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Preface
The aim of this book is to explain the difficulties that arise
with the credibility and interpretability of clinical study
results when there is missing data; and to provide practical
strategies to deal with these difficulties. We try to do this in
straightforward language, using realistic clinical trial
examples.

This book is written to serve the needs of a broad
audience of pharmaceutical industry professionals and
regulators, including statisticians and non-statisticians, as
well as academics with an interest in or need to understand
the practical side of handling missing data. This book could
also be used for a practical course in methods for handling
missing data. For statisticians, this book provides
mathematical background for a wide spectrum of statistical
methodologies that are currently recommended to deal with
missing data, avoiding unnecessary complexity. We also
present a variety of examples and discussions on how these
methods can be implemented using mainstream statistical
software. The book includes a framework in which the entire
clinical study team can contribute to a sound design of a
strategy to deal with missing data, from prevention, to
formulating clinically plausible assumptions about
unobserved data, to statistical analysis and interpretation.

In the past, missing data was sometimes viewed as a
problem that can be taken care of within statistical
methodology without burdening others with the
technicalities of it. While it is true that sophisticated
statistical methods can and should be used to conduct
sound analyses in the presence of missing data, all these
methods make assumptions about missing data that clinical
experts should help to formulate – assumptions that should



be clinically interpretable and plausible. Moreover, it is
important to understand that some assumptions about
missing data are always being made, be it explicitly or
implicitly. Even a strategy using only observed data for
analysis carries within it certain implicit assumptions about
subjects with missing data, and these assumptions are
being implicitly made part of study conclusions. Clinicians
fully participate in the effort to select carefully the type of
data (clinical endpoints) that could best serve as evidence
for efficacy and safety of a treatment. Their clinical
expertise is invaluable for the choice of data that is
collected in a clinical trial and subsequently used as
observed data. Similarly, it is only natural to expect that the
same level of clinical expertise would be provided to make
choices for “hidden data” – the assumptions that would be
used in place of missing data as an integral part of the
overall body of evidence. Parts of this book (Chapters 1–4)
contain non-technical material that can be easily
understood by non-statisticians, and we hope that it will
help clinicians and statisticians to build a common ground
and a common language in order to tackle appropriately the
problem of missing data together. Chapter 2 is dedicated
entirely to prevention of missing data, which is the best way
to deal with the problem, albeit not sufficient by itself in
reality. Everyone involved in the planning and conduct of
clinical trials would benefit from the ideas presented in this
chapter.

Chapters 5 through 8 are aimed primarily at statisticians
and cover well-understood methods that are presently
regarded as statistically sound ways of conducting analyses
in the presence of missing data and which can provide
clinically meaningful estimands of treatment effect. In
particular, this book covers direct likelihood methodology for
longitudinal data with repeated correlated measurements;
multiple imputation; pattern-mixture models; and inverse



weighting and doubly robust methods. We discuss in detail
how these methodologies can be applied under a variety of
clinical assumptions about unobserved data, both in the
context of primary and sensitivity analyses. Aspects that are
covered more briefly include selection models and non-
parametric approaches. Examples cover both continuous
outcomes and binary responses (e.g., treatment
success/failure). Missing data problems in other contexts,
such as time-to-event analyses, are not covered in this
book.

Along with algebraic basics and plain language
explanations of statistical methodology, this book contains
numerous examples of practical implementations using
SAS®. Throughout the book, as well as in supplemental
material, we provide fragments of SAS code that would be
sufficient for readers to use as templates or at least good
starting points to implement all analyses mentioned in this
book. We also provide pointers and explanations for a
number of SAS macros publicly available at
www.missingdata.org.uk, developed by members of the
Drug Information Association Scientific Working Group on
Missing Data. Both authors of this book are members of this
Working Group. We note that alternative software solutions
exist in other programming environments, including free
packages such as R. Other authors, for example, Carpenter
and Kenward (2013) and van Buuren (2012), have provided
tools that the readers would be able to use in order to
implement general analysis principles discussed in this
book.

Examples of realistic clinical trial data featured in this book
provide illustrations of how reasonable missing data
strategies can be designed in several different clinical
indications, each with some specific challenges and
characteristics. All examples have two treatment arms –
experimental and control – but the methodology discussed
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in this book can be applied in more general settings with
more than two arms in a straightforward manner.

