

WiMAX Technology and Network Evolution

Edited by KAMRAN ETEMAD MING-YEE LAI

The ComSoc Guides to Communications Technologies Nim K. Cheung, Series Editor Thomas Banwell, Associate Series Editor Richard Lau, Associate Series Editor

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

This page intentionally left blank

WiMAX Technology and Network Evolution

IEEE Press

445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board

Lajos Hanzo, Editor in Chief

R. Abari	M. El-Hawary	S. Nahavandi
J. Anderson	B. M. Hammerli	W. Reeve
F. Canavero	M. Lanzerotti	T. Samad
T. G. Croda	O. Malik	G. Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

A volume in the IEEE Communications Society series:

The ComSoc Guides to Communications Technologies

Nim K. Cheung, Series Editor Thomas Banwell, Associate Editor Richard Lau, Associate Editor

Volumes in the series:

Next Generation Optical Transport: SDH/SONET/OTN Huub van Helvoort

> Managing Telecommunications Projects Celia Desmond

WiMAX Technology and Network Evolution Edited by Kamran Etemad and Ming-Yee Lai

WiMAX Technology and Network Evolution

Edited by KAMRAN ETEMAD MING-YEE LAI

The ComSoc Guides to Communications Technologies Nim K. Cheung, Series Editor Thomas Banwell, Associate Series Editor Richard Lau, Associate Series Editor

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2010 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

```
Etemad, Kamran.
WIMAX technology and network evolution / Kamran Etemad, Ming-Yee Lai.
p. cm.
Includes bibliographical references.
ISBN 978-0-470-34387-6 (cloth)
1. Wireless metropolitan area networks. 2. IEEE 802.15 (Standard) I. Lai, Ming-Yee, 1952- II.
Title.
TK5105.87.E86 2010
004.67-dc22
2009054416
```

Printed in Singapore.

10 9 8 7 6 5 4 3 2 1

Contents

1

Pre	eface			xvii
Co	ntribu	tors		xxi
Ac	ronym	s		xxiii
1	WiM	AX Star	ndardization Overview	1
	Kamra	an Etem	ad and Ming-Yee Lai	
	1.1	Introdu	action	1
	1.2	IEEE 8	802.16 Working Group Structure and Standards	2
	1.3	WiMA	X Forum Overview	4
		1.3.1	WiMAX Forum Organization	5
		1.3.2	WiMAX Forum Specification Development Process	7
		1.3.3	WiMAX Forum Certification	7
	1.4	WiMA	X Technology High-Level Road Map	11
	1.5	Summ	ary	14
	1.6	Refere	nces	14
2	Overv	view of]	Mobile WiMAX Air Interface in Release 1.0	17
	Kamro	an Etem	ad, Hassan Yaghoobi, and Masoud Olfat	
	2.1	Introdu	action	17
	2.2	Overvi	ew of Mobile WiMAX PHY Layer (Release 1.0)	18
		2.2.1	Channel Bandwidths and OFDMA Symbol Structure	18
		2.2.2	TDD Frame Structure	20
		2.2.3	Subcarrier Permutation, Zones, Segments, Tiles, and Bins	22
		2.2.4	Fractional Frequency Reuse (FFR)	28
		2.2.5	Modulation and Coding	28
		2.2.6	Advanced Antenna and MIMO	30
		2.2.7	DL Physical Channels	33
		2.2.8	UL Physical Channels	39
		2.2.9	PHY Control Sublayer	42
	2.3	Overvi	iew of Mobile WiMAX MAC Layer (Release 1.0)	45
		2.3.1	Convergence Sublayer	46

		2.3.2 Common MAC Sublayer	48
		2.3.3 Security Sublayer	49
		2.3.4 MS States and MAC Procedures	50
		2.3.5 Handover	54
		2.3.6 Service Flows and QoS Support	55
	2.4	WiMAX Forum System and Certification Profiles in Release 1.0	56
	2.5	Summary	57
	2.6	References	59
3	WiM	AX Air Interface Enhancements in Release 1.5	61
	Kamr	an Etemad and Hassan Yaghoobi	
	3.1	Introduction	61
	3.2	Support for Frequency Division Duplexing (FDD HFDD)	62
	3.3	Optional MIMO Enhancements	64
	3.4	MAC Enhancements	65
		3.4.1 MAP Efficiency and Persistent Assignments	65
		3.4.2 Handover Enhancements	66
		3.4.3 Load Balancing	67
		3.4.4 Location Based Services	67
		3.4.5 Enhanced Multicast and Broadcast Services	67
		3.4.6 WiMAX/WiFi/Bluetooth Coexistence	68
	3.5	System Profile and Certification Profiles in Release 1.5	69
	3.6	Summary	/1
	3.7	Kererences	/1
4	MIM	O Technologies in WiMAX	73
	Qingh	nua Li, Jianzhong (Charlie) Zhang, Peiying Zhu, Wonil Roh, Tintian Eddia Lin	
	4.1	Introduction	13
	4.2	Single User MIMO	13
		4.2.1 Open-Loop SU-MIMO	() 07
	12	4.2.2 Closed-Loop SU-MIMU	10
	4.5 1 1	Distributed MIMO and Palay in IEEE 802 16	03 85
	4.4	Conclusions	86
	4.6	References	86
5	Over	view of IEEE 802.16m Radio Access Technology	87
	Sassa	n Ahmadi	
	5.1	Introduction to IEEE 802.16m	87
	5.2	IEEE 802.16m System Requirements and Evaluation	88
	,. <u> </u>	Methodology	- 0
	5.3	IEEE 802.16m Reference Model and Protocol Structure	92

