WILEY-VCH

Edited by Herbert Waldmann and Petra Janning

Concepts and Case Studies in Chemical Biology

Edited by Herbert Waldmann and Petra Janning

Concepts and Case Studies in Chemical Biology

Related Titles

Trabocchi, A. (ed.)

Diversity-Oriented Synthesis Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology

2013 Print ISBN: 978-1-118-14565-4, also available in digital formats

Sierra, M.A., de la Torre, M.C., Cossio, F.P.

More Dead Ends and Detours

En Route to Successful Total Synthesis

2013 Print ISBN: 978-3-527-32976-2

Christmann, M., Bräse, S. (eds.)

Asymmetric Synthesis II

More Methods and Applications

2012 Print ISBN: 978-3-527-32900-7, also available in digital formats Civjan, N. (ed.)

Chemical Biology Approaches to Drug Discovery and Development to Targeting Disease

2012 Print ISBN: 978-1-118-10118-6, also available in digital formats

Luisi, P.P. (ed.)

Chemical Synthetic Biology

2011 Print ISBN: 978-0-470-71397-6, also available in digital formats

Waldmann, H., Janning, P. (eds.)

Chemical Biology Learning through Case Studies

2009 Print ISBN: 978-3-527-32330-2 Edited by Herbert Waldmann and Petra Janning

Concepts and Case Studies in Chemical Biology

The Editors

Prof. Dr. Herbert Waldmann

MPI of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany

Dr. Petra Janning

MPI of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany

Cover

fotolia.com © Paolo Toscani

We thank Claudia Pieczka, MPI of Molecular Physiology, Dortmund, Germany for preparing the cover illustration. All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33611-1 ePDF ISBN: 978-3-527-67598-2 ePub ISBN: 978-3-527-67600-2 Mobi ISBN: 978-3-527-67599-9

Cover-Design Adam Design Weinheim, Germany Typesetting Laserwords Private Limited, Chennai, India Printing and Binding Markono Print Media Pte Ltd, Singapore

Printed on acid-free paper

Contents

List of Contributors XVII Introduction and Preface XXV Abbreviations XXIX

 1
 Real-Time and Continuous Sensors of Protein Kinase Activity Utilizing

 Chelation-Enhanced Fluorescence
 1

۱v

Laura B. Peterson and Barbara Imperiali

- 1.1 Introduction 1
- 1.2 The Biological Problem 1
- 1.3 The Chemical Approach 3
- 1.3.1 Chelation-Enhanced Fluorescence 3
- 1.3.2 β-Turn-Focused Kinase Activity Sensors 7
- 1.3.3 Recognition-Domain-Focused Kinase Activity Sensors 7
- 1.3.4 Chimeric Kinase Activity Sensors 10
- 1.4 Chemical Biological Research/Evaluation 12
- 1.4.1 Kinetic Parameters 12
- 1.4.2 Assessing Kinase Selectivity 12
- 1.4.3 Kinase Profiling in Cell Lysates and Tissue Homogenates 14
- 1.5 Conclusions 14 References 15

Daniel Rauh and Jeffrey R. Simard

- 2.1 Introduction The Biological Problem *17*
- 2.1.1 Kinase Inhibitors Stabilizing Inactive Enzyme Conformations 17
- 2.1.2 Monitoring Conformational Changes upon Ligand Binding 19
- 2.2 The Chemical Approach 20
- 2.3 Chemical Biological Research/Evaluation 23
- 2.3.1 Finding the Unexpected 25
- 2.3.2 Targeting Protein Interfaces iFLiK 26
- 2.3.3 Screening Akt 27

² FLiK and FLiP: Direct Binding Assays for the Identification of Stabilizers of Inactive Kinase and Phosphatase Conformations 17

