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CHAPTER 1

Software Platform
and the API

On October 28, 2018, IBM announced a $34 billion deal to buy Red Hat,'
the company behind Red Hat Enterprise Linux (RHEL), and more recently
Red Hat OpenShift, an enterprise Docker/Kubernetes application platform.
What we see is $34 billion of evidence that Cloud-native and open source
technologies, centered on the Linux ecosystem and empowered by
Kubernetes, are leading disruption in enterprise software application
platforms.

Any exposure to enterprise software marketing presents a steady
stream of platform services released almost daily by major cloud
providers, including products like Google Cloud Machine Learning
Engine, Microsoft’s Azure Machine Learning service, Amazon Managed
Blockchain, and IBM Watson IoT Platform, to name a few. Big providers
like Amazon, Microsoft, IBM, and Google are not only responding to
market demand for these technologies but creating a greater awareness
of their accessibility for solving problems across a variety of industries.
Large software vendors are rapidly responding to the demand for these
capabilities and perpetuate their demand by refining and marketing
products that demonstrate their value. These vendors are often merely

'IBM to Buy Red Hat, the Top Linux Distributor, for $34 Billion.” The New York
Times, October 28, 2018, sec. Business. https://www.nytimes.com/2018/10/28/
business/ibm-red-hat-cloudcomputing.html

© Craig Johnston 2020 1
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_1
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service-wrapping the latest in open source software, adding polished user
interfaces and proprietary middleware. Peek under the hood of these
hyper-cloud services and you often find a mesh of cloud-native and even
vendor-neutral technologies for machine learning (ML), like TensorFlow,
Keras, and PyTorch, or Blockchain capabilities powered by Ethereum and
Hyperledger, and high-performance IoT data collectors like Prometheus
and Kafka. These vendors are not stealing this technology from the open
source community; some of the most significant contributions in this
ecosystem are the vendors themselves.

Developing an enterprise-grade platform from the ground up, with
capabilities as diverse as Blockchain and Machine Learning, would have
required an enormous effort only a few years ago. Your other option
would have been a significant investment and long-term commitment to
a commercial platform. Google disrupted the entire commercial platform
business with Kubernetes, a free, open source, cloud-native, and vendor-
neutral system for the rapid development of new platforms that can easily
support almost any technology with enterprise-grade security, stability,
and scale. Expect to see another significant wave of platform innovation, as
Kubernetes matures and allows software and platform developers to focus
more time on features, with less custom work needed on infrastructure,
networking, scaling, monitoring, and even security.

This book aims to build a simple demonstration platform in a vendor-
neutral approach using Kubernetes. With only minimal modifications, this
new platform should run on any primary cloud provider able to run
Kubernetes and offer a small number of widely available dependencies
such as storage, memory, and CPU. Each existing, open source technology
implemented in this platform has a specialized focus on a particular
solution. Offering Machine Learning, Blockchain, or IoT-based services
will not in themselves be a core differentiator for a platform. However,
operating these technologies together within Kubernetes provides a
foundation in which to build and offer novel solutions through their
combined efforts, along with providing a template for future additions.

In the early 1990s, databases were often operated and accessed as
independent applications. The combination of a database and a web
server revolutionized the Internet with dynamic database-driven websites.
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These combinations seem obvious now, and Kubernetes together with
service mesh technologies like Istio and Linkerd is making connections
between diverse applications, even with conflicting dependencies, not
only possible but adding security and telemetry to the platform.

Software Applications vs. Software Platforms

You may be a software developer and have a solution to a problem in a
specific industry vertical. With a specific mix of closed and open source
software, you wish to combine these capabilities under an API and
expose them in support of a specific application. Alternatively, you may
be a value-added reseller and want to offer customers an application
development platform that comes with a suite of prepackaged features
such as Machine Learning, Blockchain, or IoT data ingestion. Software
platforms like Kubernetes are the ideal environment for developing a
singular focused application or a platform as a service (PaaS) offering
customers an environment in which they can develop and extend their
applications (Figure 1-1).

