
ReSOUICE DEPENUEBINCIES ...uevverreiereraerresersersessessesersessessesessessessessssessessesssssssessessessssessessessessssessens 409

vii

TABLE OF CONTENTS

Chapter 12: Search EXPreSSionS.....ccccurusssssssessssssssssssssnsssssssssnssssssssnsssssssssssssssnnnnss 411
Relative LOCAI IDS.......cccoereecrerererseserie s see e s s s nesme s 412
Absolute HIerarchiCal IDS.........c.coerceerenerere e 414
Standard Search KEYWOIUS.........cccvveererinerencrrcnese s ses s 418
Custom Search KEYWOIUScccueernserrnsenmnesesisesssesess s ssssess s ssssesssssssssssesesssssssssssssssssns 421

Chapter 13: SECUNItYccccirriisnmmmmmssssnnnmmsssssnnmsssssnnnssssssnssssssssnnnesssssnnnessssnnnnesssnnnnnss 427
Jakarta EE Security Overview and HiStOry.........cccvevvvriniennnnsne s sessessessesessessessenes 427
Protect ACCESS 10 RESOUICES.........ccoerueeriniireiries s s 429

EXCIUARM ...ttt bbb 430

3T 1= (o 431

BY ROIE ...ttt s 431
Setting the Authentication MEChaNISMccccvvvierierrrrere e nnen 433
Setting the Identity STOre ... ———————— 436
Providing Our Custom Jakarta Faces COUe...........ccvrrrrrermrenernserensesese s e sessesenns 440
Caller-Initiated AUthentiCation............ccoveeererrnsnne s e 446
=T (=T 0= 449

Activating Remember-Me SErVICEcccvvrernrernesinnse s 450
[T o114 o 0| OO 454
LT]300 o 4T 0 R 455
Conditionally Rendering Based 0N ACCESSc.cuvevurermrrinerinsenisssessssesessesesssessssessssesessssessssesenns 457
Cross-Site Request Forgery Protection..........cccucvrnnsninnnsnscnesssssessese s sessessesnes 462
Web Parameter Tampering ProteCtioNcoccoveecrnserenesenese s s sessenens 465
Cross-Site Scripting ProteCtioN..........ccovieeresrnscsnesess s s sessesenns 468
Source EXPoSUre ProteCtiON........cceveverierieriennsersere s ne s se e s ss s e s s sne e s snes 471

Chapter 14: Localization..........ccccuuseemnnnsssnsnmssssssnnssssssssssssssssnssssssssnsssssssnsssssssnnnnss 477
Hello World, 01& mundo, TAET GafiT. ... 477
CONTIGUIALION......ccuecieciccr e s b e e e e b e e e e nns 479
Referencing Bundle in Jakarta FAaces Pageccoeerrererenernncsnscnese s 479
Changing the ACHIVE LOCAIE...........cccvveerrrerereserinessse s s 481
0rganizing BUNGIE KBYScovirirerinirsireresis s s ssssesse e ssssssse s ssesessessesaessssessesaesasssssesaesaes 485

viil

TABLE OF CONTENTS

Localizing Conversion/Validation MESSAQEScccvererrerrerieressssessessessssessessesssssssessessesssssssessens 488
Obtaining Localized Message in a Custom Converter/Validator.............cccoecrivvvniennieccnnienens 490
LOCAlIZING ENUMSoviiriceie sttt nnen 491
Parameterized Resource Bundle ValUESccccerenreneresennscssese e 492
Database-Based ReSOUIrCEBUNMIE...........ccuccrereenernmrere s snens 493
HTML in ReSOUrCEBUNGIE.........cceireririisiisi s s 498

EXEENSION TYPES ..orueieerieririirsie s s st a e s a e s sa e s s e ae e g e a e s e e e e ae s ae e e an 499
Extending CDI AHIfaCESccovevrercrccc sttt e e 500
Extending Classical ArtifactS.........cccvivnrnininnnnn s st snens 503
PIUG NS et ne e 506
DYNAMIC EXIENSIONS......cceireerrsisensenesrese s s sr s e sn s ne s 509
Application Configuration POPUIALOr...........cccrivnininnnrr s 510

The Application Main Class ... s s se s s sessessesnes 511
Local Extension and Wrapping......ccceevrrrrerieninsensessesessssessesessssessessesssssssessesssssssessessesssssssessens 513
(0T 0 T=T T OO 516
1T = 519

ix

About the Authors

Bauke Scholtz is an Oracle Java Champion, a committer of the Jakarta Faces API and
Mojarra projects, and the main creator of the Jakarta Faces helper library OmniFaces.
He is on the Internet more commonly known as BalusC who is among the top users and
contributors on Stack Overflow. Bauke has integrated several OmniFaces solutions into
Jakarta Faces. He is a web application specialist and consults or has consulted for Virtua
Inc, Mercuryl Limited, MyTutor, Nava Finance, LinkPizza, ZEEF, M4N/Zanox, ITCA,
RDC, and clients from fintech, affiliate marketing, big data, social media, and more as
part of his more than 20 years of experience. This book offers Bauke the opportunity to
go into depth as to answering most frequently asked questions and correctly solving
most commonly encountered problems while using Jakarta Faces.

Arjan Tijms works for Payara Services Ltd and is a Jakarta Faces (JSR 372) and Security
API (JSR 375) Expert Group member. He is the co-creator of the popular OmniFaces
library for Jakarta Faces that was a 2015 Duke’s Choice Award winner and is the main
creator of a set of tests for the Jakarta EE authentication SPI (JASPIC) that has been
used by various Jakarta EE vendors. Arjan holds an MSc in Computer Science from the
University of Leiden, the Netherlands. Writing about this topic was a natural choice for
Arjan; he has already written much about it at his blog and would like to expand that by
contributing to a book.

xi

About the Technical Reviewer

Luqgman Saeed is a Jakarta EE developer with Pedantic Devs. He has been in software
development for close to a decade. He started with PHP and now does Jakarta EE full
time. His goal on Udemy is to help you get productive with powerful, modern, intuitive,
and easy-to-use Jakarta EE APIs. He will provide you with the best of vanilla, pure, and
awesome Jakarta EE courses to help you master the skills needed to solve whatever
development challenge you have at hand.

xiii

CHAPTER 1

History

This chapter describes the history of Jakarta Faces, starting from its early conception and
ending where we are today at the moment of writing. We’ll discuss how the Jakarta Faces
API (application programming interface) itself evolved, which important events took
place during that evolution, and who some of the people were that were involved in all
of this.