VI Contents

2.3.4	Targeting Phosphatases – FLiP 29
2.3.5	Lessons Learned from High-Throughput Screens 31
2.4	Conclusions 34
	References 35
3	Strategies for Designing Specific Protein Tyrosine Phosphatase
	Inhibitors and Their Intracellular Activation 37
	Birait Hoeaer and Maia Köhn
31	Introduction – The Biological Problem 37
311	Chemical Inhibition of Protein Tyrosine Phosphatase Activity 37
312	PTP1B as Inhibitor Target 40
3.1.2	The Chemical Approach 41
3.2	The Concept of Bivalent Ligands – Development of a Specific PTP1B
3.2.1	Individent Ligands – Development of a specific 1 11 1D Individent A_1
2 2 2	Coll Dermochility and Intracellylar Activation of a Solf Silanced
3.2.2	Lubibiter 42
2.2.2	Infilition 43
3.2.3	Chamical Dislocial Descende (Feelingtian 47
3.3	Chemical Biological Research/Evaluation 45
3.3.1	An Affinity-Based ELISA Assay to Identify Potent Binders 45
3.3.2	Evaluation of Cell Permeability and Cellular Activity by Monitoring
2.4	C l i 47
3.4	Conclusions 4/
	Keterences 48
	References 10
4	Design and Application of Chamical Drobes for Destain
4	Design and Application of Chemical Probes for Protein
4	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51
4	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn
4 4.1	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51
4 .1 4.2	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52
4 4.1 4.2 4.3	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54
4 4.1 4.2 4.3 4.4	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57
4 4.1 4.2 4.3 4.4 4.4.1	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3	Design and Application of Chemical Probes for ProteinSerine/Threonine Phosphatase Activation 51Yansong Wang and Maja KöhnIntroduction 51The Biological Problem 52The Chemical Approach 54Chemical Biological Research/Evaluation 57Selectivity of PDPs toward PP1 over PP2A and PP2B 57Studying the Functions of PP1 in Mitosis with PDPs 58Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5	Design and Application of Chemical Probes for ProteinSerine/Threonine Phosphatase Activation 51Yansong Wang and Maja KöhnIntroduction 51The Biological Problem 52The Chemical Approach 54Chemical Biological Research/Evaluation 57Selectivity of PDPs toward PP1 over PP2A and PP2B 57Studying the Functions of PP1 in Mitosis with PDPs 58Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59Conclusion 60References 60
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60 References 60
 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60 References 60
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 5	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60 References 60 Autophagy: Assays and Small-Molecule Modulators 63 Gemma Triola
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.2 4.4.3 4.5 5 5	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60 References 60 Autophagy: Assays and Small-Molecule Modulators 63 Gemma Triola Introduction 63
 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 5 5.1 5.2 5.2 5.2 5.2 	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60 References 60 Autophagy: Assays and Small-Molecule Modulators 63 Gemma Triola Introduction 63 The Biological Problem 65
 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 5 5.1 5.2 5.2.1 	Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs 59 Conclusion 60 References 60 Autophagy: Assays and Small-Molecule Modulators 63 Gemma Triola Introduction 63 The Biological Problem 65 Assays 66
 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 5 5.1 5.2 5.2.1 5.2.2 	 Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation 51 Yansong Wang and Maja Köhn Introduction 51 The Biological Problem 52 The Chemical Approach 54 Chemical Biological Research/Evaluation 57 Selectivity of PDPs toward PP1 over PP2A and PP2B 57 Studying the Functions of PP1 in Mitosis with PDPs 58 Studying the Functions of PP1 in Ca²⁺ Signaling with PDPs 59 Conclusion 60 References 60 Autophagy: Assays and Small-Molecule Modulators 63 Gemma Triola Introduction 63 The Biological Problem 65 Assays 66 Small-Molecule Modulators of Autophagy 67
 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 5 5.1 5.2 5.2.1 5.2.2 5.3 	Netterences10Design and Application of Chemical Probes for Protein Serine/Threonine Phosphatase Activation51Yansong Wang and Maja Köhn Introduction51The Oremical Approach52The Chemical Approach54Chemical Biological Research/Evaluation57Selectivity of PDPs toward PP1 over PP2A and PP2B57Studying the Functions of PP1 in Mitosis with PDPs58Studying the Functions of PP1 in Ca ²⁺ Signaling with PDPs59Conclusion60References60Autophagy: Assays and Small-Molecule Modulators63Gemma Triola1Introduction63The Biological Problem65Assays66Small-Molecule Modulators of Autophagy67The Chemical Approach68

Contents VII

- 5.4 Chemical Biological Evaluation 71
- 5.5 Conclusion 80 References 80

6 Elucidation of Protein Function by Chemical Modification 83

- Yaowen Wu and Lei Zhao
- 6.1 Introduction 83
- 6.2 The Biological Problem 84
- 6.2.1 Small GTPases 84
- 6.2.2 Autophagy 85
- 6.3 The Chemical Approach 88
- 6.3.1 Expressed Protein Ligation and Click Ligation 88
- 6.3.2 Site-Specific Modification of Proteins 90
- 6.3.3 Semisynthesis of Lipidated LC3 Protein 94
- 6.4 Biological Research/Evaluation 97
- 6.4.1 Thermodynamic Basis of Rab Membrane Targeting 97
- 6.4.2 Monitoring Protein Unfolding and Refolding Using a Dual-Labeled Protein 99
- 6.4.3 Semisynthetic Lipidated LC3 Protein Mediates Membrane Fusion *101*
- 6.5 Conclusion 103 References 103
- 7 Inhibition of Oncogenic K-Ras Signaling by Targeting K-Ras–PDEδ Interaction 105
 - Gemma Triola
- 7.1 Introduction 105
- 7.2 The Biological Problem 105
- 7.3 The Chemical Approach 108
- 7.3.1 Chemical Synthesis of Proteins *108*
- 7.3.2 Synthesis of Lipidated Ras Peptides 109
- 7.3.3 Synthesis of K-Ras4B Protein 110
- 7.4 Chemical Biological Evaluation *113*
- 7.5 Conclusions 120 References 121