Application
(platform based)
AP/ G
Sanvice Service Senvice
Application |
|| =="2 || Function Data
Application Platform | S | reem]] &=
N API/GUI ] APL/GUI
Application X 1] -
Service Service | | Service | Service Service Senrvice
AP1/GUI i )
__ hppication | __ Application
e Fiinsction Diia L] \| Function || Data nioh | Function Data

Class || Foutos || Duta Case | | Fuwses || Data

Figure 1-1. A software application, a platform as a collection of
applications, and a platform-based application



CHAPTER 1  SOFTWARE PLATFORM AND THE API

Dependency Management and Encapsulation

Containerization has made running software applications more portable
than ever by creating a single dependency, a container runtime. However,
applications often need access to a sophisticated mix of resources, including
external databases, GPUs (graphics processing units for machine learning),
or persistent storage, and likely need to communicate with other applications
for authentication, database access, and configuration services. Even a single
containerized application typically needs some form of management over

it and its access to external resources. The problem of managing connected
containers is where Kubernetes comes in; Kubernetes orchestrates the
containers of applications and manages their relationship to resources.

Network of Applications

Not all software applications need sophisticated platform architecture. Most
software applications can be developed and merely run on a computer that
meets their operational dependencies. Platforms come into play when you
wish to operate multiple applications together and form an interconnected
network of services, or when multiple applications can benefit from shared
functionality, configuration, or resource management (Figure 1-2).

l Service ‘ l Service
Pod Pod
\ Local Networki / _ Local Network | [ Local Network
Container ‘ Container Container Container ‘ ‘ Container ‘ Container

VOILII‘I'IGS Volumes Volumes |

Figure 1-2. Network of containerized applications

Confi gMap
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Application Platform

Even if your goal is to develop a single-purpose online application, there
are several reasons to embark on developing a software platform in
Kubernetes. Large and small, complex and straightforward, enterprise
and small-scale applications benefit when implemented in the context
of a software platform. Software platforms provide an architecture to
solve common problems and reduce the need for custom development
in several areas, including communication, storage, scaling, security, and
availability.

Architecting an application as a platform means that from the ground
up the software is intended to be extended beyond its fundamental
requirements, with the ability to upgrade and deploy new components
independently. A proper platform welcomes the addition of the latest
trends in open source, and when innovations arise, and open source
products are released, it is successful software platforms that wrap and
leverage their functionality to stay current. A proper software platform
should never assume the label legacy; it should remain in a constant,
iterative cycle of improvement.

The next section goes more in-depth into how this is accomplished
with Kubernetes as the central component. Kubernetes solves the
problems that traditional enterprise solutions like the service-oriented
architecture (SOA) have attempted to solve for decades, only Kubernetes
does this with protocols and methodologies that power the global
Internet, like DNS, TCP, and HTTP, and wraps them in an elegant and
robust API, accessible through those very same protocols. The platform is
architected around Kubernetes’s concept of a Service and its relationship
to containerized applications (Figure 1-3).
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| Servcies ‘ User Payment ‘ ‘ Product
Containerized L - [ N . LnadL .
| Mpplications ‘ User Application ‘ User Application Payment Application Product Application

Figure 1-3. The relationship between services and application

Platform Requirements

This book focuses on implementing a foundational data-driven, Data
Science, and Machine Learning platform, primarily but not limited to IoT
data, and providing opportunities for interconnection with Blockchain
technology. If this sounds like a lot of hype, it is, and as the hype fades, it’s
time to get to work. As these technologies leave the lab, they begin to fade
into the background, and over the next decade, they will begin to silently
provide their solutions behind new and innovative products.

If you are familiar with the “Gartner Hype Cycle for Emerging
Technologies” (Figure 1-4) in 2018,% you would have seen deep neural
networks (deep learning), IoT platforms, and Blockchain still on the
“peak of inflated expectations” and rolling toward the “trough of
disillusionment.” Disillusionment sounds dire, but Gartner marks the
following phase for these technologies as the “slope of enlightenment”
and a later plateau in the next 5-10 years. Much innovation happens
before these technologies plateau, and a flexible architecture built from a
collection of connected containers, managed by Kubernetes, should easily
keep you relevant for the next decade or more.