This is in no way a complete description of the history, and the reader should
take notice of the fact that many more events took place and many more people were

involved than we were able to mention here.

In the Beginning...

Jakarta Faces goes back a long time. Its initial JSR, JSR 127, started in 2001. At that time,
the Struts web framework was wildly popular, although it wasn’t that long ago that it
was released itself (around 2000). Despite Struts’ popularity, a large number of other
web frameworks were in use in the Java space, and new ones were popping up all
the time. Jakarta Faces was conceived as an attempt to bring a standardized MVC
(model-view-controller) web framework base into the overall Jakarta EE platform.

Controversies are quite common in the web framework space, and Jakarta Faces is
no exception here. Right at the start of its inception, there was a big controversy where
Apache opposed the creation of Jakarta Faces on the bases that Apache Struts already
existed and a closed source alternative would have little value. Apache therefore voted
against the creation of Jakarta Faces with the following comment:

This JSR conflicts with the Apache open source project Struts. Considering
Sun’s current position that JSRs may not be independently implemented
under an open source license, we see little value in recreating a technology
in a closed environment that is already available in an open environment.

© Bauke Scholtz and Arjan Tijms 2022
B. Scholtz and A. Tijms, The Definitive Guide to Jakarta Faces in Jakarta EE 10,
https://doi.org/10.1007/978-1-4842-7310-4_1

https://doi.org/10.1007/978-1-4842-7310-4_1

CHAPTER 1 HISTORY

To the extent that this JSR extends beyond Struts today, we would encour-
age the Sun developers proposing this JSR to join the Sun developers already
leading Struts to create an open solution at Apache, something which when
finished would be assured of being able to be implemented as open source.

Eventually the conflict was resolved when after about a year into the process, spec
lead Amy Fowler (from Swing fame) was replaced by Craig McClanahan, the very
father of the Struts project that Jakarta Faces was said to be competing with. The open
source restriction was lifted as well, and the open source Jakarta Faces implementation,
called MyFaces, was developed in parallel with the (then nameless) RI and hence the
specification itself. MyFaces initially started as an LGPL licensed project at http://
sourceforge.net in December 2002 and had an initial 0.1 release conforming to what
was then called an “Early Access Specification” in January 2003.

Open source implementations are the most common implementations in
Jakarta EE 8, and there’s barely any EE specification at the time of this writing (2018)
that’s still implemented as closed source. In 2001, however, this was not just uncommon;
it was actually not allowed for new JSRs. Allowing for an open source implementation
was therefore quite a change, and the honor fell to Jakarta Faces to be the first of its kind
for which this was allowed.

Despite the open source implementation being allowed, the actual development of
the spec was still done in secret and behind closed doors. There was no public mailing
list and no tracker (e.g., a JIRA instance) for the public to create issues or express wishes.
Occasionally, interviews were being done, and in the fall of 2002, by then, former spec
lead Amy Fowler did reveal quite a few details about Jakarta Faces, but largely the project
was shrouded in mystery for the general public.

The team behind Jakarta Faces was, however, hard at work. The first email to the
internal JSR 127 list was sent on August 17, 2001. As with most projects, the team spent the
initial months on gathering requirements and looking at the existing competing products.
A package name was chosen as well. The initial placeholder package, which was
“javax.servlet.ui’ now “javax.faces’, was chosen as the package to use. The very first
technical architecture to be considered was the component model. For a component-based
MVC framework, this is obviously one of the most important aspects. During the last month
0f 2001 and the first two months of 2002, the team looked at what is now known as the
Managed Bean (called “Object Manager” then). Managed beans with their scopes, names,
and dependency injection are clearly another cornerstone of the Jakarta Faces framework.
Events and the model behind it were being looked at as well during that time frame.

http://sourceforge.net
http://sourceforge.net

CHAPTER 1 HISTORY

In the second quarter of 2002, two other cornerstones of Jakarta Faces were
discussed: the Expression Language (inspired by Jakarta Tags), which is instrumental for
the so-called bindings of beans from a template to backing code, and the factory finder,
which allowed key parts of Jakarta Faces to be replaced and, although perhaps not fully
realized at the time, may have contributed greatly to Jakarta Faces still being relevant
some 16 years later.

It was in this same quarter that Craig McClanahan took over as spec lead, father of
Struts and architect of Tomcat’s Servlet container. Not long after the discussion about
using Jakarta Pages started, a discussion, perhaps unbeknownst to the team at the
time, that would, unfortunately, have a rather negative impact on Jakarta Faces later
on. Around the end of the year 2002, Ed Burns, who like McClanahan had also worked
on Tomcat before, joined the team as co-spec lead. Burns is the person who would
eventually become the main spec lead of Jakarta Faces for well over a decade.

While the team continued to work on things like the aforementioned managed
beans and the so-called value binding, which is the Java representation of the also
aforementioned expression language binding, the first dark cloud appeared when in
the spring of 2003, team member Hans Bergsten realized that there were very real and
major issues with using Jakarta Pages as the templating language for Jakarta Faces. He
brought these concerns to the team, but ultimately they weren’t addressed and instead
the following months were spent, among other things, on a variant of the value binding;
it later on became clear that the method binding and the state saving mechanism were
another of Jakarta Faces’s less-than-ideal implementations.

