

Handbook of Clinical Pediatric Endocrinology

SECOND EDITION

Contents

Preface

List of Abbreviations

<u>CHAPTER 1 The Relevance of</u> <u>Molecular Biology to Clinical Practice</u>

<u>The human genome</u>

Structure and function of genes

Molecular biology in diagnosis

Mutations and human disease

Complex disorders

Novel techniques - the future of molecular diagnosis

Molecular biology and therapeutics

<u>CHAPTER 2 Hormones: their Nature,</u> <u>Action and Measurement</u>

Biosynthesis, storage and secretion of hormones

Transport of hormones in the blood

Endocrine rhythms

Hormone action

<u>Measurements of hormones in blood, urine</u> <u>and other body fluids</u>

<u>CHAPTER 3 The Hypothalamo-</u> <u>Pituitary Axis</u>

<u>Congenital disorders</u> <u>Acquired disorders (Table 3.6)</u>

<u>CHAPTER 4 Endocrine Problems of Infancy</u>

<u>Disorders of sex development</u>
<u>Causes of disorders of sex development</u>
<u>Investigations</u>
<u>Management of specific conditions</u>

<u>CHAPTER 5 The Management of Growth Disorders</u>

<u>Anthropometry</u>
<u>Definition of normal</u>
<u>Short stature</u>

Tall stature

<u>CHAPTER 6 The Management of</u> <u>Puberty Disorders</u>

<u>Physical changes of puberty</u> <u>Endocrine changes of puberty</u> <u>Adrenarche</u> <u>Abnormal puberty</u>

CHAPTER 7 The Thyroid Gland

Thyroid gland development

<u>Maturation of the hypothalamo-pituitary-thyroid axis</u>

Maturation of thyroid hormone action

Role of the placenta

<u>Thyroid hormonogenesis</u>

Regulation of thyroid function

<u>Hypothyroidism</u>

<u>Hyperthyroidism</u>

<u>Thyroid storm</u>

Thyrotoxic periodic paralysis

Thyroid neoplasia

CHAPTER 8 The Adrenal Gland

Steroid hormone synthesis

Regulation of steroidogenesis

Genetic lesions in steroidogenesis

Adrenal insufficiency

Adrenal excess

Glucocorticoid therapy and withdrawal

Mineralocorticoid replacement

<u>CHAPTER 9 Disorders of Calcium and Bone Metabolism</u>

Physiology of calcium metabolism

Physiology of bone metabolism

Investigation of calcium and bone disorders

Hypocalcemia in childhood

Hypercalcemia in childhood

Disorders of bone metabolism

<u>Drugs used in the treatment of disorders of</u> <u>calcium and bone metabolism</u>

CHAPTER 10 Water Balance

Body water and electrolytes Physiology of osmotic regulation Disorders of water balance

