
Advanced Platform
Development with
Kubernetes

Enabling Data Management,
the Internet of Things, Blockchain,
and Machine Learning
—
Craig Johnston

Advanced Platform
Development with

Kubernetes
Enabling Data Management,

the Internet of Things,
Blockchain, and Machine

Learning

Craig Johnston

Advanced Platform Development with Kubernetes: Enabling Data
Management, the Internet of Things, Blockchain, and Machine
Learning

ISBN-13 (pbk): 978-1-4842-5610-7 ISBN-13 (electronic): 978-1-4842-5611-4
https://doi.org/10.1007/978-1-4842-5611-4

Copyright © 2020 by Craig Johnston

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 NY Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5610-7. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Craig Johnston
Los Angeles, CA, USA

https://doi.org/10.1007/978-1-4842-5611-4

iii

Table of Contents

Chapter 1: Software Platform and the API ��1

Software Applications vs. Software Platforms ..3

Dependency Management and Encapsulation ..4

Network of Applications ..4

Application Platform ..5

Platform Requirements ...6

Platform Architecture ..8

Platform Capabilities ...9

IoT ..12

Blockchain ...17

Machine Learning ..21

Core Components ..23

Configuration ...25

Ingress ...26

Data Management ...27

Metrics ..28

APIs and Protocols ..29

Summary...31

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

iv

Chapter 2: DevOps Infrastructure ���33

Cloud Computing ...33

Cloud Native and Vendor Neutral ..36

Redundancy ...37

Portable Platforms ...38

Getting Started Vendor Neutral ..40

DevOps Toolchain ..41

Repositories ...42

Registries ..43

CI/CD ..44

GitLab for DevOps ..45

k3s + GitLab ..47

Summary...68

Next Steps ...69

Chapter 3: Development Environment ��71

Custom Development Kubernetes Cluster ..72

Nodes ..73

Server Setup ..75

Prepare Nodes ...78

Install Master Node ...85

Join Worker Nodes ..87

DNS ..87

Remote Access ..88

Configuration...90

Repository ...91

Ingress ...92

TLS/HTTPS with Cert Manager ..105

Table of ConTenTs

v

Persistent Volumes with Rook Ceph ..107

Monitoring ...112

Summary...115

Chapter 4: In-Platform CI/CD ��117

Development and Operations ..117

Platform Integration ..118

Yet Another Development Cluster ...119

RBAC ..120

GitLab Group Kubernetes Access ..121

Custom JupyterLab Image ..126

Repository and Container Source ..127

Local Testing ..130

Additional Learning ...134

Automation ..134

GitLab CI ..136

. gitlab-ci.yml ...136

Running a Pipeline ...139

Manual Testing in Kubernetes ...142

Prepare Namespace ..143

Run Notebook ..145

Repository Access ...147

GitOps..150

Summary...151

Chapter 5: Pipeline ���153

Statefulness and Kubernetes ..154

Real-Time Data Architecture ...155

Message and Event Queues ..156

Table of ConTenTs

vi

Development Environment ..158

Cluster-Wide Configuration ..159

Data Namespace ...160

TLS Certificates ...161

Basic Auth ..162

Apache Zookeeper ..163

Apache Kafka ..169

Kafka Client Utility Pod ..178

Mosquitto (MQTT) ..183

Summary...189

Chapter 6: Indexing and Analytics ��191

Search and Analytics...192

Data Science Environment ..192

Development Environment ..192

TLS Certificates ...194

Basic Auth ..195

ELK ..195

Elasticsearch ...196

Logstash ..201

Kibana ...210

Data Lab ..214

Keycloak ..216

Namespace ..224

JupyterHub ..228

JupyterLab ...234

Summary...241

Table of ConTenTs

vii

Chapter 7: Data Lakes���245

Data Processing Pipeline ..246

Development Environment ..247

Data Lake as Object Storage ...249

MinIO Operator ..249

MinIO Cluster ...251

MinIO Client ...255

MinIO Events ..256

Process Objects ...259

Summary...281

Chapter 8: Data Warehouses ��283

Data and Data Science ..284

Data Platform ..285

Development Environment ..286

Data and Metadata Sources ..287

MySQL ...287

Apache Cassandra ...291

Apache Hive ...301

Modern Data Warehouse ...312

Hive..312

Presto ..321

Summary...335

Chapter 9: Routing and Transformation ��337