Jakarta Faces 1.0 and its still nameless RI were eventually released on March 11,
2004—coincidentally, a mere two weeks before the release of another framework that'’s
still strong today, Spring 1.0. MyFaces released its 1.0.0 alpha version only days later, on
March 19. It’s perhaps an interesting observation that Jakarta Faces went final with a full-
fledged XML-based dependency injection (DI) framework just before Spring, which is
largely known for its DI, went final.

Jakarta Faces 1.0 was generally well received; despite a rather crowded market with
competitors such as Tapestry, WebObjects, Velocity, and Cocoon operating, not less
than three books from writers such as Horst Caymann and Hans Bergsten appeared in
the months after, and the eXo platform (a Digital Collaboration Platform) started using
Jakarta Faces right away.

Hans Bergsten’s earlier concerns, however, became painfully clear almost just as
quickly; the Jakarta Pages technology is based on processing a template from start
to end, immediately writing to the response as tags are encountered. Jakarta Faces,

CHAPTER 1 HISTORY

however, requires a phased approach where components need to be able to inspect
and act on the component tree, which is built from the tags on the page, before starting
to write anything to the response. This mismatch led to many strange issues, such as
content disappearing or being rendered out of order.

Only three months after the introduction of Jakarta Faces, Hans Bergsten made a strong
case of dropping Jakarta Pages in his legendary article “Improving Jakarta Faces by Dumping
Jakarta Pages.” There, Bergsten explains how ill-suited Jakarta Pages is for use as a template
language in Jakarta Faces, but he also presents a glimmer of hope; because of Jakarta Faces’s
great support for extendibility, it’s relatively easy to introduce alternative templating simply
by replacing the so-called view handler, something which Jakarta Faces explicitly allows.

It would, however, take five long years until Jakarta Faces would indeed ship with a more
suitable view templating language, and even though Jakarta Pages had been essentially
deprecated at that point, it’s still present in Jakarta Faces at the time of writing.

The Adolescent Years

Back in 2004, another first befell Jakarta Faces; on June 28, Ed Burns announced

that the source of the RI was released by Sun. This represented a major milestone as
before that date, most technology in active use by Sun was closed source. Initially, the
source was licensed under the somewhat exotic JRL, but later this would be changed

to dual licenses, GPL with classpath exception and CDDL. At the same time as this
announcement, the tradition was established that every new feature or bug fix should be
accompanied by a test and that all existing tests should be executed before committing
the change. Some 14 years later, there’s a largely different set of people working on the
RI source, and the project structure and code conventions have changed as well, but the
test-driven tradition is still being uphold in its original form.

At that point, Ed Burns decided to focus more on the specification aspects of
Jakarta Faces as the Jakarta Faces 1.2 spec work had started right away, and Jayashri
Visvanathan, one of the early team members, took on the lead role concerning the
implementation aspects, with Ryan Lubke, working as the TCK (testing) engineer.

Still only a few months old, a variety of component libraries for Jakarta Faces had
already started to pop up, although all of them were commercial. Among those was
the one from Oracle, ADF Faces. ADF Faces was put on Oracle’s road map well before
Jakarta Faces 1.0 went final, and the first early access release was presented on August
17, 2004. Its lead was Adam Winer, who represented Oracle in the team that created

4

CHAPTER 1 HISTORY

Jakarta Faces 1.0. ADF Faces primarily contained a set of rich components, but also a
dialog framework, and remarkably already featured partial page rendering (PPR), quite
a bit ahead of the later crop of AJAX solutions. ADF Faces also contained a “for each” tag
(af:forEach) that actually worked. Adam Winer explained in these early days that such
tag is not quite trivial to build but promised that Oracle would contribute the knowledge
back to Jakarta Faces itself.

The ADF Faces components originated mostly from the earlier User Interface XML
(UIX) framework, of which Adam Winer was the lead architect as well. Earlier versions
of UIX used the names “Cabo,” “Baja,” and “Marlin.” UIX was a rich client framework for
use in the browser. With Jakarta Faces sharing more than a few similarities to UIX and
with its lead, Adam Winer, being part of the original Jakarta Faces team, it’s perhaps
not unreasonable to surmise that UIX influenced Jakarta Faces. Such similarities
include the concept of components with separate renderers, Jakarta Pages tag handlers,
and declarative options to compose a page and the ability to instantiate those same
components programmatically in Java. There was even a conceptually similar data
binding, although with a less elegant syntax. Instead of, say, value="#{user.age}", UIX
would use data:value="age@user" but also required a kind of producer to be defined on
each page to declare where “user” comes from and then nest the page’s content within
that declaration. By contrast, Jakarta Faces and EL have always used global definitions
and left it up to the user to avoid name clashes.

One of the first, if not the first open source component library in 2004, was
Matthias Unverzagt’s OurFaces. As Jakarta Faces did not have its own resource API
(application programming interface) at the time to serve up things like images,
OurFaces required a Servlet to be added to web.xml, the so-called SkinServlet
(ourfaces.common.webapp.SkinServlet). The significance of this is that it became a
rather common thing for Jakarta Faces libraries in those days to ask their users: add
something manually to web.xml before the component library can be used.

Most of the last months of 2004 and early months of 2005 were spent by the Jakarta
Faces 1.2 expert group (EG) working on various Jakarta Pages and EL issues, such as the
Jakarta Tags <c:forEach> support and the generation of IDs in Jakarta Pages, as well
as on the dreaded “content interweaving” issue, which refers to the aforementioned
content that appears at wrong places in the response when rendering.

While OurFaces may have been one of the first component libraries, it didn’t last,
and few will remember it or have even heard about it today. This is not quite the same
for another framework that has its roots in early 2005, namely, Alexander Smirnov’s
Telamon framework, later renamed Ajax4jsf. This framework was one of the first of its

CHAPTER 1 HISTORY

kind that combined Jakarta Faces and the then new and fresh AJAX technology. The
beauty of Ajax4Jsf was that it could add AJAX support to existing components, which
weren't built with AJAX support in mind at all by enclosing them among others in the
<a4j:region> tag. This technology was incorporated in the Exadel Visual Component
Platform, which was released in March 2006 and would later be renamed RichFaces and
would become one of the most memorable Jakarta Faces component libraries.