8 Development of Acyl Protein Thioesterase 1 (APT1) Inhibitor Palmostatin B That Revert Unregulated H/N-Ras Signaling 123

- Frank J. Dekker, Nachiket Vartak, and Christian Hedberg
- 8.1 Introduction 123
- 8.2 The Biological Problem The Role of APT1 in Ras Signaling 123
- 8.3 The Chemical Approach 125
- 8.3.1 The Challenge to Make Small-Molecule Modulators of Protein Function *125*
- 8.3.2 Bioinformatics Target Clustering 126

VIII Contents

0.0.0	
8.3.3	Compound Collection Synthesis 126
8.3.4	<i>In vitro</i> Enzyme Inhibition Studies 129
8.3.5	Mechanistic Investigation on APT1 Inhibition 129
8.4	Chemical Biological Research/Evaluation 130
8.4.1	<i>In vivo</i> Enzyme Inhibition Studies 130
8.4.2	Palmostatins Inhibit Depalmitoylation of Ras GTPases 132
8.4.3	Palmostatins Disturb the Localization of Ras GTPases 134
8.4.4	Palmostatins Inhibit Downstream Signaling of Ras GTPases 135
8.5	Conclusions 136
	References 138
9	Functional Analysis of Host–Pathogen Posttranslational Modification
	Crosstalk of Rab Proteins 141
	Christian Hedberg, Roger S. Goody, and Aymelt Itzen
9.1	Introduction 141
9.2	The Biological Problem 141
9.2.1	Posttranslational Modifications 141
9.2.2	Adenylylation of Small GTPases 142
9.3	The Chemical Approach 143
9.3.1	Preparative Adenylylation of Rab1 144
9.3.2	Identification of the Site of Adenylylation 145
9.3.3	Synthesis of Site-Specifically Adenylylated Peptides 146
9.3.4	Generation and Application of α -AMP-Tyr/Ser/
	Thr-Antibodies 146
9.3.5	Detection of Adenylylation by MS Techniques 150
9.4	Chemical Biological Research/Evaluation 150
9.4.1	Functional Consequences of Adenylylation 151
9.4.2	Detection of Adenylylated Proteins in Mammalian Cell Lysates 152
9.5	Conclusions 152
	References 153
10	Chemical Riology Approach to Suppression of Statin-Induced
10	Muscle Toxicity 155
	Bridget K Wagner
10.1	Introduction 155
10.1	The Biological Problem 155
10.2	The Chemical Approach 157
10.3 1	Generation of a Compendium of Mitochondrial Activity 157
10.3.1	Chemical Biology Research/Evaluation 158
10.4 1	Chemical Enistacis Analysis 158
10.4.1	High Throughput Serooning 160
10.4.2	Conducion 161
10.5	Conclusion 101 Defense of 162
	References 102

A Target Identification System Based on MorphoBase, ChemProteoBase, and Photo-Cross-Linking Beads 163 Hiroyuki Osada, Makoto Muroi, Yasumitsu Kondoh, and Yushi Futamura Introduction 163

- 11.2 The Biological Problem *163*
- 11.3 Chemical Approaches 165
- 11.3.1 MorphoBase 165
- 11.3.2 ChemProteoBase 166
- 11.3.3 Photo-Cross-Linking Beads 169
- 11.4 Chemical Biological Research/Evaluation 171
- 11.4.1 NPD6689/NPD8617/NPD8969 171
- 11.4.2 BNS-22 172
- 11.4.3 Methyl-Gerferin 173
- 11.4.4 Xanthohumol 173
- 11.5 Conclusion 174
 - References 174

12 Activity-Based Proteasome Profiling in Medicinal Chemistry and Chemical Biology 177

Gerjan de Bruin, Nan Li, Guillem Paniagua, Lianne Willems, Bo-Tao Xin, Martijn Verdoes, Paul Geurink, Wouter van der Linden, Mario van der Stelt, Gijs van der Marel, Herman Overkleeft, and Bogdan Florea

- 12.1 Introduction 177
- 12.2 The Biological Problem 177
- 12.3 The Chemical Approach 179
- 12.3.1 Comparative and Competitive Activity-Based Proteasome Profiling *181*
- 12.3.2 Two-Step Activity-Based Proteasome Profiling 183
- 12.4 Biological Research/Evaluation 186
- 12.4.1 Identification of Proteasome Active Sites 187
- 12.5 Conclusions 188
 - References 189