ETL and Data Processing ..338

Development Environment ..339

Serverless ...340

OpenFaaS ..341

Table of ConTenTs

viii

ETL ..348

Apache NiFi ...349

Example ETL Data Pipeline ..356

Analysis and Programmatic Control ..368

Summary...377

Chapter 10: Platforming Blockchain���379

Private Blockchain Platform ..380

Development Environment ..382

Private Ethereum Network ..382

Bootnodes ..384

Bootnode Registrar ..389

Ethstats ...391

Geth Miners ...396

Geth Transaction Nodes ...405

Private Networks ...411

Blockchain Interaction ..412

Geth Attach ..412

Jupyter Environment ...413

Serverless/OpenFaaS ..421

Summary...427

Chapter 11: Platforming AIML ��431

Data ...432

Hybrid Infrastructure ...432

Development Environment ..434

DNS ..435

Table of ConTenTs

ix

k3s Hybrid Cloud ...436

Kilo VPN ...437

Master Node ..440

Worker Nodes ..442

On-premises ..443

Node Roles ..453

Install Kilo ..455

Platform Applications ..457

Data Collection ..458

MQTT IoT Client ...458

ETL ..462

Apache NiFi ...463

Python CronJob ...465

Machine Learning Automation ..471

Jupyter Notebook GPU Support ...472

Model Development ...475

Deploy Artificial Intelligence ..488

Summary...494

 Index ���497

Table of ConTenTs

xi

About the Author

Craig Johnston currently holds the position of Chief Architect at Deasil

Works, Inc. and has been developing software for over 25 years. Craig’s

expertise revolves around microservices, artificial intelligence, algorithms,

machine learning, and blockchain technologies.

Craig has helped lead his team to significantly improved productivity

and return on investment across many client projects, leveraging

Kubernetes, Docker, Golang, Cassandra, Kafka, and Elastic, to name a

few. The team and he are developing more productive, stable, clean, and

faster applications than ever in the past, and the results are beautiful

and innovative IoT management systems, IoT implementations, mobile

applications, business intelligence, data management, and machine

learning platforms.

As the former Director of R&D at Napster and later a handful of

Universal and Sony subsidiaries, Craig has been fortunate to spend many

of his early days on the bleeding edge, in the open green fields of new

media and disruptive technology.

Craig is successfully operating multiple commercial Kubernetes

platforms utilizing all the technology and concepts proposed in Advanced

Platform Development with Kubernetes.

xiii

About the Technical Reviewer

David Gonzalez is a DevOps engineer who has written three books about

DevOps and microservices. He works as a consultant, helping large

companies to advance their systems development, by tweaking related

software processes and tools. David is also a Google Developer Expert

(https://developers.google.com/experts/people/davidgonzalez-

gonzalez) in Kubernetes (Google Container Engine) and a member of the

Node.js Foundation, working on security in third-party npm packages.

In his free time, he enjoys cycling and walking with his dogs in the green

fields of Ireland.

https://developers.google.com/experts/people/davidgonzalez-gonzalez
https://developers.google.com/experts/people/davidgonzalez-gonzalez

xv

Acknowledgments

I want to start by thanking Kelsey Hightower, who inspired me and so

many others with his passion and excitement for technologies that

advance a developer’s productivity. Kelsey's live demonstrations, talks,

and tutorials convinced me that Kubernetes is a platform for developing

platforms. Kelsey is also responsible for the popularity of my Kubernetes

development utility kubefwd.

A big thank you to my friend, co-worker, author, and software

developer, David Elsensohn. David poured over every draft to ensure my

English syntax would compile in the readers' minds. Thanks to everyone at

Deasil Works, especially Jeff Masud, for helping me carve out time to write

a book in one of our busiest years (and for fixing the clusters I broke along

the way).