At around the same time Alexander Smirnov started work on what eventually
would become RichFaces, a company called ICEsoft started working on a Jakarta Faces
component library. ICEsoft had been in business for a couple of years and had been
working on a product called ICEbrowser, a Java-based browser, and a product called
ICEbrowser beans, which were “lightweight, configurable JavaBean components that
can be rapidly integrated into Java client applications.” During JavaOne 2005 of that year,
on June 27, ICEsoft announced its component library for Jakarta Faces—ICEfaces. This
was based on AJAX as well but incorporated AJAX directly into the components. ICEsoft
called its specific technique “patent pending Direct-to-DOM,” which basically meant
that changes coming from the server were directly injected into the DOM tree structure
of a web page. A final version wasn’t available right away though, but an early access
release was provided. This was closed source but cost-free.

Meanwhile, Jakarta Faces EG member Jacob Hookom, inspired by Hans Bergsten’s
concerns about the unsuitability of Jakarta Pages, grabbed the bull by the horns and
started working himself on that alternative templating language envisioned by Bergsten.
In August 2005, this work had progressed into a usable initial version. The name of this
templating language? Facelets! It immediately took the Jakarta Faces world by storm.
Kito Mann published the first part of a series of articles about it on JSFCentral the very
first month, and Richard Hightower published the famous article “Facelets fits Jakarta
Faces like a glove” several months later.

Oracle had not been sitting still either in 2005, and after about 16(!) early access
releases, it announced in late 2005 at the JavaPolis conference in Antwerpen (nowadays
called Devoxx) that ADF Faces would be donated to MyFaces and thus become
open source.

In the first month of 2006, Jacob Hookom and Adam Winer contemplated the
terrible implementation of Jakarta Faces’s state save mechanism. This worked by first
creating a component tree from a template and then, near the end of the request, blindly
serializing the entire tree with all data that may have been put there during the request.
During a postback, the tree is restored from this serialized form (hence the name of the
phase “restore view”). This is a tremendous waste, as the majority of this information is

6

CHAPTER 1 HISTORY

already available in the template. Especially when doing AJAX requests with client-side
state saving, this poses a very big burden, but it is also a problem when storing this state
on the server as it massively increases Jakarta Faces’s memory usage. One of the main
reasons for doing state saving in such terrible way again has to do with that one decision:
to support Jakarta Pages. With Jakarta Faces 1.2 about to go final, there was unfortunately
no time left to fix this for version 1.2.

Even though it was clear at this point that Facelets was the future of Jakarta Faces,
when Jakarta Faces 1.2 was eventually released in May 2006, it still contained only Jakarta
Pages. Not all was bad though. Thanks to a cooperation between the Jakarta Faces and
Jakarta Pages EGs, a revision of Jakarta Pages was released, Jakarta Pages 2.1, which was
much better aligned with the demands of Jakarta Faces. On top of that, Jakarta Pages’s
expression language and Jakarta Faces’s expression language were merged. The result
was UEL (Unified Expression Language). A very practical advantage of UEL is that Jakarta
Faces components no longer have to convert Strings manually into expressions but
directly receive a ValueExpression from the templating language. Both Jakarta Pages 2.1
and Jakarta Faces 1.2 became part of Jakarta EE 5, which was released at the same time.

On June 13, 2006, the MyFaces community announced that the donated project
would have its name changed to Trinidad. ADF Faces kept existing at Oracle, though,
but was based on Trinidad with some extra features (such as support for Portals, JSR 227,
etc.). Just 2 weeks prior to that, on May 31, 2006, ICEsoft announced its free, although
still closed source, community edition. A few months later, on November 14, 2006,
ICEsoft would fully open source ICEfaces under the MPL license. RichFaces, still closed
source at that point and being sold by Exadel, would not stay behind for long though,
and some 4 months later, on March 29, 2007, Exadel announced a partnership with
Red Hat that made RichFaces available under an open source license and available and
supported via its JBoss group.

On to Maturity

On May 22, 2007, the specification work for Jakarta Faces 2.0 began. The scope was
hugely ambitious and promised not only to fix many of the issues that people had been
complaining about but also to introduce quite a bunch of new features. Mentioned
among the many goals in the JSR was a particularly interesting one when looking at the
bigger picture—extracting the managed bean facility from Jakarta Faces and making it
available for the entire platform.

CHAPTER 1 HISTORY

During the fall of 2007, the community was polled for a name for the Jakarta Faces
RI. Four names rose to the top, but as is often the case, none of these names could be
approved by Sun’s legal department. Eventually, Mojarra was proposed, and perhaps
to the surprise of some, this one did pass legal’s scrutiny. Ryan Lubke, one of the main
Jakarta Faces committers then, made the official announcement on December 5, 2007.

A little under a year later, on October 29, 2008, Cagatay Civici started a new library,
PrimeFaces as a new start after his older YUI4JSF Jakarta Faces component library. The
name derives from Cagatay’s nickname, which is Optimus Prime, the courageous leader of
the heroic autobots in the fictional Transformers universe. Civici had been involved with
Jakarta Faces development for a long time; right after graduation for his bachelor’s degree at
the university, he started working on a military project that used Jakarta Faces. At the time,
this was the closed source Sun version, but Civici was more interested in MyFaces, since it
was already open source. After he provided several patches to this project, he was invited
as a committer. Civici worked for Spring Source for a time while he lived in the UK, working
on the Web Flow and Jakarta Faces integration. Ultimately, Spring Source didn’t go through
with that, after which Civici worked for Visa, located in Reading, United Kingdom. Many
pieces of PrimeFaces were coded by Civici on his commute from London to Reading.

PrimeFaces was initially based on Jakarta Faces 1.x, but with Jakarta Faces 2.x
looming and the project still young, it would soon after switch to Jakarta Faces 2.x.