<u>CHAPTER 11 Hypoglycemia</u>

Definition

Clinical assessment

Urgent investigations

Management

<u>Interpretation of results</u>

Further investigations

Consequences of hypoglycemia

Glucose homeostasis in the fed and fasted

infant and child

<u>The pancreas</u>

Specific causes of hypoglycemia

<u>Metabolic causes of hypoglycemia</u>

Miscellaneous metabolic and toxic causes

of hypoglycemia

<u>CHAPTER 12 Obesity and Type 2</u> <u>Diabetes Mellitus</u>

Fat deposition in health and illness

Defining obesity

Pleiotrophic obesity syndromes

Causes of obesity

Human monogenic obesity syndromes

Metabolic adaptation to weight gain and

the development of insulin insensitivity

<u>Identification and screening for metabolic</u>

<u>complications</u>

<u>Long-term risks</u>

Management of obesity and its co-

morbidities

Prevention of childhood obesity

CHAPTER 13 Type 1 Diabetes Mellitus

Definition and diagnosis

Classification

Secondary causes of diabetes

Type 1 diabetes mellitus

Type 2 diabetes mellitus

Presentation of diabetes

Management

Acute complications of diabetes

Chronic complications of type 1 diabetes

Transition from pediatric to adult care

<u>CHAPTER 14 Endocrine Neoplasia</u>

Tumors of the adrenal gland

Thyroid neoplasia

Tumors of the ovary

Tumors of the testes

<u>CHAPTER 15 Tests and Normal Values</u> <u>in Pediatric Endocrinology</u>

General principles for all endocrine tests

Pituitary

Adrenal axis

Gonadal axis

Glucose homeostasis

Molecular genetic analysis

Normal values

<u>Appendix 1: Syndrome-Specific</u> <u>Growth Charts</u>

Appendix 2: Normal Values

Index

Handbook of Clinical Pediatric Endocrinology

Charles G. D. Brook

MA, MD, FRCP, FRCPCH

Emeritus Professor of Paediatric Endocrinology University College London London, UK

Mehul T. Dattani

MD, FRCP, FRCPCH, DCH

Professor of Paediatric and Adolescent Endocrinology
Academic and Clinical Lead in Paediatric Endocrinology
Developmental Endocrinology Research Group
Clinical and Molecular Genetics Unit
UCL Institute of Child Health, Great Ormond Street Hospital for Children
London and University College London Hospitals, UK

SECOND EDITION

WWILLI DL/ KIX W LLL

A John Wiley & Sons, Ltd., Publication

This edition first published 2012, © 2008, 2012 by John Wiley & Sons, Ltd.

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Offices

9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the authors to be identified as the authors of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information

in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Handbook of clinical pediatric endocrinology / [edited by] Charles G.D. Brook, Mehul T. Dattani. – 2nd ed.

p.; cm.

Includes bibliographical references and index.

ISBN 978-0-470-65788-1 (pbk. : alk. paper)

I. Brook, C. G. D. (Charles Groves Darville) II. Dattani, Mehul T.

[DNLM: 1. Endocrine System Diseases-Handbooks. 2. Adolescent. 3. Child. 4. Infant. WK 39] 618.92'4-dc23

2011035465

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Preface

The first edition of this Handbook appeared four years ago and seems to have been useful, so this update, based on the 6th edition of *Brook's Clinical Pediatric Endocrinology*, follows a very similar format but with some notable additions.

Molecular biology has advanced rapidly in those years and is beginning to have a real clinical impact so considerable attention has been paid to this advance. You will also find clinical pitfalls highlighted and self-assessment challenges in each chapter. Where possible, we have included links to established guidelines and consensus views.

The enrolment of Professor Mehul Dattani as co-editor has been a great comfort to his (literally) senior colleague and it is my hope that you will profit as much from his extraordinary grasp of the science and practice of clinical pediatric endocrinology as I have. As always, we should be very glad to have errors drawn to our attention.

The team at Wiley-Blackwell, Oliver Walters, Jenny Seward, Rob Blundell and Helen Harvey, provides as smooth an operation as an author could wish for; we are very grateful for their help in producing this book. We hope that you will enjoy it.