	5.4	IEEE 8	02.16m Mobile Station State Diagram	100
	5.5	Overvi	ew of IEEE 802.16m Physical Layer	102
		5.5.1	Multiple Access Schemes	102
		5.5.2	Frame Structure	102
		5.5.3	Physical and Logical Resource Blocks	104
		5.5.4	Modulation and Coding	109
		5.5.5	Pilot Structure	111
		5.5.6	Control Channels	112
		5.5.7	Downlink Synchronization (Advanced Preamble)	120
		5.5.8	Multiantenna Techniques in IEEE 802.16m	120
	5.6	Overvi	ew of the IEEE 802.16m MAC Layer	125
		5.6.1	MAC Addressing	125
		5.6.2	Network Entry	125
		5.6.3	Connection Management	128
		5.6.4	Quality of Service	128
		5.6.5	MAC Management Messages	128
		5.6.6	MAC Header	129
		5.6.7	ARQ and HARQ Functions	129
		5.6.8	Mobility Management and Handover	129
		5.6.9	Power Management	131
		5.6.10	Security	133
	5.7	PHY a	nd MAC Aspects of Multicarrier Operations	134
	5.8	PHY a	nd MAC Aspects of Multicast and Broadcast Services	140
	5.9	Summa	ary	144
	5.10	Refere	nces	145
6	Overv	iew of v	WiMAX Network Architecture and Evolution	147
	Kamro	an Etem	ad, Jicheol Lee, and Yong Chang	
	6.1	Introdu	action	147
	6.2	WiMA	X Basic Network Reference Model	150
		6.2.1	Base Station (BS)	150
		6.2.2	ASN Gateway (ASN-GW)	150
		6.2.3	Connectivity Service Network (CSN)	152
	6.3	WiMA	X Network Roadmap: Release 1.0, 1.5, 1.6, and 2.0	157
		6.3.1	Release 1.5 Network	158
		6.3.2	Release 1.6 Network	158
		6.3.3	Release 2.0 Network	159
	6.4	Overvi	ew of Major Features in Release 1.0	159
		6.4.1	Network Discovery and Selection (ND&S)	160
		6.4.2	Mobility Support	162
		6.4.3	IP address Management	163
		6.4.4	Idle Mode and Paging Operations	163
		6.4.5	Security Support	164

	6.4.7 Radio Resource	Management Support	165
	6.4.8 Initial Network	Entry Procedure	165
6.5	Overview of Major Feat	ures in Release 1.5	166
	6.5.1 Over-the-Air (O	TA) Activation and Provisioning	168
	6.5.2 Location Based	Services (LBS)	169
	6.5.3 Multicast and B	roadcast Services (MCBCS)	169
	6.5.4 Emergency Serv	vices	169
	6.5.5 IP Multimedia S	ubsystem Support	170
	6.5.6 WiMAX Lawfu	Interception	170
	6.5.7 Universal Service	ces Interface (USI)	170
	6.5.8 Miscellaneous F	eatures Added in Release 1.5	172
6.6	Major Features in Netwo	ork Release 1.6	173
	6.6.1 Femtocell and S	elf-Organization Network (SON)	173
	6.6.2 Architecture Ev	olution	174
	6.6.3 WiFi–WiMAX	Interworking	174
	6.6.4 IPv4–IPv6 Tran	sition	175
	6.6.5 OTA Evolution	and Device-Reported Metrics and	175
	Diagnostics	-	
6.7	Comparison of Mobile V	WiMAX and 3GPP/SAE Network	176
	Architecture		
6.8	Summary		177
6.9	References		177
7 Over	-the-Air (OTA) Provisio	ning and Activation	179
Avisl	ay Shraga	-	
71	Introduction		170
7.1	OT A High I aval Over	ion	1/9
1.2	7.2.1 User Europienes	lew	102
	7.2.1 User Experience		102
7 2	WiMAY Natural Arab	UW	102
7.5	OT A Protocol	litecture for OTA	103
/.4	7.4.1 Authentication (Notwork Entry)	105
	7.4.1 Authentication (network Enuy)	100
	7.4.2 Houlining and R	earrection	10/
	7.4.3 Bootstraping	A	10/
	7.4.4 Subscription and	a Account Setup	189
75	7.4.5 Provisioning		109
7.5		1	190
/.0	OTA Usage Model Exa	nples	192
	7.6.1 Postpaid Account	t OTA Subscription	192
	7.6.2 Prepaid Accoun	t OTA Subscription	192
	7.0.3 Usage-Based Ad	count—rrepaid Card Purchased in	193
	7.6.4 Postpaid Account	nt—Out-of-Band Subscription	193
	(Office/Phone)		270
	7.6.5 Postpaid Account	ntGuest Subscription	194