On July 1, 2009, the long-awaited Jakarta Faces 2.0 finally arrived. Jakarta Faces
2.0 indeed fixed nearly every problem that the industry had with Jakarta Faces; finally,
Facelets was included as the default view templating language. Jakarta Pages was
effectively deprecated. The state saving concerns that Hookom and Winer brought
forward more than 3 years earlier were addressed as well; from then on, Jakarta Faces
only saved delta state (state changes), and in restore view, the component tree was
reloaded from the template, instead of actually restored.

Another big concern brought forward by the Jakarta Faces community over the years,
Jakarta Faces’s over-the-top emphasis on postbacks, was addressed too; GET requests
became a first-class citizen in Jakarta Faces 2.0. A well-known usability problem with
Jakarta Faces, sometimes called “The Trap,” was that for a number of operations, the
data involved needed to be the same during both the original request and the postback.
This is not entirely trivial to guarantee in Jakarta Faces 1.x. Jakarta Faces 2.0 introduced
the so-called view scope for this, which elegantly solved the problem. The creation of
custom components, yet another problem area of Jakarta Faces 1.x, was made much
simpler as well. Jakarta Faces 2.0 also introduced core support for AJAX, modeled after
the way Ajax4]Jsf worked, a resource API, system events, and quite a few other things.

8

CHAPTER 1 HISTORY

One of Jakarta Faces 2.0’s goals, making its managed bean facility usable outside
Jakarta Faces, was implicitly reached by the CDI spec, which was introduced together
with Jakarta Faces 2.0 in Jakarta EE 6. The CDI spec itself has a long history too, but
one of its defining characteristics is that CDI Beans are strongly based on Jakarta Faces
Managed Beans and are essentially a super set of those.

Altogether the impact of all those fixes and new features was such that it split the
community essentially in two; those who had used Jakarta Faces 1.x and never looked at
it again and those who switched to Jakarta Faces 2.x or, specifically, the ones who started
using Jakarta Faces with 2.0 and never saw 1.x. This often led to heated debates, with the
1.x side arguing that Jakarta Faces is horrible and the 2.x side not understanding at all
why that would be the case. Even at the time of this writing, which is almost 9 years after
Jakarta Faces 2.0 was released, and a longer period than Jakarta Faces 1.x ever existed,
these sentiments still remain to some degree.

Despite the many things that Jakarta Faces 2.0 did right, there was one missed
opportunity; even though CDI was now available and superseded Jakarta Faces’s Managed
Beans, Jakarta Faces chose not to deprecate its managed bean facility right away. Even
worse, it introduced an annotation-based alternative to the XML-based system Jakarta
Faces 1.x used to define managed beans. With CDI already out there having annotations
like javax.enterprise.context.RequestScoped, simultaneously introducing a javax.
faces.bean.RequestScoped annotation that did exactly the same thing seems debatable
as best. The EG seemed to be aware of this conflict, as a warning was put in place that these
new annotations would possibly be superseded by platform functionality before long.

On December 23, Cay Horstmann raised his concerns about this very unwanted
situation in an article titled “Is @javax. faces.bean.ManagedBean Dead on Arrival?” The
response was quite clear; people, including Jakarta EE book writer Antonio Goncalves,
asked for this huge mistake that Jakarta Faces 2.0 had made to be corrected as soon as
possible and to deprecate javax.faces.bean.ManagedBean right away in the upcoming
Jakarta Faces 2.1 maintenance release which was called for, among other things, to
rectify another mistake (namely, the problem Jakarta Faces 2.0 introduced that in
addition to a custom ResourceResolver, it was also necessary to provide a custom
ExternalContext, which was very unclear). Why javax.faces.bean.ManagedBean
indeed wasn’t deprecated in the Jakarta Faces 2.1 MR remains a mystery to this day.

While applications written against the Jakarta Faces 1.x APIs would mostly run
unchanged on Jakarta Faces 2.0, or only needed a few small changes, the component
libraries had a much harder time. Specifically, the platform-provided AJAX support meant
that the existing component libraries would have to forego their own AJAX implementations

9

CHAPTER 1 HISTORY

and rebase on the standard APIs. Clearly, that was no small feat, and it took a long time for
component libraries to migrate, with some never really making the switch at all.

Here, PrimeFaces was clearly at an advantage. Being a relatively new library without
much legacy, it could switch with much ease, while RichFaces and ICEfaces struggled
a lot. For a year, PrimeFaces was really the only component library available for Jakarta
Faces 2. PrimeFaces’ ascension in popularity started right after Jakarta Faces 2.0 was
released, which was also the exact same time that both ICEfaces and RichFaces seemed
to become less popular. Although it must be noted that hard statistics are difficult to
obtain and contain many facets (downloads, deployments, books, questions asked,
available jobs, taking different industries into account, etc.), somewhere around 2012,
PrimeFaces had seemingly become the more popular Jakarta Faces component library.

Ayear earlier, in March 2011, a German software developer working for Samhammer
AG named Thomas Andraschko started a project that provided several add-ons
for PrimeFaces, called PrimeFaces Extensions. Andraschko would later play a very
important role in Jakarta Faces.

In the beginning of that same year, February 19, 2012, Arjan Tijms and Bauke Scholtz
(by coincidence also the authors of this book) started the OmniFaces library for Jakarta
Faces. The goal of OmniFaces was to be a utility library for Jakarta Faces, essentially what
Apache Commons and Google Guava are to Java SE. Tijms and Scholtz had worked on a
Jakarta Faces-based website together and found that they both had a collection of private
Jakarta Faces utilities that they reused for different projects and also that a great number
of similar utilities were essentially rewritten again and again for many Jakarta Faces
projects and were partially floating around in places like forum messages and blog posts.
OmniFaces was set up in particular not to compete component libraries like PrimeFaces
but to work together with those. Hence, visual-oriented components were largely out of
scope for OmniFaces.