> Charles Brook Mehul Dattani 2012

List of Abbreviations

1,25(OH) 2 D1,25-dihydroxyvitamin D

11**β-HSDII** 11β-hydroxysteroid dehydrogenase type II

17PGN 17α -hydroxypregnenolone

AAA Achalasia, Addisonian, Alacrima syndrome

ACE angiotensin-converting enzyme

ACT adrenocortical tumor

ACTH adrenocorticotropic hormone

ADH antidiuretic hormone

ADHR autosomal-dominant hypophosphatemic rickets

AES Androgen Excess Society

AFP α -fetoprotein

AHO Albright hereditary osteodystrophy

AI aromatase inhibitor

AJCC American Joint Committee on Cancer

ALS acid-labile subunit

ALT alanine aminotransferase

AME apparent mineralocorticoid excess

AMH anti-müllerian hormone

ANCA antineutrophil cytoplasmic antibody

ANP atrial natriuretic peptide

APECED autoimmune polyendocrinopathy-candidiasis-

ectodermal dysplasia

APS autoimmune polyendocrine/glandular syndrome

ARHR autosomal-recessive hypophosphatemic rickets

ATD antithyroid drugs

ATP adenosine triphosphate

AVP arginine vasopressin

AZF azoospermia factor

BG blood glucose

BMD bone mineral density

BMI Body Mass Index

BMP bone morphometric protein

BMT bone marrow transplant

BMU bone remodeling unit

BNP brain natriuretic peptide

BWS Beckwith-Wiedemann syndrome

CAH congenital adrenal hyperplasia

CAIS complete androgen insensitivity syndrome

cAMP cyclic adenosine monophosphate

CaSR calcium-sensing receptor

CBG corticosteroid-binding globulin

CDG congenital disorders of glycosylation

CDGP constitutional delay of growth and puberty

CDI central diabetes insipidus

CEA chorionic embryonic antigen

CF cystic fibrosis

CGH comparative genomic hybridization

CGM continuous glucose monitoring

CGMS continuous glucose monitoring sensor

cGvHD chronic graft versus host disease

CH congenital hypothyroidism

CHD chromodomain helicase DNA-binding protein

congenital hyperinsulinism/congenital

hyperinsulinism of infancy

CI cranial irradiation

CKK cholecystokinin

CLT chronic lymphocytic thyroiditis

CMO corticosterone methyl oxidase

CNP C-type natriuretic peptide

CNS central nervous system

CNV copy number variation

CPHD combined pituitary hormone deficiency

CPP central precocious puberty

CRF chronic renal failure

CRH corticotropin-releasing hormone

CSI cranio-spinal irradiation

CSII continuous subcutaneous insulin infusion

CSW cerebral salt wasting

CT computed tomography/calcitonin

CV_a analytical variance

CV_i within-subject biological variation

CYP cytochrome P450

DAZ deleted in azoospermia

DBD DNA-binding domain

DBP vitamin D-binding protein

DDAVP desamino-D-arginine vasopressin

DECIPHER Database of Chromosomal Imbalance and

Phenotype in Humans using Ensembl Resources

DEXA dual energy X-ray absorptiometry

DHEAS dehydroepiandrosterone sulfate

DHT dihydrotestosterone

DI diabetes insipidus/dentinogenesis imperfecta

DIDMOAD diabetes insipidus, diabetes mellitus, optic

atrophy and deafness

DIT di-iodotyrosine

DKA diabetic ketoacidosis

DM diabetes mellitus

DOC deoxycorticosterone

DQ developmental quotient

DSD disorders of sex development

DWBS diagnostic whole-body scan

ECF extracellular fluid

ECG electrocardiogram

ECLIA electrochemiluminescence immunoassay

EGF epidermal growth factor

ELISA enzyme-linked immunosorbent assay

FA follicular adenoma

FBH familial benign hypercalcemia

FDA Food and Drug Administration

FGD familial glucocorticoid deficiency

FGF fibroblast growth factor

FGFR fibroblast growth factor receptor

FH final height

International Federation of Gynecology and

Obstetrics

FIPH familial isolated primary hyperparathyroidism

FISH fluorescence *in situ* hybridization

FNA fine needle aspiration

FSH follicle-stimulating hormone

FT free thyroxine

FT-UMP follicular tumor of uncertain malignant potential