*Walker, Mike. “Hype Cycle for Emerging Technologies, 2018.” Gartner.
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-
technologies-2018.
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Expectations

Inflated
Innovation Expectations Disillusionment Enlightenment Productivity

Time

Figure 1-4. Gartner’s Hype Cycle for Emerging Technologies, 20183

While individual components may come and go as trends peak and
plateau, data is here to stay; the platform needs to store it, transform it, and
provide access to it by the latest innovations that produce value from it. If
there is a central requirement for Advanced Platform Development with
Kubernetes, it would be accessing the value of data, continuously, through
the latest innovative technologies in IoT, Machine Learning, Blockchain,
and whatever comes next.

A final requirement of Advanced Platform Development with
Kubernetes is to stay open source, Cloud native, and vendor neutral. A
platform with these principles can leverage open source to harness the
global community of contributing software developers looking to solve
the same problems we are. Remaining Cloud native and vendor neutral
means not being tied to or constrained by a specific vendor and is just as
functional in a private data center, as it can on AWS, GKE, Azure, or all of
them combined as the concept of “hybrid cloud” grows in popularity.

SWalker, Mike. “Hype Cycle for Emerging Technologies, 2018.” Gartner.
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-
technologies-2018.
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Platform Architecture

With Kubernetes it is common to build software platforms from a
collection of specialized components, written in a variety of languages and
having vastly different and even conflicting dependencies. A good platform
can encapsulate different components and abstract their interfaces into a
standard API or set of APIs.

Object-oriented software concepts are a great reference tool for overall
platform architecture. Trends in microservice architectures encourage
the development of several, minimal applications, often taking the form
of an object Class, providing a limited number of operations in a specific
problem domain, letting the larger platform take care of aggregate business
logic. To implement this approach, take the concept of an Object and apply
it to the Kubernetes implementation of a Service (Figure 1-5). Like software
interfaces, Kubernetes services represent one or more entry points to
an application. The object-oriented software principles of abstraction,
encapsulation, inheritance, and polymorphism can express every layer of
the platform architecture.

Class Design Service Achitecture
Servcies
Payment Class User Class 1 [ ] [
| User Payment t 4 Cart w Product |
process() update() - L J T L L - R -
retrieve() authenticate() ) l Y. l - l Py l
Product Class Cart Class Ny AP ' | API [ | API API |
isInStock():boolean addltem{Product) . :
adeDiscount)) ! User Payment | Cart || Product
Application Application !| Application ! Application
Container Container Container ' Container

Figure 1-5. Class design and service architecture
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Kubernetes is well suited for platform development and may be
overkill for any lesser task. I believe, as I hope you discover in this book,
that there is not much to debate on Kubernetes fitness for platform
development. Containers solved many of the problems with dependency
management by isolating and encapsulating components; Kubernetes
manages these containers and in doing so forms the framework for a
software platform.

Platform Capabilities

The purpose of the platform outlined in this book is to demonstrate

how Kubernetes gives developers the ability to assemble a diverse

range of technologies, wire them together, and manage them with the
Kubernetes API. Developing platforms with Kubernetes reduces the risk
and expense of adopting the latest trends. Kubernetes not only enables
rapid development but can easily support parallel efforts. We develop

a software platform with as little programming as necessary. We use
declarative configurations to tell Kubernetes what we want. We use open
source applications to build a base software platform, providing IoT data
collection, Machine Learning capabilities, and the ability to interact with a
private managed Blockchain.

Starting with the ingestion, storage, and retrieval of data, a core
capability of the platform is a robust data layer (Figure 1-6). The platform
must be able to ingest large amounts of data from IoT devices and other
external sources including a private managed Blockchain. Applications
such as Elasticsearch, Kafka, and Prometheus manage data indexing,
message queueing, and metrics aggregation. Specific services capture
Blockchain transactions from applications such as Ethereum Geth nodes
and send them to Apache Kafka for queueing and Elasticsearch for

indexing.
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Above the data layer sits an application layer (Figure 1-6), providing
capabilities utilizing this data, such as Machine Learning automation.
Platform services wire together and expose data sources that export
and serve persistent and streaming data usable for Machine Learning
experiments, production Al inference, and business analytics.