In 2012, the specification process for Jakarta Faces 2.2 was also in full swing. Jakarta
Faces 2.2 was eventually released on May 21, the next year. Jakarta Faces 2.2 specifically
came up with a formal version of the alternative mode in which Facelets could operate;
instead of putting component tags on a view, plain HTML was put on it, with a special
ID linking the tag to a component. Such a mode is generally speaking somewhat less
interesting to Jakarta Faces developers but appeals specifically to web designers who
can more easily use plain HTML tools for such views. Jakarta Faces 2.2 also introduced
a CDI-compatible @ViewScoped annotation, which removed one of the last reasons to
still use the Jakarta Faces managed bean facility in Jakarta Faces 2.1, namely, that in that
version, @ViewScoped only worked on those beans. Jakarta Faces 2.2 also introduced two

10

CHAPTER 1 HISTORY

new big features, Faces Flow and Resource Contracts, but these seem to have seen little
uptake in practice.

On January 2013, Cagatay Civici announced that Thomas Andraschko had joined
the PrimeFaces team as a committer. Not long after, Andraschko would become the
community lead for PrimeFaces and one of the top committers for that project.

Just prior to the start of Jakarta Faces 2.3, on July 20, 2014, RichFaces lead Brian Leathem
announced on his blog that RichFaces 5, the next-generation version of RichFaces, would be
canceled. Instead, RichFaces would “pursue a path of stability over innovation,” which means
that JBoss will make RichFaces 4.x compatible with Jakarta Faces 2.2 and port back a few
things that were in development for RichFaces 5. While the post was somewhat optimistic, it
strongly looked like the writing was on the wall for RichFaces.

On August 26, 2014, the specification work for Jakarta Faces 2.3 started. A new co-
spec lead was introduced—Manfred Riem, who up to then had been working mostly on
the implementation side of Mojarra, doing such things as migrating hundreds of the tests
for which Jakarta Faces is famous away from the ancient and retired Cactus framework to
a more modern Maven-based one and making sure the gazillions of open Mojarra issues
were reduced to a manageable number. Jakarta Faces 2.3 started off with a perhaps
somewhat remarkable message that Oracle had only a few resources available. During
the specification process, those few resources dropped to a number that few would have
expected—absolutely zero. Basically, after JavaOne 2015, nearly all of the spec leads just
vanished, and most specs as a result abruptly ground to a halt. Josh Juneau reported
about this in his famous study, “Jakarta EE 8, What Is the Current Status: Case Study for
Completed Work Since Late 2015,” which undeniably makes it clear by showing graphs of
emails, commits, and issues resolved that Oracle had just walked away.

The openness of the Jakarta Faces and its RI Mojarra were fortunately such that the
specification work and implementation thereof in Mojarra can largely be carried on by
the other EG members, which indeed happens.

Also helping the Jakarta Faces 2.3 efforts and Mojarra was Andraschko, who, in
addition to a PrimeFaces committer, had also become a MyFaces committer in July 2015.
Andraschko donated a standardized version of the PrimeFaces search expression feature
to Jakarta Faces 2.3 and Mojarra.

Meanwhile on February 12, 2016, Red Hat announced that RichFaces would be end of lived
(EOL) later that year, namely, in June 2016. One of the most popular Jakarta Faces component
libraries at some point, often named something like “One of the big three,” effectively was no
more. On June 20, 2016, the last real commit to the project was done, “RF-14279: update JSDoc
Two days later, Red Hat released RichFaces 4.5.17, and the GitHub repos were put into archived

11

CHAPTER 1 HISTORY

(read only) mode. Brian Leathem, who is still a Jakarta Faces 2.3 EG member, announced a few
days later on February 18 that he would no longer be doing any Jakarta Faces-related work.

Rejuvenation

In late 2016, the Jakarta Faces spec leads briefly returned, but with the message that the
spec must be completed in only a few weeks, so the (somewhat) lengthy finalization
process could start. On March 28, 2017, Jakarta Faces 2.3 was then eventually released,
bringing with it the start of replacing Jakarta Faces native artifacts with CDI versions
and finally something which should have happened years ago: the deprecation of the
Jakarta Faces managed bean facility in favor of using CDI beans. Other features are
support for WebSocket using the Jakarta EE WebSocket APIs donated by OmniFaces, the
introspection of available view resources in the system, and the abovementioned search
expression framework donated by PrimeFaces.

Following the somewhat turbulent development of the Jakarta Faces 2.3 spec is the
even more turbulent announcement by Oracle in 2017 that Jakarta EE, thus including
Jakarta Faces, would be transferred to the Eclipse Foundation. Oracle would stop leading
the specs it owned before, which again includes Jakarta Faces. This would mean that
Mojarra would be re-licensed, and Jakarta Faces would be evolved by a new process with
different leads.

The transition from Oracle to Eclipse was done in several steps. A new top-level project
called Eclipse Enterprise for Java (EE4]) was created, and a snapshot of the Jakarta Faces 2.3
branch was scrubbed (legally speaking) and moved to a new GitHub repository at http://
github.com/eclipse-ee4j. Only Jakarta Faces 2.3 (and associated Mojarra 2.3) was moved,
meaning Jakarta Faces 2.2 and earlier remained at their Oracle locations. This specifically
meant the commit history wasn't transferred. After this first step of the transfer, a new release
of the API was done in January 2019 as jakarta.faces:jakarta.faces-api:2.3.1, which was mostly
identical to the existing javax.faces:javax.faces-api:2.3. The license of both the API and the
Mojarra implementation was changed to the Eclipse Public License 2.0. Arjan Tijms became
the next project lead. Previous spec leads Ed Burns and Manfred Riem shortly after left
Oracle to work at Microsoft. Riem, however, would stay involved with Jakarta Faces.

The next step in the transfer process involved creating a new certification process
and a new specification license. The JCP process was replaced by the Jakarta EE
Specification Process (JESP), and the new specification license became the Eclipse
Foundation Technology Compatibility Kit License (EFTL).