GABA γ-aminobutyric acid

G-CSF granulocyte-colony stimulating factor

GDP guanosine diphosphate

GDPP gonadotropin-dependent precocious puberty

GFR glomerular filtration rate

GH growth hormone

GHBP growth hormone binding protein

GHD growth hormone deficiency

GHI growth hormone insensitivity

GHIS growth hormone insensitivity syndrome

GHR growth hormone receptor

GHRH growth hormone-releasing hormone

GI gastrointestinal/glycemic index

GIP glucose-dependent insulinotropic peptide

GIPP gonadotropin-independent precocious puberty

GLP glucagon-like peptide

GnRH gonadotropin-releasing hormone

GnRHa gonadotropin-releasing hormone analog

GPCR guanine-protein-coupled receptor

GRA glucocorticoid-remediable aldosteronism

Gsa G-protein α

GSD glycogen storage disease

GTP guanosine triphosphate

GTT glucose tolerance test

GWAS genome-wide association study

hCG human chorionic gonadotropin

HDL high-density lipoprotein

HH hypogonadotropic hypogonadism

HLA human leukocyte antigen

HMGCoA hydroxymethylglutaryl coenzyme A

HOCM hypertrophic obstructive cardiomyopathy

HPA hypothalamo-pituitary axis

HPG hypothalamo-pituitary-gonadal

HPLC high-performance liquid chromatography

HRE hormone response element

HSD hydroxysteroid dehydrogenase

HVDRR hereditary $1\alpha,25(OH)_2D$ -resistant rickets

IA immunoassay

ICF intracellular fluid compartment

ICSI intracytoplasmic sperm injection

IFA immunofunctional assay

IFG impaired fasting glucose

IGF insulin-like growth factor

IGFBP insulin-like growth factor binding protein

IGHD idiopathic isolated GH deficiency

IGT impaired glucose tolerance

isolated/idiopathic hypogonadotropic

hypogonadism

IJO idiopathic juvenile osteoporosis

IL interleukin

IM intramuscular

IMA immunometric assay

IP3 inositol 1,4,5-triphosphate

IPEX immune dysregulation, polyendocrinopathy,

enteropathy, X-linked syndrome

IQ intellectual quotient

IRS insulin receptor substrate

ISS idiopathic short stature

ITT insulin tolerance test

IUGR intrauterine growth restriction

IV intravenous

KL Klotho

KS Kallman syndrome

LBD ligand binding domain

LCAD long-chain acyl CoA dehydrogenase

LCH Langerhans cell histiocytosis

LDL low-density lipoprotein

LH luteinizing hormone

LHR luteinizing hormone receptor

LHRH luteinizing hormone-releasing hormone

lod logarithm of odds

MAPK mitogen-activated protein kinase

MAS McCune-Albright syndrome

MC4R melanocortin 4 receptor

medium-chain acyl CoA dehydrogenase

deficiency

MCP monocyte chemoattractant protein

M-CSF macrophage-colony stimulating factor

MCT monocarboxylate transporter

MEN multiple endocrine neoplasia

MHC major histocompatibility complex

MIBG meta-iodobenzylguanidine

miRNA micro RNA

MIT mono-iodotyrosine

MMI methimazole

MODY maturity-onset of diabetes in the young

microcephalic osteodysplastic primordial

dwarfism

MPHD multiple pituitary hormone deficiency

MR magnetic resonance

MRI magnetic resonance imaging

mRNA messenger RNA

MRS magnetic resonance spectroscopy

MSH melanocyte-stimulating hormone

MTC medullary thyroid carcinoma

mtDNA mitochondrial DNA

MUAC mid-upper arm circumference

NDI nephrogenic diabetes insipidus

NF neurofibromatosis

NGS next-generation sequencing

NSPHT neonatal severe primary hyperparathyroidism

OCP oral contraceptive pill

OGTT oral glucose tolerance test

OHD hydroxylase deficiency/hydroxyvitamin D

OHP hydroxyprogesterone

OI osteogenesis imperfecta

OMIM Online Mendelian Inheritance in Man

OPG osteoporosis-pseudoglioma syndrome

PAI plasminogen activator inhibitor

PAIS partial androgen insensitivity syndrome

PCOS polycystic ovarian syndrome

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PFD polyostotic fibrous dysplasia