The Platform naturally supports the expansion of features through
the management of containers by Kubernetes. Serverless technologies
including OpenFaaS$ provide higher-level expansion of features. Serverless
support allows the rapid development and deployment of real-time
data processors, operations that run at specific intervals, and new API
endpoints, allowing specialized access to data, performing Al operations,
or modifying the state of the platform itself.

The platform envisioned in this book forms a data-driven foundation
for working with trending technologies, specializing in Machine Learning,
Blockchain, and IoT. Components for the ingestion, storage, indexing,
and queueing of data are brought together and allow efficient access
to data between the specialized technologies. The platform provides
data scientists the access to data and tools needed to perform Machine
Learning experimentation and the development of production-ready
neural network models for deployment by way of Serverless functions able
to make predictions, perform classification, and detect anomalies from
existing and inbound data. Blockchain technology is used to demonstrate
how third-party ledger transactions and smart contract executions can
seamlessly inner-connect to the data processing pipeline.

10
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Figure 1-6. Platform application and data layers

The platform, developed iteratively, eventually consists of a large
number of services, ranging in size and complexity, mixing giant monoliths
mixed with small serverless functions. Some services consist of a cluster of
Java applications, while some services only execute a few lines of Python.

If this sounds like a nightmare, it is not. Fortunately, containerization has
helped us isolate an application’s operation and dependencies, exposing
what is needed to configure, control, and communicate with the application.
However, containerization only gives us limited options for visibility

and control over our collection of services. Kubernetes gives us great
configuration access controls over infrastructure resources, security, and
networking, but leaves platform application-level concerns like encrypted
communication between services, telemetry, observability, and tracing, to
the applications themselves or higher-level specialized systems like Istio or
Linkerd. The platform developed in this book is a collection of services that
can operate with or without Istio or Linkerd. Istio and Linkerd are still young,
and best practices for implementing them are still maturing.

11
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The next few sections define the platform’s three main requirements:
IoT, Blockchain, and Machine Learning in more detail (Figure 1-7).

Inbound HTTP / TCP
Ingress

API

Data Science / a P .
Pods & Machine Learning Blockchain 10T / Metrics
Services
Data

Secrets & Configuration -
ConfigMaps i g

Figure 1-7. 10T, Blockchain, and Machine Learning in Kubernetes

loT

The Internet of Things (IoT) and the newer Industrial Internet of Things
(IToT) are technologies that have matured past the hype phase. The
physical devices of an industry are not only expected to be connected and
controlled over the Internet but have a closer relationship to their larger
data platforms. Kubernetes is capable of managing both the data and
control plane in every aspect of IoT. This book focuses on three main uses
for Kubernetes in the IoT domain, including the ingestion of data, as an
edge gateway, and even an operating system (Figure 1-8).

12
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Figure 1-8. Three uses of Kubernetes platforms in loT

Ingestion of Data

The first and most obvious use of Kubernetes is to orchestrate a data
ingestion platform. IoT devices have the potential of producing a large
volume of metrics. Gathering metrics is only one part of the problem.
Gathering, transforming, and processing metrics into valuable data and
performing actions on that data requires a sophisticated data pipeline.
IoT devices utilize a wide range of communication protocols, with

varying quality of support from various software products built to specific
devices and protocols. To effectively support data from a range of IoT

and IIoT devices, the platform needs to speak in protocols like AMQP
(Advanced Message Queuing Protocol), MQTT (Message Queue Telemetry
Transport), CoAP (Constrained Application Protocol), raw TCP, and HTTP,
to name a few.

13
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JSON (JavaScript Object Notation) over HTTP is the most popular
and supported messaging protocol on the Internet. Every significant
programming language supports JSON. JSON drives nearly all public
cloud APIs in one way or another. Kubernetes’s own API is JSON-based,
and YAML, a superset of JSON, is the preferred method of declaring the
desired state.