12

http://github.com/eclipse-ee4j
http://github.com/eclipse-ee4j

CHAPTER 1 HISTORY

Early in 2019, Tijms went to the Javaland conference in Germany, where he met up
with Ivar Grimstad, the Jakarta EE Developer Advocate at the Eclipse Foundation. In the
warm sun of the German afternoon, the two discussed a new naming scheme for the
Jakarta EE specifications. New names were required, as the deal between Oracle and the
Eclipse Foundation included an agreement to not use a number of names previously
used by Oracle, such as Jakarta EE, Jakarta Faces, JavaServer Faces, and Jakarta
Pages. Tijms proposed a simpler naming scheme, essentially abolishing as much of the
various “filler words” (such as “service,” “api,” and “architecture”) in the names, making
cryptic abbreviations (like, indeed, Jakarta Faces) necessary. Ivar agreed with this, and in
the following months, this naming scheme was introduced; code, documentations, and
specifications were painstakingly combed through to find and replace occurrences of the
old names with the new names. For Jakarta Faces, the name became “Faces,” a logical
choice, since from day one the package name had actually been javax.faces.* not
javax.jsf.*. The artifact id also had been “faces” for a long time.

Later that year, in September 2019, the Faces 2.3.2 API was released as part of Jakarta
EE 8. This API was again largely the same as the Jakarta Faces 2.3.1 API but now had all
terms replaced by the new ones, and it was certified using the new JESP process.

That same month, during the JakartaOne Livestream 2019, Tijms, from his hotel
in Jakarta, Indonesia, presented some of the ideas for the next version of Faces, in a
presentation called “What’s Coming to Jakarta Faces?” In it, Tijms mentioned that
central for that release would be the removal of deprecated items, such as the Faces
native expression language that was deprecated in 2005, Jakarta Server Pages support
that was deprecated in 2009, the Faces native Managed Beans (deprecated in 2016), and
more. With regard to features, Tijms mentioned extensionless views by default and a new
life cycle phase to make things for which the view action is now used on an empty page
easier to use.

After this second step was completed, the third step started. This involved changing
the namespace of all Jakarta EE APIs, which of course included Faces, from javax.*
to jakarta.*. This was needed since per the JCP rules, packages are only allowed to be
modified per the JCP process. As Jakarta EE was no longer following that process, the
package had to be changed. Tijms and other committers worked hard the following
months to change the package names in the source code and documentation, which
eventually resulted in the release of Faces 3.0 in October 2020 as part of Jakarta EE 9. Due
to time constraints, the original plan of certifying Jakarta EE 9 (and therefore Faces 3.0)
for JDK 11 compatibility had to be dropped.

13

CHAPTER 1 HISTORY

Shortly after the release of Faces 3.0, Tijms kicks off the work for Faces 4.0 with a mail
to the faces-dev list titled “Starting Jakarta Faces 4.0 The mail reiterates some of the
plans from the earlier presentation but adds several API enhancements proposed earlier
by Thomas Andraschko.

On October 23, 2020, Arjan Tijms sets the version of the Mojarra branch to
4.0.0-SNAPSHOT, marking the start of Faces 4.0. A few days later, on October 27, 2020, a
historical commit is done by Tijms: “Remove Jakarta Pages support.” That one technical
decision, which in 2003 was strongly criticized by Hans Bergsten and that indeed as
Bergsten predicted would bring so much pain to Faces, is finally undone. Again a few
days later, on November 1, 2020, the native managed bean system of Faces also bites the
dust. CDI beans from that moment on are the only designated bean type for Faces.

Early 2021, Tijms, Andraschko, and Scholtz discuss how to go forward with the
proposed changes, and the next months see a flurry of new issues being created and
commits done in both the Mojarra and MyFaces projects to implement several of those
proposed new features.

Simultaneously, the Jakarta EE TCK is updated to support JDK 11, which eventually
results in a Jakarta EE 9.1 release in May 2021. As both the Faces API and the Mojarra 3.0
implementation are already JDK 11 compatible, no new releases were required for those.

The following table shows the timeline and the differences between the various
versions released:

Date Maven Build from Certified Javadoc Java TCK API
coordinates package level level

2017, Mar javax. github/ Jakarta Jakarta javax. JDK JDK
faces:javax. javaee EES8 EE faces 8 8
faces-api:2.3 terms

2019, Jan jakarta. github/eclipse- Jakarta Jakarta javax. JDK JDK
faces:jakarta. eedj EE8 EE faces 8 8
faces-api:2.3.1 terms

2019,Sep jakarta. github/eclipse- Jakarta Jakarta javax. JDK JDK
faces:jakarta. eedj EE 8 EE faces 8 8
faces-api:2.3.2 terms

14

CHAPTER 1 HISTORY
Date Maven Build from Certified Javadoc Java TCK APl
coordinates package level level
2020, Oct jakarta. github/eclipse- Jakarta Jakarta Jakarta. JDK8 JDK
faces:jakarta. eedj EE9 EE faces 8
faces-api:3.0 terms
2021, May jakarta. github/eclipse- Jakarta Jakarta Jakarta. JDK11 JDK
facesjakarta. eedj EE9.1 EE faces 8
faces-api:3.0 terms

On August 21, 2021, Cagatay Civici presents the latest state of Faces in a presentation

for the Turkish edition of the JakartaOne Livestream. His presentation is aptly titled

“Jakarta Faces 4.0.” At the moment of writing, the release review for Faces 4.0 is planned
to start at around May 15, 2022.

15

CHAPTER 2

From Zero to Hello World

In this chapter, you will learn how to set up a Jakarta Faces development environment
with the Eclipse IDE (integrated development environment), the Maven dependency
management system, the WildFly application server and the H2 database from scratch.

Installing Java SE JDK

You probably already know that Java SE is available as JRE for end users and as JDK for
software developers. Eclipse itself does not strictly require a JDK as Eclipse has its own
compiler. Jakarta Faces being a software library does not require a JDK to run either.
WildFly, however, does require a JDK to run, primarily in order to be able to compile
Jakarta Pages files, even though Jakarta Pages (formerly known as Jakarta Pages, Java
Server Pages) has, since Jakarta Faces 2.0, been deprecated as view technology for
Jakarta Faces.