	7.7	Summary	194
	7.8	References	195
8	Mobi	lity in WiMAX Networks	197
	Shaha	b Sayeedi and Joseph R. Schumacher	
	8.1	Introduction	197
	8.2	Network Topology	198
	8.3	Handover Modes	198
	8.4	Scanning	200
	8.5	Basic Handover Mechanics	201
	8.6	WiMAX Network Support for Handovers (ASN Anchored Mobility)	203
		8.6.1 Controlled Handovers	204
		8.6.2 Uncontrolled Handovers	211
	8.7	Security Considerations	212
	8.8	Seamless Handover	213
	8.9	Handover Optimizations	215
	8.10	Interaction with Other Features	216
		8.10.1 Sleep Mode	216
		8.10.2 Idle Mode	217
	8.11	Summary	218
	8.12	References	218
9	WiM.	AX End-to-End Security Framework	219
	Semyo	on B. Mizikovsky	
	9.1	General Overview	219
	9.2	WiMAX Security Requirements	219
	9.3	End-to-End Security Architecture	221
		9.3.1 Development Choices for WiMAX Security	222
		9.3.2 Security Protocol Stack	230
		9.3.3 Security Keys	231
		9.3.4 Security Algorithms	231
	9.4	Security Zones	233
		9.4.1 Airlink Security	233
		9.4.2 Mobility Security	237
		9.4.3 Backhaul Security	242
	9.5	Summary	243
	9.6	References	244
10	Quali	ity of Service (QoS) in WiMAX Networks	245
	Mehd	i Alasti and Behnam Neekzad	
	10.1	Introduction	245

		10.2.1 The Basic QoS Models	247
		10.2.2 QoS Management, Control, and Enforcement	252
		10.2.3 Service and Accounting Profiles	253
	10.3	WiMAX QoS Architecture Overview	254
		10.3.1 WiMAX QoS in Different Segments	256
	10.4	WiMAX QoS and Protocol Stack	264
		10.4.1 Application Layer	264
		10.4.2 Transport Layer	266
		10.4.3 Network (IP) Layer	267
		10.4.4 Header Compression	267
		10.4.5 IP Packet Fragmentation Issues	268
	10.5	WiMAX QoS Framework	269
		10.5.1 Preprovisioned QoS Framework	270
		10.5.2 Preprovisioned QoS Framework Shortcomings	275
		10.5.3 Dynamic QoS Framework	277
	10.6	WiMAX Policy Control and Charging (PCC) Framework	277
		10.6.1 Policy Control and Charging (PCC) Framework	277
		10.6.2 WiMAX PCC Architecture	279
		10.6.3 WiMAX PCC and Dynamic QoS Framework	279
		10.6.4 WiMAX PCC and IMS	286
	10.7	Improving WiMAX QoS Framework	287
		10.7.1 Device- and Mobile-Station-Based Rate Capping	287
	10.8	Summary	289
	10.9	References	290
11	Mobi	le WiMAX Integration with 3GPP and 3GPP2 Networks	291
	Pouya	t Taaghol, Peretz Feder, and Ramana Isukapalli	
	11.1	Introduction	291
	11.2	WiMAX–3GPP Interworking	293
		11.2.1 Interworking with 3GPP Release-8	293
		11.2.2 WiMAX–3GPP EPC Interworking Architecture	295
		11.2.3 Access Network Discovery	296
		11.2.4 Initial Network Entry	297
		11.2.5 Dynamic QoS and Policy Control	299
		11.2.6 Interoperator Roaming	299
		11.2.7 WiMAX–3GPP Seamless Mobility	301
		11.2.8 Interworking with Pre-Release-8 3GPP	307
	11.3	WiMAX-3GPP2 Interworking	311
		11.3.1 The 3GPP2 Network Architecture	311
		11.3.2 WiMAX–3GPP2 Interworking Architecture	312
		11.3.3 Protocol Stack	314
		11.3.4 Integrated Dynamic Policy and QoS	314
		11.3.5 WiMAX–3GPP2 Seamless Mobility	316
	11.4	WiMAX–IMS Interworking	320