Thanks to Apress editors Natalie Pao and Jessica Vakili for their

patience and encouragement. Thanks again to Natalie Pao for having a

vision for this book and encouraging me to write it. Thanks to my technical

reviewer David González for correcting my mistakes, unintentional

obfuscations, and providing valuable guidance for technical clarity.

Lastly, thanks to my family and friends (most of them having no

idea what a “Kubernetes” is) who encouraged me to stay focused and

motivated. Thank you!

1© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_1

CHAPTER 1

Software Platform
and the API
On October 28, 2018, IBM announced a $34 billion deal to buy Red Hat,1

the company behind Red Hat Enterprise Linux (RHEL), and more recently

Red Hat OpenShift, an enterprise Docker/Kubernetes application platform.

What we see is $34 billion of evidence that Cloud-native and open source

technologies, centered on the Linux ecosystem and empowered by

Kubernetes, are leading disruption in enterprise software application

platforms.

Any exposure to enterprise software marketing presents a steady

stream of platform services released almost daily by major cloud

providers, including products like Google Cloud Machine Learning

Engine, Microsoft’s Azure Machine Learning service, Amazon Managed

Blockchain, and IBM Watson IoT Platform, to name a few. Big providers

like Amazon, Microsoft, IBM, and Google are not only responding to

market demand for these technologies but creating a greater awareness

of their accessibility for solving problems across a variety of industries.

Large software vendors are rapidly responding to the demand for these
capabilities and perpetuate their demand by refining and marketing
products that demonstrate their value. These vendors are often merely

1 IBM to Buy Red Hat, the Top Linux Distributor, for $34 Billion.” The New York
Times, October 28, 2018, sec. Business. https://www.nytimes.com/2018/10/28/
business/ibm-red-hat-cloudcomputing.html

https://doi.org/10.1007/978-1-4842-5611-4_1#DOI
https://www.nytimes.com/2018/10/28/business/ibm-red-hat-cloudcomputing.html
https://www.nytimes.com/2018/10/28/business/ibm-red-hat-cloudcomputing.html

2

service-wrapping the latest in open source software, adding polished user
interfaces and proprietary middleware. Peek under the hood of these
hyper-cloud services and you often find a mesh of cloud-native and even
vendor-neutral technologies for machine learning (ML), like TensorFlow,
Keras, and PyTorch, or Blockchain capabilities powered by Ethereum and
Hyperledger, and high-performance IoT data collectors like Prometheus
and Kafka. These vendors are not stealing this technology from the open
source community; some of the most significant contributions in this
ecosystem are the vendors themselves.

Developing an enterprise-grade platform from the ground up, with
capabilities as diverse as Blockchain and Machine Learning, would have
required an enormous effort only a few years ago. Your other option
would have been a significant investment and long-term commitment to
a commercial platform. Google disrupted the entire commercial platform
business with Kubernetes, a free, open source, cloud-native, and vendor-
neutral system for the rapid development of new platforms that can easily
support almost any technology with enterprise-grade security, stability,
and scale. Expect to see another significant wave of platform innovation, as
Kubernetes matures and allows software and platform developers to focus
more time on features, with less custom work needed on infrastructure,
networking, scaling, monitoring, and even security.

This book aims to build a simple demonstration platform in a vendor-
neutral approach using Kubernetes. With only minimal modifications, this
new platform should run on any primary cloud provider able to run
Kubernetes and offer a small number of widely available dependencies
such as storage, memory, and CPU. Each existing, open source technology
implemented in this platform has a specialized focus on a particular
solution. Offering Machine Learning, Blockchain, or IoT-based services
will not in themselves be a core differentiator for a platform. However,
operating these technologies together within Kubernetes provides a
foundation in which to build and offer novel solutions through their

combined efforts, along with providing a template for future additions.
In the early 1990s, databases were often operated and accessed as

independent applications. The combination of a database and a web
server revolutionized the Internet with dynamic database-driven websites.