Therefore, you need to make sure that you already have a JDK installed as per
Oracle’s instructions. At the time of writing, the latest available Java SE version is 17, but
as Jakarta EE 10 was designed for Java SE 11, you could get away with a minimum version
of Java SE 11. Installation instructions depend on the platform being used (Windows,
Linux, or MacOS). You can find detailed Java SE 17 JDK installation instructions
here: https://docs.oracle.com/en/java/javase/17/install/overview-jdk-
installation.html

The most important parts are that the PATH environment variable must cover the
/bin folder containing the Java executables (e.g., “/path/to/jdk/bin”) and that the
JAVA_HOME environment variable is set to the JDK root folder (e.g., “/path/to/jdk”). This
is not strictly required by Jakarta Faces itself, but Eclipse and WildFly need this. Eclipse
as being an integrated development environment will need the PATH in order to find
the Java executables. WildFly as being a Jakarta EE application server will need the
JAVA HOME in order to find the JDK tools.

17
© Bauke Scholtz and Arjan Tijms 2022

B. Scholtz and A. Tijms, The Definitive Guide to Jakarta Faces in Jakarta EE 10,
https://doi.org/10.1007/978-1-4842-7310-4_2

https://doi.org/10.1007/978-1-4842-7310-4_2
https://docs.oracle.com/en/java/javase/17/install/overview-jdk-installation.html
https://docs.oracle.com/en/java/javase/17/install/overview-jdk-installation.html

CHAPTER2 FROM ZERO TO HELLO WORLD

What About Jakarta EE?

Jakarta Faces itself is part of Jakarta EE. Jakarta EE is basically an abstract specification
of which the so-called application servers represent the concrete implementations.
Examples of those application servers are Eclipse GlassFish, Red Hat WildFly, Apache
TomEE, and IBM WebSphere Liberty. You can find them all at the Jakarta EE Compatible
Products page: https://jakarta.ee/compatibility/. It is exactly those application
servers that actually provide among others Jakarta Faces, Jakarta Expression Language
(EL), Jakarta Tags (formerly known as Jakarta Tags), Jakarta Contexts and Dependency
Injection (CDI), Jakarta Enterprise Beans (formerly known as Jakarta Enterprise Beans,
Enterprise Java Beans), Jakarta Persistence, Jakarta Servlet, Jakarta WebSocket, Jakarta
JSON Processing, and many more APIs (application programming interfaces) of the box.

There also exist so-called servlet containers that provide basically only the Jakarta
Servlet, Jakarta Pages, Jakarta Expression Language, Jakarta WebSocket, and Jakarta
Security out of the box, such as Apache Tomcat and Eclipse Jetty. Therefore, it would
require some additional work to manually install and configure, among others, Jakarta
Faces, Jakarta Tags, Jakarta Contexts and Dependency Injection, Jakarta Enterprise
Beans, Jakarta Persistence, Jakarta JSON Processing, and/or many other missing APIs
from the Jakarta EE platform on such a servlet container. It is not even trivial in the case
of Jakarta Enterprise Beans as it requires modifying the servlet container’s internals. That
is, by the way, exactly why Apache TomEE exists. It’s a Jakarta EE application server built
on top of the bare-bones Tomcat servlet container engine.

So you do not need to download and install “Jakarta EE” as a whole. Basically
downloading any Jakarta EE application server to your choice is sufficient. We're going to
pick Red Hat WildFly for this book.

Installing WildFly

WildFly is an open source Jakarta EE application server from Red Hat. You can download
it from https://wildfly.org/downloads. Make sure you choose the “Jakarta EE 10 Full
& Web Distribution” and not, for example, the “Servlet-Only Distribution” or “Preview
Distribution,” as they have other purposes. Installing is basically a matter of unzipping
the downloaded file and putting it somewhere in your home folder. We'll leave it there
until we have Eclipse up and running so that we can then integrate WildFly in Eclipse
and let Eclipse manage the WildFly application server.

18

https://jakarta.ee/compatibility/
https://wildfly.org/downloads

CHAPTER2 FROM ZERO TO HELLO WORLD

Installing Eclipse

Eclipse is an open source IDE written in Java. You can download it from
https://eclipse.org. Itis basically like notepad but then with thousands if not millions
of extra features, such as automatically compiling class files, building a WAR (Web
Application Archive) file with them, and deploying it to an application server without the
need to manually fiddle around with javac and others in a command console.

Eclipse is available in a lot of flavors, even for C/C++ and PHP. As we're going to
develop with Jakarta EE (Enterprise Edition), we need the one saying “Eclipse IDE
for Enterprise Java and Web developers,” importantly the one with “Enterprise” in
its name. The one without it doesn’t contain the mandatory plug-ins for developing
Jakarta EE web applications. Here is the main download page: https://www.eclipse
.org/downloads/packages/. Also here, installing is basically a matter of unzipping the
downloaded file and putting it somewhere in your home folder.

In Windows and Linux, you'll find the eclipse.ini configuration file in the
unzipped folder. In MacOS, this configuration file is located in Eclipse.app/Contents/
Eclipse. Open this file for editing. We want to increase the allocated memory for Eclipse.
At the bottom of eclipse.ini, you'll find the following lines:

-Xms256m
-Xmx2048m

This sets, respectively, the initial and maximum memory size pool which Eclipse
may use. This is a bit too low when you want to develop a bit of a decent Jakarta EE
application. Let’s at least double both the values.

-Xms512m
-Xmx4g

Watch out that you don’t declare more than the available physical memory in the Xmx
setting. When the actual memory usage exceeds the available physical memory, then it
will continue into virtual memory, usually in flavor of a swap file on disk. This will greatly
decrease performance and result in major hiccups and slowdowns.

Now you can start Eclipse by executing the eclipse executable in the unzipped
folder. You will be asked to select a directory as workspace. This is the directory where
Eclipse will save all workspace projects and metadata.

19

https://eclipse.org
https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/downloads/packages/