CONTENTS X

		11.4.1 WiMAX IMS Architecture	321
		11.4.2 P-CSCF Discovery	321
		11.4.3 Emergency Services	322
	11.5	Summary	323
	11.6	References	324
12	Multi	cast and Broadcast Services in WiMAX Networks	325
	Kamr	an Etemad and Limei Wang	
	12.1	Introduction	325
	12.2	Basic Terms, Requirements, and Use Cases	326
	12.3	MAC and PHY Support for MBS	328
		12.3.1 Coordinated and Synchronized Transmissions in MBS Zones	328
		12.3.2 MBS Service Flow Management	329
		12.3.3 Tracking and Processing MBS Data Bursts	330
		12.3.4 Intrazone and Interzone Session Continuity	332
	12.4	MCBCS Network Architecture	333
		12.4.1 Baseline MCBCS Network Reference Architecture	333
		12.4.2 Service Initialization and Provisioning	336
		12.4.3 Charging and Accounting for MCBCS	340
		12.4.4 MBS Data Synchronization	341
	12.5	MCBCS Application-Layer Approach	342
		12.5.1 MCBCS Application-Layer Approach Network Architecture	342
	12.6	Summary	343
	12.7	References	344
13	Loca	ion-Based Services in WiMAX Networks	345
	Wayn	e Ballantyne, Muthaiah Venkatachalam, and Kamran Etemad	
	13.1	Introduction	345
	13.2	LBS Usage Models and Design Requirements	346
		13.2.1 Location Security	346
		13.2.2 Location QoS	347
	13.3	Review of Location Methods for Wireless Devices	347
		13.3.1 Assisted GPS (A-GPS)	347
		13.3.2 Database Lookup Methods	352
		13.3.3 Mobile-Scan Report-Based Methods	353
		13.3.4 Location Accuracy and Representation	354
	13.4	WiMAX Network Reference Architecture for LBS	355
		13.4.1 Support for MS Managed Location in WiMAX	356
		13.4.2 Support for Control Plane Methods in the Network Architecture	357
		13.4.3 Support for User Plane Methods in the Network Architecture	358

		13.4.4 Contrast of User Plane and Control Plane Methods	358
		13.4.5 Support for Mixed Plane Methods in the Network	359
		13.4.6 Support for Accounting	350
		13.4.7 Support for Reaming	359
	13.5	Summary	360
	13.6	References	360
14	WiMA	X Accounting	361
	Avi Lie	or	
	14.1	Introduction	361
	14.2	Accounting Architecture	362
	14.3	Accounting Concepts	364
	14.4	Accounting Operations	367
		14.4.1 Single Accounting Session	368
		14.4.2 Multiple Accounting Sessions	371
		14.4.3 Anchor Authenticator Relocation	373
	14.5	Accounting at the Home Agent	376
	14.6	Processing of Accounting Records in the Visited NSP	377
		14.6.1 Visited AAA Processing	377
		14.6.2 BSS/OSS Processing at the Visited NSP	377
	14.7	Processing of Accounting Records in the Home NSP	378
		14.7.1 Home AAA Processing	378
		14.7.2 BSS/OSS Processing	379
		14.7.3 Billing	379
	14.8	Error Handling by the AAA	380
	14.9	Summary	380
	14.10	References	381
15	WiMA	AX Roaming	383
	John I	Dubois and Chirag Patel	
	15.1	Introduction	383
	15.2	WiMAX Roaming Business Drivers and Stakeholders	384
	15.3	Related Standards and Forums Activities	385
		15.3.1 WiMAX Forum	385
	15.4	WiMAX Roaming Model	386
	15.5	WiMAX Roaming Agreement Overview	386
	15.6	WiMAX Roaming Guideline Overview	387
	15.7	WiMAX Roaming Interface Overview	387
		15.7.1 AAA Proxy Service	387
		15.7.2 Wholesale Rating	389
		15.7.3 Clearing	389
		15.7.4 Financial Settlement	391
		15.7.5 Interconnection	391
		15.7.6 Fraud Management	392