Chapter 1 Software platform and the apI

3

These combinations seem obvious now, and Kubernetes together with
service mesh technologies like Istio and Linkerd is making connections
between diverse applications, even with conflicting dependencies, not
only possible but adding security and telemetry to the platform.

 Software Applications vs. Software Platforms
You may be a software developer and have a solution to a problem in a
specific industry vertical. With a specific mix of closed and open source
software, you wish to combine these capabilities under an API and
expose them in support of a specific application. Alternatively, you may
be a value-added reseller and want to offer customers an application
development platform that comes with a suite of prepackaged features
such as Machine Learning, Blockchain, or IoT data ingestion. Software
platforms like Kubernetes are the ideal environment for developing a
singular focused application or a platform as a service (PaaS) offering
customers an environment in which they can develop and extend their
applications (Figure 1-1).

Figure 1-1. A software application, a platform as a collection of
applications, and a platform-based application

Chapter 1 Software platform and the apI

4

 Dependency Management and Encapsulation
Containerization has made running software applications more portable

than ever by creating a single dependency, a container runtime. However,

applications often need access to a sophisticated mix of resources, including

external databases, GPUs (graphics processing units for machine learning),

or persistent storage, and likely need to communicate with other applications

for authentication, database access, and configuration services. Even a single

containerized application typically needs some form of management over

it and its access to external resources. The problem of managing connected

containers is where Kubernetes comes in; Kubernetes orchestrates the

containers of applications and manages their relationship to resources.

 Network of Applications
Not all software applications need sophisticated platform architecture. Most

software applications can be developed and merely run on a computer that

meets their operational dependencies. Platforms come into play when you

wish to operate multiple applications together and form an interconnected

network of services, or when multiple applications can benefit from shared

functionality, configuration, or resource management (Figure 1-2).

Figure 1-2. Network of containerized applications

Chapter 1 Software platform and the apI

5

 Application Platform
Even if your goal is to develop a single-purpose online application, there

are several reasons to embark on developing a software platform in

Kubernetes. Large and small, complex and straightforward, enterprise

and small-scale applications benefit when implemented in the context

of a software platform. Software platforms provide an architecture to

solve common problems and reduce the need for custom development

in several areas, including communication, storage, scaling, security, and

availability.

Architecting an application as a platform means that from the ground

up the software is intended to be extended beyond its fundamental

requirements, with the ability to upgrade and deploy new components

independently. A proper platform welcomes the addition of the latest

trends in open source, and when innovations arise, and open source

products are released, it is successful software platforms that wrap and

leverage their functionality to stay current. A proper software platform

should never assume the label legacy; it should remain in a constant,

iterative cycle of improvement.

The next section goes more in-depth into how this is accomplished

with Kubernetes as the central component. Kubernetes solves the

problems that traditional enterprise solutions like the service-oriented

architecture (SOA) have attempted to solve for decades, only Kubernetes

does this with protocols and methodologies that power the global

Internet, like DNS, TCP, and HTTP, and wraps them in an elegant and

robust API, accessible through those very same protocols. The platform is

architected around Kubernetes’s concept of a Service and its relationship

to containerized applications (Figure 1-3).

Chapter 1 Software platform and the apI

6

 Platform Requirements
This book focuses on implementing a foundational data-driven, Data

Science, and Machine Learning platform, primarily but not limited to IoT

data, and providing opportunities for interconnection with Blockchain

technology. If this sounds like a lot of hype, it is, and as the hype fades, it’s

time to get to work. As these technologies leave the lab, they begin to fade

into the background, and over the next decade, they will begin to silently

provide their solutions behind new and innovative products.

If you are familiar with the “Gartner Hype Cycle for Emerging

Technologies” (Figure 1-4) in 2018,2 you would have seen deep neural

networks (deep learning), IoT platforms, and Blockchain still on the

“peak of inflated expectations” and rolling toward the “trough of

disillusionment.” Disillusionment sounds dire, but Gartner marks the

following phase for these technologies as the “slope of enlightenment”

and a later plateau in the next 5–10 years. Much innovation happens

before these technologies plateau, and a flexible architecture built from a

collection of connected containers, managed by Kubernetes, should easily

keep you relevant for the next decade or more.