We have also endeavored to make the book suitable for
casual use, allowing the professional statistician with a
particular need to use a particular section without having to
be familiar with the whole book. Therefore, each chapter
begins with a list of key points covered; abbreviations are
expanded on first appearance in each chapter; references
are listed at the end of each chapter; explanations of
particular points may be repeated if it helps to make a
passage readable (although there are many cross-
references between chapters too); where a book is
referenced, we try to give page numbers if we think this
might be helpful; and for some references to journal papers
we also give web links to enable fast reference to abstracts
and to enable downloading for those who may have
electronic subscriptions.

Finally, we would like to stress that the problem of missing
data unfortunately does not have a one-fits-all solution. A
clinical research team must evaluate their strategy for
missing data in the context of a specific clinical indication,
subject population, expected mechanism of action of the
experimental treatment, control treatment used in the
study, and standards of care that would be available to
subjects once they leave the trial. This book aims at
providing the reader with a good general understanding of
the issues involved and a tool box of methods from which to
select the ones that would be the most appropriate for a
study at hand.
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Notation
Throughout this book, algebraic notation will be as
described below. Occasionally, the same symbol may be
used for different purposes in different chapters following
well-established conventions in respective domains. We will
define specific meanings of such symbols in each relevant
chapter; we note some variants in use here.
Notation conventions
Index
letter

Index
range

Description

i 1, …, N Subject
t 1, …, T Treatment allocated to the individual subject
j 1, …, J Time point or visit number
c 1, …, T Reference or control treatment, used when necessary to

identify control vs. experimental treatment arm
l 0, …, L Withdrawal visit: the visit at which the last observation is

made for the individual subject (0 for those with no observed
post-baseline data and L = J for those with complete data)

p 1, …, P Pattern: group of subjects; can be defined in many ways,
depending on analysis

s 0, …, S Time-invariant (baseline) covariate; may be extended to
include auxiliary covariables in multiple imputation,
depending on context

v 1, …, V Post-baseline covariate V is also used for variance–
covariance matrix in Chapter 5

m 1, …, M Imputation number for multiple imputation
k Context

dependent
Indexes model parameters; range may be 0, …, S, 0, …, V or
0, …, S+V, depending on the context

Notation conventions
Variable
letter

Highest
index
number(s)

Description



Variable
letter

Highest
index
number(s)

Description

Y N and J A set of outcome variables, e.g., Yj represents outcome at
time point J; in the context of the imputation model for
multiple imputation, may refer to both primary outcome
and post-baseline auxiliary variables

X S A set of covariates; usually baseline covariates, but may
also include observed post-baseline covariates, depending
on the context

W Context
dependent

Effects included in a statistical model; may include X, Y
and their interactions

Context
dependent

Regression model coefficients

Context
dependent

Parameters of a statistical model, usually in a joint
probability distribution

R N and J A set of missingness indicators, e.g., Rj = 0 represents
observation missing at time point J, Rj = 1 represents
observation available at time point J R is also used for
residuals covariance matrix in Chapter 5

F None A set of missingness model covariates
None Missingness model regression coefficients

Additional conventions:
Letter in upper case with an index refers to a variable at
an individual visit (not its value), for example, in a
context of a model, Y1, …, YJ.
Letter in upper case without indices refers to a set of
variables (not their values), for example, Y = (Y1, …, YJ).
Letter in lower case with indices refers to a value of an
individual variable for an individual subject, for example,
yij – value of a variable Yj for subject i.
Letter in lower case, with an index, and bolded refers
either to

values of an individual variable for a set of subjects,
for example,  – values of a variable Yj for
subjects i = 1, …, N or



values of a set of variables for a subject, for example, 
 – values at all time points j = 1, …, J for

subject i.
Specific meaning is described in each context where
this notation is used.

Letter in either upper or lower case, without indices, and
bolded refers to values of a set of variables for a set of
subjects, for example, Y or  – data matrix,
values of all variables Y for all subjects.
Yobs and Ymis refer to the set of observed values and the
set of missing values of a data matrix Y, respectively.
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