PG plasma glucose

PHA pseudohypoaldosteronism

persistent hyperinsulinemic hypoglycemia of

infancy

PHP pseudohypoparathyroidism

PLC phospholipase C

PNDM permanent neonatal-onset diabetes mellitus

POMC pro-opiomelanocortin

POR P450 oxidoreductase

PP pancreatic polypeptide

PPHP pseudo-pseudohypoparathyroidism

PPP pseudo precocious puberty

PRA plasma renin activity

PRL prolactin

PROK prokineticin

PROKR prokineticin receptor

PTH parathyroid hormone

PTHrP parathyroid hormone-related peptide

PTU propylthiouracil

PWS Prader-Willi syndrome

QC quality control

RAI radioactive iodine

RANKL RANK-ligand

RBP retinol binding protein

RCV reference change value

rhIGF recombinant human insulin-like growth factor

rhtsh recombinant human thyroid-stimulating

hormone

radioreceptor assay/radioiodine remnant

ablation

rRNA ribosomal RNA

RSV respiratory syncytial virus

RTA renal tubular acidosis

RT-PCR reverse transcription polymerase chain reaction

SC subcutaneous

SCAD short-chain acyl CoA dehydrogenase deficiency

scc side chain cleavage

SCID severe combined immunodeficiency

SCST sex cord stromal cell tumors

SD standard deviation

SDH succinate dehydrogenase

SDS standard deviation (Z) score

SG specific gravity

SGA small for gestational age

SHBG sex hormone-binding globulin

SHH Sonic Hedgehog

SIADH syndrome of inappropriate antidiuretic hormone

siRNA small interfering RNA

SLE systemic lupus erythematosus

SMBG self-monitoring of blood glucose

SNP single nucleotide polymorphism

SOD septo-optic dysplasia

SS somatostatin

StAR steroidogenic acute regulatory protein

STK serine-threonine kinase

STR short tandem repeat

T testosterone

TACE tumor necrosis factor α converting enzyme

TBG thyroxine-binding globulin

TBI total body irradiation

TDF testis-determining factor

Tg thyroglobulin

TG triglyceride

TGCT testicular germ cell tumor

TNF tumor necrosis factor

TPO thyroid peroxidase

TPP thyrotoxic periodic paralysis

TRH thyrotropin-releasing hormone

tRNA transfer RNA

TRP tubular reabsorption of phosphate

TSH thyroid-stimulating hormone

UFC urine free cortisol

UV ultraviolet

VDDR vitamin D-dependent rickets

VDR vitamin D receptor

VDRR vitamin D-resistant rickets

VHL Von Hippel-Lindau

VIP vasoactive intestinal peptide

VLCAD very long-chain acyl CoA dehydrogenase

VNTR variable number of tandem repeats

WAGR Wilms tumor, aniridia, genital anomalies and

mental retardation

WDR WD-repeat containing protein

WDT-UMP well-differentiated tumor of uncertain malignant

potential

XLH X-linked dominant hypophosphatemic (vitamin

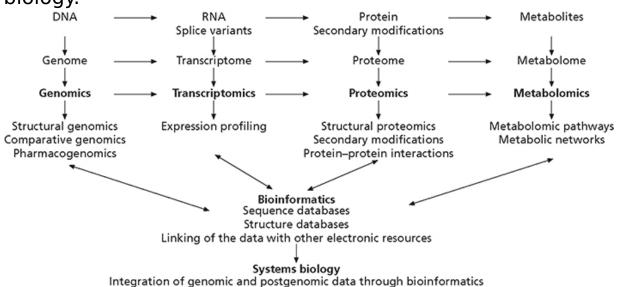
D-resistant) rickets

CHAPTER 1

The Relevance of Molecular Biology to Clinical Practice

Key learning points

- 1. The inheritance of genetic disorders in humans may be mendelian or more complex.
- 2. The human genome contains around 30,000–40,000 genes, and its complexity is further increased by the use of alternative promoters, epigenetic phenomena and alternative splicing.
- 3. Further complexity is imparted by disorders of imprinting, mitochondrial disorders, mosaicism, digenic/oligogenic inheritance, sexinfluenced phenotypes and variability of penetrance and expressivity.
- 4. Novel genetic techniques such as array-CGH and next-generation sequencing will revolutionize molecular diagnostics over the next few years.
- 5. Molecular diagnosis is increasingly important for optimal medical management of a number of human disorders.