2 Walker, Mike. “Hype Cycle for Emerging Technologies, 2018.” Gartner.
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-
technologies-2018.

Figure 1-3. The relationship between services and application

Chapter 1 Software platform and the apI

https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018

7

While individual components may come and go as trends peak and

plateau, data is here to stay; the platform needs to store it, transform it, and

provide access to it by the latest innovations that produce value from it. If

there is a central requirement for Advanced Platform Development with

Kubernetes, it would be accessing the value of data, continuously, through

the latest innovative technologies in IoT, Machine Learning, Blockchain,

and whatever comes next.3

A final requirement of Advanced Platform Development with

Kubernetes is to stay open source, Cloud native, and vendor neutral. A

platform with these principles can leverage open source to harness the

global community of contributing software developers looking to solve

the same problems we are. Remaining Cloud native and vendor neutral

means not being tied to or constrained by a specific vendor and is just as

functional in a private data center, as it can on AWS, GKE, Azure, or all of

them combined as the concept of “hybrid cloud” grows in popularity.

3 Walker, Mike. “Hype Cycle for Emerging Technologies, 2018.” Gartner.
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-
technologies-2018.

Figure 1-4. Gartner’s Hype Cycle for Emerging Technologies, 20183

Chapter 1 Software platform and the apI

https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018

8

 Platform Architecture
With Kubernetes it is common to build software platforms from a

collection of specialized components, written in a variety of languages and

having vastly different and even conflicting dependencies. A good platform

can encapsulate different components and abstract their interfaces into a

standard API or set of APIs.

Object-oriented software concepts are a great reference tool for overall

platform architecture. Trends in microservice architectures encourage

the development of several, minimal applications, often taking the form

of an object Class, providing a limited number of operations in a specific

problem domain, letting the larger platform take care of aggregate business

logic. To implement this approach, take the concept of an Object and apply

it to the Kubernetes implementation of a Service (Figure 1- 5). Like software

interfaces, Kubernetes services represent one or more entry points to

an application. The object-oriented software principles of abstraction,

encapsulation, inheritance, and polymorphism can express every layer of

the platform architecture.

Figure 1-5. Class design and service architecture

Chapter 1 Software platform and the apI

9

Kubernetes is well suited for platform development and may be

overkill for any lesser task. I believe, as I hope you discover in this book,

that there is not much to debate on Kubernetes fitness for platform

development. Containers solved many of the problems with dependency

management by isolating and encapsulating components; Kubernetes

manages these containers and in doing so forms the framework for a

software platform.

 Platform Capabilities
The purpose of the platform outlined in this book is to demonstrate

how Kubernetes gives developers the ability to assemble a diverse

range of technologies, wire them together, and manage them with the

Kubernetes API. Developing platforms with Kubernetes reduces the risk

and expense of adopting the latest trends. Kubernetes not only enables

rapid development but can easily support parallel efforts. We develop

a software platform with as little programming as necessary. We use

declarative configurations to tell Kubernetes what we want. We use open

source applications to build a base software platform, providing IoT data

collection, Machine Learning capabilities, and the ability to interact with a

private managed Blockchain.

Starting with the ingestion, storage, and retrieval of data, a core

capability of the platform is a robust data layer (Figure 1-6). The platform

must be able to ingest large amounts of data from IoT devices and other

external sources including a private managed Blockchain. Applications

such as Elasticsearch, Kafka, and Prometheus manage data indexing,

message queueing, and metrics aggregation. Specific services capture

Blockchain transactions from applications such as Ethereum Geth nodes

and send them to Apache Kafka for queueing and Elasticsearch for

indexing.

Chapter 1 Software platform and the apI

10

Above the data layer sits an application layer (Figure 1-6), providing

capabilities utilizing this data, such as Machine Learning automation.

Platform services wire together and expose data sources that export

and serve persistent and streaming data usable for Machine Learning

experiments, production AI inference, and business analytics.