		CONTENTS	xiii		
	15.8	Summary	392		
	15.9	References	392		
16	WiM	AX Network Management Framework	393		
	Joey (Chou			
	16.1	Introduction	393		
	16.2	WiMAX Forum Network Management	394		
	16.3	IEEE 802.16 Network Management	398		
	16.4	Self-Organizing Networks	404		
		16.4.1 Self-Configuration	405		
		16.4.2 Self-Optimization	408		
	16.5	Summary	409		
	16.6	References	410		
17	Ether	net Services In WiMAX Networks	411		
	Maxir	nilian Riegel			
	17.1	Introduction	411		
	17.2	Ethernet Services	412		
		17.2.1 E-Line Service	412		
		17.2.2 E-LAN Service	413		
	17.3	Basic Ethernet Services Standards	413		
	17.4	Ethernet-based Access Aggregation in DSL Networks	415		
	17.5	Mobile WiMAX Network Architecture	416		
		17.5.1 Ethernet Services Support in the Access Network	418		
		17.5.2 Ethernet Services Anchor in the CSN	419		
		17.5.3 Reuse of the Mobile WiMAX Control Plane	419		
	17.6	Interworking with DSL Networks	421		
		17.6.1 Related Standardization Activities	422		
	17.7	Summary	423		
	17.8	References	423		
18	WiM	AX System Performance	425		
	Bong-Ho Kim, Jungham Yun, and Yerang Hur				
	18.1	Introduction	425		
	18.2	Design of the End-to-End Application Performance Simulation	426		
	18.3	Radio Performance	428		
		18.3.1 Link-Level Performance	428		
		18.3.2 System-Level Performance	429		
		18.3.3 PHY Abstraction for Upper-Layer Simulation	431		
	18.4	Subscriber and Application Profile	432		
		18.4.1 Number of Subscribers and Machines	432		
		18.4.2 Traffic Mix Ratio and Data Session Attempt for Applications	433		
		18.4.3 Diurnal Application Traffic Distribution	433		

		18.4.4 Application Traffic Model	433
	18.5	Network Performance	436
		18.5.1 Requirement for Application QoS	436
		18.5.2 Requirements for Handover and Reattachment	438
		18.5.3 Network Traffic Characteristics and Demand Estimation	438
	18.6	End-to-End Application Performance	440
		18.6.1 VoIP Performance	440
		18.6.2 TCP/IP Performance Enhancement Mechanism	442
	18.7	Summary	445
	18.8	References	445
19	Femt	ocells and Multihop Relays in Mobile WiMAX Deployments	449
	Jerry	Sydir, Shilpa Talwar, Rakesh Taori, and Shu-Ping Yéh	
	19.1	Introduction	449
	19.2	Multitier Cellular Architecture	450
	19.3	Femtocells	451
		19.3.1 Femtocell Usage and Deployment	452
		19.3.2 Femtocell Network Architecture	453
		19.3.3 Femtocell Performance Analysis	453
		19.3.4 Key Technology Elements	460
		19.3.5 Industrial Activities	462
	19.4	Relay	463
		19.4.1 Relay Architecture	463
		19.4.2 Advantages	465
		19.4.3 Deployment Models	467
		19.4.4 IEEE 802.16j: The First Relay Standard	468
		19.4.5 Coverage and Capacity Analysis	472
		19.4.6 Relay Evolution in Next-Generation Mobile WiMAX	475
	19.5	Summary	475
	19.6	References	476
20	WiM.	AX Spectrum Requirements and Regulatory Landscape	477
	Rez A	refi and Jayne Stancavage	
	20.1	Introduction	477
	20.2	WiMAX Spectrum Requirements	477
		20.2.1 Deployment Scenarios	477
		20.2.2 Minimum Required Spectrum	478
	20.3	Regional and International Regulations and Regulatory Bodies	478
		20.3.1 International Telecommunications Union	478
		20.3.2 Regional Regulatory Bodies	480
	20.4	WiMAX Spectrum Bands	480
		20.4.1 Common Broadband Wireless Bands	481
		20.4.2 IMT Bands	482

	20.4.3 Digital Dividend	482
	20.4.4 Future Bands	483
20.5	Global Regulatory Landscape	484
	20.5.1 Spectrum Engineering and Management	484
	20.5.2 Spectrum Policy Regimes	485
	20.5.3 Spectrum Assignment Regimes	486
20.6	Spectrum Sharing	488
	20.6.1 Coexistence Scenarios	488
	20.6.2 Interference Mitigation	489
20.7	Summary	489
20.8	References	489

Index

491

This page intentionally left blank

Preface

As the evolution of wireless technologies continues toward realization of mobile broadband access to content-rich multimedia services, the communication industry is going through a significant paradigm shift. There is an ever increasing emphasis on architecture simplicity and cost lowering, as well as leveraging the ongoing success and innovations in Internet-based protocols and applications. Mobile WiMAX, which has emerged from computer and Internet ecosystems, is one of the first technologies leading this change of paradigm.

Despite widespread interest in and debate on mobile WiMAX, there is no comprehensive end-to-end description of the technology available to the industry and academia. This book is planned and organized to provide an accurate, complete, and objective description of mobile WiMAX technology. The breadth and depth of the material is carefully balanced to cover a wide range of questions on WiMAX as a new wireless technology while emphasizing key technical concepts and design principles. Each chapter was developed by selected subject-matter experts who have been directly involved as leading contributors to this technology in the IEEE 802.16 Working Group and/or the WiMAX Forum.

The book is organized into 20 chapters as shown in the figure on page xviii.