JSON may not be as efficient as binary messages or as descriptive
as XML; however, converting all inbound messages to JSON allows
the platform to unify data ingestion on the most flexible and portable
standard available today. The platform consists of custom microservices
implementing a variety of protocols, parsing inbound message or querying
and scraping remote sources, and transforming these messages to
JSON. An HTTP collection service accepts JSON transformed data to buffer
and batch. This architecture (Figure 1-9) allows unlimited horizontal
scaling, accommodating large volumes of data.

Thing Thing

Flatform Service
Service (Microservice) Service (Microservice) Bl Bou

TCP Listener

JSON Ingestion .
iyt i | fom s e >
Transformation Aggregating | Queueing
i
/ ( - >
i © -4 B
Figure 1-9. IoT data ingestion

The chapter “Pipeline” covers the implementation of the ingestion
and transformation services: Apache NiFi, Prometheus, Logstash,
Elasticsearch, and Kafka.
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Edge Gateway

Kubernetes in the IoT space is beginning to include on-premises, edge
deployments. These are mini-clusters that often include as little as a single
node. On-premises clusters often operate a scaled-down version of the
larger platform and are typically responsible for communicating with IoT
devices on the local area network, or the nodes themselves are attached to
proprietary hardware and protocols, legacy control systems, or lower-level,
serial communication interfaces. Industrial use cases for the collection of
data can often include sub-second sampling of device sensors or merely

a volume of data only useful for classification, anomaly detection, or
aggregation.

An on-premises platform (Figure 1-10) can handle the initial
gathering and processing of metrics and communicate results back to a
larger data processing platform. New Kubernetes distributions such as
Minikube, Microk8s, k3s, and KubeEdge specialize in small or single-node

implementations on commodity hardware.
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Figure 1-10. On-premises Kubernetes platform
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Running a scaled-down platform on-premises solves many security
and compliance issues with data handling. In scenarios where data must
remain on-premises by strict compliance rules, on-premises clusters
can process data, whose resulting metadata, inference, and metrics
aggregation can transmit to a remote platform for further processing,
analysis, or action.

loT 0S

The third use of Kubernetes for IoT addressed in this book is just starting
to take root, that is, Kubernetes as an IoT operating system (Figure 1-11).
ARM processors are cheap and energy efficient. Products like the
Raspberry Pi have made them incredibly popular for hobbyists, education,
and commercial prototyping. Container support for ARM-based systems
has been around for a few years now, and running containerized
applications on IoT devices has nearly all the advantages as does running
them on more powerful and sophisticated hardware. IoT devices running
containers orchestrated by Kubernetes can take advantage of features
like rolling updates to eliminate downtime when upgrading applications.
Running a small collection of containers in Kubernetes on an IoT device
lets you take advantage of microservices application architecture, resource
allocation, monitoring, and self-healing. The development of software
for small, low-power devices once required using a proprietary operating
system and writing much of the code to support activities like firmware
updates, crash reporting, and resource allocation. IoT devices supporting
scaled-down versions of Kubernetes are still new and poised for growth
as more developers begin to see the potential for many of the common
challenges with IoT software solved with platforms like Kubernetes.
Slimmed down distributions, like the 40mb k3s, are making
Kubernetes an excellent choice for small, resource-limited devices like the
Raspberry Pi and the large family of SOC boards on the market today.
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Figure 1-11. Kubernetes platform on an IoT device

Blockchain

With the maturity of Smart Contracts,* Blockchain technology is now a
type of platform® itself. Smart contracts allow the storage and execution
of code within the distributed, immutable ledger of the Blockchain

(see Chapters 9 and 10). The inclusion of Blockchain technology
provides the platform a capability for transactional communication with
untrusted participants. Untrusted in this context means no personal or
legal contractional trust is needed to transmit value expressed as data.
Blockchain provides a permanent record of a transaction, verified in

a shared ledger. The external parties only need to operate Blockchain

*https://en.wikipedia.org/wiki/Smart_contract

*Blockgeeks. “Smart Contract Platforms [A Deep Dive Investigation],” May 11, 2018.
https://blockgeeks.com/guides/different-smart-contract-platforms/.
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