The Platform naturally supports the expansion of features through

the management of containers by Kubernetes. Serverless technologies

including OpenFaaS provide higher-level expansion of features. Serverless

support allows the rapid development and deployment of real-time

data processors, operations that run at specific intervals, and new API

endpoints, allowing specialized access to data, performing AI operations,

or modifying the state of the platform itself.

The platform envisioned in this book forms a data-driven foundation

for working with trending technologies, specializing in Machine Learning,

Blockchain, and IoT. Components for the ingestion, storage, indexing,

and queueing of data are brought together and allow efficient access

to data between the specialized technologies. The platform provides

data scientists the access to data and tools needed to perform Machine

Learning experimentation and the development of production-ready

neural network models for deployment by way of Serverless functions able

to make predictions, perform classification, and detect anomalies from

existing and inbound data. Blockchain technology is used to demonstrate

how third-party ledger transactions and smart contract executions can

seamlessly inner-connect to the data processing pipeline.

Chapter 1 Software platform and the apI

11

The platform, developed iteratively, eventually consists of a large

number of services, ranging in size and complexity, mixing giant monoliths

mixed with small serverless functions. Some services consist of a cluster of

Java applications, while some services only execute a few lines of Python.

If this sounds like a nightmare, it is not. Fortunately, containerization has

helped us isolate an application’s operation and dependencies, exposing

what is needed to configure, control, and communicate with the application.

However, containerization only gives us limited options for visibility

and control over our collection of services. Kubernetes gives us great

configuration access controls over infrastructure resources, security, and

networking, but leaves platform application–level concerns like encrypted

communication between services, telemetry, observability, and tracing, to

the applications themselves or higher-level specialized systems like Istio or

Linkerd. The platform developed in this book is a collection of services that

can operate with or without Istio or Linkerd. Istio and Linkerd are still young,

and best practices for implementing them are still maturing.

Figure 1-6. Platform application and data layers

Chapter 1 Software platform and the apI

12

The next few sections define the platform’s three main requirements:

IoT, Blockchain, and Machine Learning in more detail (Figure 1-7).

 IoT
The Internet of Things (IoT) and the newer Industrial Internet of Things

(IIoT) are technologies that have matured past the hype phase. The

physical devices of an industry are not only expected to be connected and

controlled over the Internet but have a closer relationship to their larger

data platforms. Kubernetes is capable of managing both the data and

control plane in every aspect of IoT. This book focuses on three main uses

for Kubernetes in the IoT domain, including the ingestion of data, as an

edge gateway, and even an operating system (Figure 1-8).

Figure 1-7. IoT, Blockchain, and Machine Learning in Kubernetes

Chapter 1 Software platform and the apI

13

 Ingestion of Data

The first and most obvious use of Kubernetes is to orchestrate a data

ingestion platform. IoT devices have the potential of producing a large

volume of metrics. Gathering metrics is only one part of the problem.

Gathering, transforming, and processing metrics into valuable data and

performing actions on that data requires a sophisticated data pipeline.

IoT devices utilize a wide range of communication protocols, with

varying quality of support from various software products built to specific

devices and protocols. To effectively support data from a range of IoT

and IIoT devices, the platform needs to speak in protocols like AMQP

(Advanced Message Queuing Protocol), MQTT (Message Queue Telemetry

Transport), CoAP (Constrained Application Protocol), raw TCP, and HTTP,

to name a few.

Figure 1-8. Three uses of Kubernetes platforms in IoT

Chapter 1 Software platform and the apI

14

JSON (JavaScript Object Notation) over HTTP is the most popular

and supported messaging protocol on the Internet. Every significant

programming language supports JSON. JSON drives nearly all public

cloud APIs in one way or another. Kubernetes’s own API is JSON-based,

and YAML, a superset of JSON, is the preferred method of declaring the

desired state.