Chapter 1 provides an overview of the WiMAX standardization and certification process and development in IEEE 802.16 and in the WiMAX Forum. It also presents the high-level evolution road map for the WiMAX technology. Chapters 2 through 5 focus on the mobile WiMAX air interface based on IEEE 802.16 standards, whereas Chapters 6 through 17 articulate the key concepts of WiMAX end-to-end architectures, protocols, and services, including both over-the-air and network aspects. Based on this functional organization, some of the important WiMAX features, such as security, mobility, quality of service (QoS), and multicast and broadcast service (MBS), which are briefly described in earlier overview chapters, are described more comprehensively in the dedicated chapters.

More specifically, Chapter 2 describes the physical (PHY) and media access control (MAC) layers of WiMAX Release 1.0 in detail, whereas Chapter 3 summarizes key improvements and enhancements introduced in Release 1.5. Chapter 4

Organization of the book.

provides an overview of advanced antenna systems, which play a key role in improving radio-link-layer efficiency and provide high data throughput and system capacity. Chapter 5 presents a technical overview of IEEE 802.16m standard, which is the basis for the next-generation mobile WiMAX radio technology in Release 2.0 and also is a candidate for ITU International Mobile Telecommunications—Advanced (IMT-ADV) technologies. Chapter 7 describes over-the-air provisioning and activation in mobile WiMAX, which is a key feature to enable the open retail device distribution model. Mobility, security, and QoS, which constitute the essential end-to-end working of mobile WiMAX technology and require coherent air interface and network specifications, are covered in Chapters 8, 9, and 10, respectively. Chapter 11 addresses WiMAX interworking with 3G cellular networks and technologies, such as UMTS/HSPA and CDMA2000/1X-EVDO. The interworking enables seamless overlay and integration of WiMAX systems with existing mobile operators' networks.

Multicast and broadcast services and location-based services, which are advanced network features introduced in network Release 1.5 and are expected to be key enablers for new services and usage models, are covered in Chapters 12 and 13, respectively. Chapters 14 through 16 cover the important WiMAX network aspects in accounting, roaming, and network management. Although mobile WiMAX is primarily IP-based, the architecture can also support Ethernet-based services, which are described in Chapter 17. The last three chapters describe different perspectives on performance and deployment issues. Chapter 18 presents an overall structure of an end-to-end application performance simulator followed by radio performance evaluation focusing on link-level and system-level performance. Chapter 19 describes two advanced radio network solutions—femtocells and multihop relays—to improve coverage and system capacity. Finally, Chapter 20 highlights the spectrum allocation and regulatory issues that have direct influence on WiMAX deployments and global adoption.

The editors and contributing authors dedicate the result of this teamwork to our colleagues, families, and friends, and hope that this book provides a helpful educational reference for those who seek to learn about WiMAX technology and prepare for future related innovations.

> Kamran Etemad Ming-Yee Lai

Potomac, Maryland Short Hills, New Jersey January 2010 This page intentionally left blank

Contributors

SASSAN AHMADI, Intel MEHDI ALASTI, consultant REZA AREFI, Intel WAYNE BALLANTYNE, Motorola YONG CHANG, Samsung Electronics JOEY CHOU, Intel JOHN DUBOIS, WIMAX Forum KAMRAN ETEMAD, Intel PERETZ FEDER, Alcatel-Lucent RAMANA ISUKAPALLI, Alcatel-Lucent YERANG HUR, Posdata BONG-HO KIM, Posdata MING-YEE LAI, Telecordia Technologies JICHEOL LEE, Samsung Electronics QUIGHUA LI, Intel XINTIAN EDDIE LIN, Intel AVI LIOR, Bridgewater Systems SEMYON B. MIZIKOVSKY, Alcatel-Lucent BEHNAM NEEKZAD, Clearwire MASOUD OLFAT, Clearwire CHIRAG PATEL, WIMAX Forum MAXIMILIAN RIEGEL, Nokia Siemens Networks WONIL ROH, Samsung Electronics SHAHAB SAYEEDI, Motorola JOSEPH R. SCHUMACHER, Motorola

XXII CONTRIBUTORS

AVISHAY SHRAGA, Intel JAYNE STANCAVAGE, Intel JERRY SYDIR, Intel POUYA TAAGHOL, Intel SHILPA TALWAR, Intel RAKESH TAORI, Samsung MUTHAIAH VENKATACHALAM, Intel LIMEI WANG, Huawei Technologies HASSAN YAGHOOBI, Intel SHU-PING YEH, Stanford University JUNGNAM YUN, Posdata JIANZHONG (CHARLIE) ZHANG, Intel PEIYING ZHU, Huawei Technologies