An understanding of and a facility with the molecular basis of many endocrine and non-endocrine disorders is essential to the practice of pediatric endocrinology in the 21st century and knowledge is accumulating rapidly (see Online Mendelian Inheritance in Man [OMIM], a comprehensive catalog of human genes and genetic disorders in order to keep pace with this field: www.ncbi.nlm.nih.gov/sites/entrez?db=omim) (see also Web

links box). With the exception of simple trauma, every disease has a genetic component.

In monogenic disorders, for example, congenital adrenal hyperplasia (CAH), the genetic component is the major etiological factor. Multiple genes operating in conjunction with environmental and lifestyle factors contribute to the pathogenesis of polygenic or multifactorial disorders. Genetic factors also influence the manifestation of disease directly through the genetic defect or indirectly by defining the host's susceptibility and resistance to an environmental disease such as infection.

Genetics (Fig. 1.1) is the science of heredity and variation and has heretofore focused on chromosomal abnormalities and inborn errors of metabolism. Analysis of the transmission of human traits and disease within families has led to understanding many monogenic disorders. Diabetes mellitus type 2, obesity, hypertension, heart disease, asthma and mental illnesses are complex and the genetic susceptibilities to these disorders are influenced by exogenous factors interacting with genetic susceptibilities.

<u>Figure 1.1</u> Overview of genomics, transcriptomics, proteomics, metabolomics, bioinformatics and systems biology.

Phenotype can also be influenced by genetic and environmental modifiers in monogenic disorders. For example, the expression of the phenotype in monogenic forms of diabetes mellitus due to mutations in the maturity onset of diabetes in the young (MODY) genes is influenced by factors such as diet and physical activity.

The term *genome*, introduced before the recognition that DNA is the genetic material, designates the totality of all genes on all chromosomes in the nucleus of a cell. Genomics refers to the discipline of mapping, sequencing and analyzing genomes. Genome analysis can be divided into structural and functional genomics. The analysis of differences among genomes of individuals of a given species is the focus of comparative genomics. The complement of messenger RNAs (mRNAs) transcribed by the cellular genome is called the transcriptome and the generation of mRNA expression profiles is referred to as transcriptomics. Epigenetic alterations and chemical modifications of DNA or chromatin proteins influence gene transcription. The sum of all epigenetic information defines the epigenome, which, in contrast to the genome, is highly variable between cells and changes within a single cell over time. Epigenetic modifications lead to phenotypic changes without alteration of DNA sequence, and may be heritable.

The term *proteome* describes all the proteins expressed and modified following expression by the entire genome in the lifetime of a cell. Proteomics refers to the study of the proteome using techniques of large-scale protein separation and identification. The field of metabolomics aims at determining the composition and alterations of the metabolome, the complement of low molecular weight molecules. The relevance of these analyses lies in the fact that proteins and metabolites function in modular networks rather than linear pathways. Hence, any physiological or

pathological alteration may have many effects on the proteome and metabolome.

Pharmacogenomics, which involves the analysis of the genetic factors determining the response of an individual to a particular therapeutic agent, is emerging as a major new field. Genetic polymorphisms can not only influence the effects of medications but also result in variable absorption, distribution, metabolism, and excretion of a drug.

The growth of biological information has required computerized databases to store, organize, annotate and index the data which has led to the development of bioinformatics, the application of informatics to (molecular) biology. Computational and mathematical tools are essential for the management of nucleotide and protein sequences, the prediction and modeling of secondary and tertiary structures, the analysis of gene and protein expression and the modeling of molecular pathways, interactions and networks.

The integration of data generated by transcriptomic, proteomic, epigenomic and metabolomic analyses through emerging discipline informatics is an aimed phenotypic variations understanding and comprehensive models of cellular organization and function. These efforts are based on the expectation that an understanding of the complex and dynamic changes in a biological system may provide insights into pathogenic processes and the development of novel therapeutic strategies and compounds.

The human genome

Genes were identified because they conferred specific traits transmitted from one generation to the next. They are functional units regulated by transcription and encode messenger (m)RNA which is subsequently translated into