JSON may not be as efficient as binary messages or as descriptive

as XML; however, converting all inbound messages to JSON allows

the platform to unify data ingestion on the most flexible and portable

standard available today. The platform consists of custom microservices

implementing a variety of protocols, parsing inbound message or querying

and scraping remote sources, and transforming these messages to

JSON. An HTTP collection service accepts JSON transformed data to buffer

and batch. This architecture (Figure 1-9) allows unlimited horizontal

scaling, accommodating large volumes of data.

The chapter “Pipeline” covers the implementation of the ingestion

and transformation services: Apache NiFi, Prometheus, Logstash,

Elasticsearch, and Kafka.

Figure 1-9. IoT data ingestion

Chapter 1 Software platform and the apI

15

 Edge Gateway

Kubernetes in the IoT space is beginning to include on-premises, edge

deployments. These are mini-clusters that often include as little as a single

node. On-premises clusters often operate a scaled-down version of the

larger platform and are typically responsible for communicating with IoT

devices on the local area network, or the nodes themselves are attached to

proprietary hardware and protocols, legacy control systems, or lower-level,

serial communication interfaces. Industrial use cases for the collection of

data can often include sub-second sampling of device sensors or merely

a volume of data only useful for classification, anomaly detection, or

aggregation.

An on-premises platform (Figure 1-10) can handle the initial

gathering and processing of metrics and communicate results back to a

larger data processing platform. New Kubernetes distributions such as

Minikube, Microk8s, k3s, and KubeEdge specialize in small or single-node

implementations on commodity hardware.

Figure 1-10. On-premises Kubernetes platform

Chapter 1 Software platform and the apI

16

Running a scaled-down platform on-premises solves many security

and compliance issues with data handling. In scenarios where data must

remain on-premises by strict compliance rules, on-premises clusters

can process data, whose resulting metadata, inference, and metrics

aggregation can transmit to a remote platform for further processing,

analysis, or action.

 IoT OS

The third use of Kubernetes for IoT addressed in this book is just starting

to take root, that is, Kubernetes as an IoT operating system (Figure 1- 11).

ARM processors are cheap and energy efficient. Products like the

Raspberry Pi have made them incredibly popular for hobbyists, education,

and commercial prototyping. Container support for ARM-based systems

has been around for a few years now, and running containerized

applications on IoT devices has nearly all the advantages as does running

them on more powerful and sophisticated hardware. IoT devices running

containers orchestrated by Kubernetes can take advantage of features

like rolling updates to eliminate downtime when upgrading applications.

Running a small collection of containers in Kubernetes on an IoT device

lets you take advantage of microservices application architecture, resource

allocation, monitoring, and self-healing. The development of software

for small, low-power devices once required using a proprietary operating

system and writing much of the code to support activities like firmware

updates, crash reporting, and resource allocation. IoT devices supporting

scaled-down versions of Kubernetes are still new and poised for growth

as more developers begin to see the potential for many of the common

challenges with IoT software solved with platforms like Kubernetes.

Slimmed down distributions, like the 40mb k3s, are making

Kubernetes an excellent choice for small, resource-limited devices like the

Raspberry Pi and the large family of SOC boards on the market today.

Chapter 1 Software platform and the apI

17

 Blockchain
With the maturity of Smart Contracts,4 Blockchain technology is now a

type of platform5 itself. Smart contracts allow the storage and execution

of code within the distributed, immutable ledger of the Blockchain

(see Chapters 9 and 10). The inclusion of Blockchain technology

provides the platform a capability for transactional communication with

untrusted participants. Untrusted in this context means no personal or

legal contractional trust is needed to transmit value expressed as data.

Blockchain provides a permanent record of a transaction, verified in

a shared ledger. The external parties only need to operate Blockchain

4 https://en.wikipedia.org/wiki/Smart_contract
5 Blockgeeks. “Smart Contract Platforms [A Deep Dive Investigation],” May 11, 2018.
https://blockgeeks.com/guides/different-smart-contract-platforms/.

Figure 1-11. Kubernetes platform on an IoT device

Chapter 1 Software platform and the apI

https://en.wikipedia.org/wiki/Smart_contract
https://blockgeeks.com/guides/different-smart-contract-platforms/