Acronyms

1XRTT	Single-Carrier Radio Transmission Technology
3DES	Triple DES
3GPP	3rd Generation Partnership Project
3GPP2	3rd Generation Partnership Project 2
3WHS	Three-Way Handshake
A-A-AMAP	Assignment A-MAP
A-MAP	Advanced MAP
A-GPS	Assisted Global Positioning System
A-PCEF	Access Policy Control Enforcing Fucntion
A-PREAMBLE	Advanced Preamble
AAA	Authentication, Authorization, Accounting
AAS	Advanced Antenna Systems
AAV	Alternative Access Vendor
AES	Advanced Encryption Standard
AF	Application Function, Assured Forwarding
AFC	Automatic Frequency Control
AK	Authentication Key
AKA	Anonymity Key
AKA	Authentication and Key Agreement
AMC	Adaptive Modulation and Coding
AMF	Authenticated Message Field
AN	Access Network
ANDSF	Access Network Discovery and Selection Function
AO	Authentication Option
AP	Access Point
APT	Asia-Pacific Telecommunity
AQM	Active Queue Management
ARQ	Automatic Repeat reQuest
ASMG	Arab Spectrum Management Group

ASN	Access Service Network
ASN-GW	Access Service Network Gateway
ASP	Application Service Provider
ATU	Access Terminal, African Telecommunications Union
AV	Authentication Vector
AWG	Application Working Group
AWGN	Additive White Gaussian Noise
BA	Binding Acknowledgement
BBERF	Bearer Binding and Event Reporting Function
BCG	Band Class Group
BE	Best Effort
BEK	Bootstrap Encryption Key
BEM	Block Edge Mask
BER	Bit Error Rate
BGCF	Breakout Gateway Control Function
BLER	Block Error
BML	Business Management Laver
BNG	Broadband Network Gateway
bps	bit per second
BPSK	Binary Phase Shift Keying
BS	Base Station
BSC	Base Station Controller
BSHO	Base Station Initiated Handover
BS ID	Base Station Identifier
BSS	Business Support System
BTC	Block Turbo Code
BU	Binding Update
BWA	Broadband Wireless Access
C/No	Carrier-to-Noise Density
C-PCEF	Core Policy Control Enforcing Function
C-SAP	Control Service Access Point
C-SM	Collaborative Spatial Multiplexing
CA	Certificate Authority
CAC	Call Admission Control
CALEA	Communications Assistance for Law Enforcement Act
Cap-Ex	Capital Expenditure
CAPL	Contractual Agreement Preference List
CBC	Cipher Block Chaining
CBR	Constant Bit Rate
CC	Convolutional Coding, Chase Combining
ССМ	Counter-Mode Encryption (CTR) with Cipher Block
	Chaining Message Authentication Code (CBC-MAC)
CDD	Cyclic Delay Diversity
CDF	Charging Distribution Function. Cumulative Distribution
	Function

CDMA	Code Division Multiple Access
CEPT	European Conference of Postal and Telecommunications
	Administrations
CID	Connection Identifier
CINR	Carrier-to-Interference and Noise Ratio
CITEL	Inter-American Telecommunication Commission
CMAC	Cipher-based Message Authentication Code
CMIP	Client Mobile IP
CoA	Care of Address
CoRe	Constellation Rearrangement
СР	Cyclic Prefix
CPE	Customer Premise Equipment
CPS	Common Part Sublayer
CQI	Channel Quality Information
CQICH	Channel Quality Information Channel
CRC	Cyclic Redundancy Check
CRU	Contiguous Resource Unit
CS	Convergence Sublayer
CSCF	Call Session Control Function
CSG	Closed Subscriber Group
CSI	Channel State Information
CSM	Collaborated Spatial Multiplexing
CSN	Connectivity Service Network
CTC	Convolutional Turbo Coding
CUI	Chargeable User Identity
CWG	Certification Working Group
D-TDOA	Downlink Time Difference of Arrival
DB	Database
dB	decibel
dBm	decibels of power, w.r.t. 1 milliwatt
DCD	Downlink Channel Descriptor
DES	Data Encryption Standard
DF	Don't Fragment
DHCP	Dynamic Host Configuration Protocol
DiffServ	Diffrentiated Services
DL	Downlink
DLFP	Downlink Frame Prefix
DM	Device Management
DNS	Domain Name System
DOCSIS	Data-Over-Cable-Service Interface Specification
DPF	Data Path Function
DPI	Deep Packet Inspection
DPID	Data Path IDentification
DRMD	Device-Reported Metrics and Diagnostics
DRU	Distributed Resource Unit

XXVI ACRONYMS

DSA	Dynamic Service Addition
DSA-ACK	Dynamic Service Addition Acknowledgement
DSA-REQ	Dynamic Service Addition Request
DSA-RSP	Dynamic Service Addition Response
DSC	Dynamic Service Change
DSCP	DiffServ Code Point
DSD	Dynamic Service Deletion
DSL	Digital Subscriber Line
DSx	Dynamic Service Addition, Change, or Deletion
DIUC	Downlink Interval Usage Code
E-CSCF	Emergency Call Session Control Function
E-MBS	Enhanced Multicast Broadcast Service
E-UTRAN	Evolved UTRAN (3GPP)
E2E	End-to-End
EAP	Extensible Authentication Protocol
EAP-AKA	EAP Authentication and Key Agreement
EAP-TLS	EAP Transport-Layer Security
EAP-TTLS	EAP Tunneled Transport-Layer Security
ECINR	Effective Carrier-to-Interference and Noise Ratio
EESM	Exponential-Effective SINR Mapping
EDE	Encrypt-Decrypt-Encrypt
EDGE	Enhanced Data rates for GSM Evolution
EF	Expedited Forwarding
EH	Extended Header
EIK	EAP Integrity Key
EML	Element Management Layer
EMS	Element Management System
EMSK	Extended Master Session Key
EPC	Evolved Packet Core
EPDG	Evolved Packet Data Gateway
EPS	Evolved Packet System
ERTPS	Enhanced Real-Time Polling Service
ES	Emergency Service
ESM	Effective SINR Mapping
eTOM	Enhanced Operations Map
EVC	Ethernet Virtual Circuits
EVDO	EVolution Data Optimized
EVM	Vector Magnitude
FA	Foreign Agent
FBBS	Fast BS Switching
FCH	Frame Control Header
FCC	Federal Communications Commission
FDD	Frequency Division Duplexing
FD-FDD	Full-Duplex Frequency Division Duplex
FDMA	Frequency Division Multiple Access

FEC	Forward Error Correction
Femto-AP	Femto Access Point (or FAP)
FFR	Fractional Frequency Reuse
FFT	Fast Fourier Transform
FID	Flow Identifier
FIFO	First In, First Out
FTP	File Transfer Protocol
FUSC	Full Usage of Subchannels
GARP	Generic Attribute Registration Protocol
GDOP	Geometric Dilution of Precision
GERAN	GSM EDGE Radio Access Network
GGSN	Gateway GPRS Support Node
GMH	Generic MAC Header
GPRS	General Packet Radio Service
GPS	Global Positioning System
GRE	Generic Route Encapsulation
GRWG	Global Roaming Working Group
GSM	Global System for Mobile communications
GT	Guard Time
GTP	GPRS Tunneling Protocol
GW	Gateway
H-NSP	Home Network Service Provider
H-NSP-ID	Home Network Service Provider Identifier
HA	Home Agent
HAAA	Home AAA
HARQ	Hybrid Automatic Repeat reQuest
HARQ-CC	Hybrid Automatic Repeat reQuest for Convolutional Code
HCSN	Home Connectivity Service Network
HD-FDD	Half-Duplex Frequency Division Duplex
HHO	Hard Handover
HLR	Home Location Register
HMAC	keyed-Hash Message Authentication Code
HO	Handover
HoA	Home Address
HODI	Handover Data Integrity
HSPA	High Speed Packet Access (3GPP)
HSS	Home Subscriber Server
HTTP	Hypertext Transfer Protocol
I-CSCF	Interrogating Call Session Control Function
IAS	Internet Access and Services
IASP	Internet Application Service Provider
ICMP	Internet Control Message Protocol
ICT	Information and Communication Technologies
ID	Identifier
IE	Information Element

IEEE	Institute of Electrical and Electronics Engineers
IETF	Internet Engineering Task Force
IGMP	Internet Group Management Protocol
IIOT	Infrastructure Interoperability Testing
IM	Instant Messaging
IMS	IP Multimedia Subsystem
IMSI	International Mobile Subscriber Identity
IMT	International Mobile Telecommunications
IntServ	Integrated Services
IOT	Interoperability Testing
IP	Internet Protocol
IP-CAN	IP Connectivity Access Network
Ipsec	Internet Protocol Security
IPTV	Internet Protocol TV
IPv4	Internet Protocol Version 4
IPv6	Internet Protocol Version 6
IR	Incremental Redundancy
IRP	Integration Reference Point
IS	Information Services
ISF	Initial Service Flow
ISM	Industrial, Scientific, and Medical
ISP	Internet Service Provider
ITU	International Telecommunications Union
ITU-D	International Telecommunications Union-Development
	Sector
ITU-R	International Telecommunications Union-
	Radiocommunications Sector
ITU-T	International Telecommuncations Union-Telecom
	Standardization Sector
IWK	Interworking
JTG 5-6	Joint Task Group 5-6
KEK	Key-Encryption-Key
KPI	Key Performance Indicators
L2	Layer 2
L3	Layer 3
LAES	Lawfully Authorized Electronic Surveillance
LBO	Local Breakout
LBS	Location-Based Service
LCID	Logical Channel IDentifier
LDAP	Lightweight Directory Access Protocol
LDPC	Low Density Parity Check
LEC	Local Exchange Carrier
LI	Lawful Interception
LRU	Logical Resource Unit
LTE	Long-Term Evolution (3GPP)