13Rational Design of Activity-Based Retaining β-ExoglucosidaseProbes191

Kah-Yee Li, Wouter Kallemeijn, Jianbing Jiang, Marthe Walvoort, Lianne Willems, Thomas Beenakker, Hans van den Elst, Gijs van der Marel, Jeroen Codée, Hans Aerts, Bogdan Florea, Rolf Boot, Martin Witte, and Herman Overkleeft

- 13.1 Introduction 191
- 13.2 The Biological Problem 191
- 13.3 The Chemical Approach 192
- 13.3.1 Development of a Human Acid Glucosylceramidase Activity-Based Probe 195

X Contents

13.3.2	Cyclophellitol Aziridine Is a Broad-Spectrum Activity-Based Retaining β-Exoglucosidase Probe 198
13.4	Biological Research/Evaluation 201
13.4.1	In situ Monitoring of Active-Site-Directed GBA
	Chemical/Pharmacological Chaperones 201
13.4.2	Mapping of Human Retaining β-Glucosidase Active Site
	Residues 203
13.5	Conclusions 203
	References 205
14	Modulation of ClpP Protease Activity: from Antibiotics to
	Antivirulence 207
	Malte Gersch and Stephan A. Sieber
14.1	Introduction 207
14.2	The Biological Problem 207
14.3	The Chemical Approach 209
14.4	The Discovery of a Novel Antibiotic Mechanism 210
14.4.1	Target Identification 210
14.4.2	Target Validation 214
14.4.3	Mechanism of Action 214
14.5	The Antivirulence Approach 215
14.6	Conclusions 219
	References 219
15	Affinity-Based Isolation of Molecular Targets of Clinically Used
15	Drugs 221
	Shin-ichi Sato and Motonari Hesuai
15.1	Introduction – The Biological/Medicinal Problem 221
15.2	The Chemical Approach 221
15.3	Chemical Biological Research 225
15.3.1	Lessons from Isolation of FK506-Binding Protein (FKBP) Using
101011	FK506 225
15.3.2	Lessons from Isolation of Cereblon (CRBN) Using Thalidomide 226
15.3.3	Lessons from Isolation of Glyoxalase 1 (GLO1) Using
	Indomethacin 227
15.4	Conclusion 228
	References 228
16	Identification of the Targets of Natural-Product-Inspired Mitotic
	Inhibitors 231
	Kamal Kumar and Slava Ziegler
16.1	Introduction 231
16.2	The Biological Problem 231
16.2.1	Mitosis and Modulation of Mitosis by Small Molecules 231
16.2.2	Phenotypic Screening 234

Contents XI

- 16.2.3 Target Identification and Confirmation 236 16.3 The Chemical Approach 236 16.3.1 Design and Synthesis of Natural-Product-Inspired Compound Collections 236 16.4 Chemical Biological Evaluation 239 16.4.1 Phenotypic Screen for Mitotic Inhibitors 239 16.4.2 Identification of the Target Protein(s) of Centrocountin 1 241 Confirmation of the Target Candidates 243 16.4.3 16.5 Conclusion 246 References 247 17 Finding a Needle in a Haystack. Identification of Tankyrase, a Novel Therapeutic Target of the Wnt Pathway Using Chemical Genetics 249 Atwood K. Cheung and Feng Cong 17.1 Introduction 249 17.2 The Biological Problem 250 Modulating the Wnt Signaling Pathway for Cancer 17.2.1 Therapeutics 250 17.3The Chemical Approach 251 17.3.1 Screening Approach 251 17.3.2 Chemical Proteomics Target Identification 251 17.3.3 Target Validation 254 17.4 Chemical Biological Research/Evaluation 254 17.4.1Identification of XAV939 as a Wnt Pathway Inhibitor 254 17.4.2 XAV939 Regulates Axin Protein Levels by Inhibiting Tankvrases 256 17.4.3 Validation of Tankyrase as the Target for XAV939 257 17.4.4 XAV939 Inhibits TNKS-Mediated Ubiquitination and PARsylation of Axin 258 17.4.5 TNKS Inhibitor Blocks the Growth of Colon Cancer Cells 258 17.4.6 Crystal Structure of XAV939 and TNKS1 259 17.5 Conclusion 260 References 261 18 The Identification of the Molecular Receptor of the Plant Hormone Abscisic Acid 265 Julian Oeljeklaus and Markus Kaiser 18.1 Introduction 265 The Biological Problem 267 18.2 18.3 The Chemical Genetics Approach 268 18.3.1 Identification of a Synthetic ABA-Agonist Using a Chemical Genetics Screen 268 18.3.2 Target Gene Identification of Pyrabactin 270
- 18.4 The Chemical Biology Approach 273

XII Contents

18.4.1	Elucidation of the Functional ABA-Receptor Complex 273
18.4.2	Validation and Further Structural Studies on the ABA–Receptor
	Mechanism 279
18.5	Conclusion 282
	References 283
19	Chemical Biology in Plants: Finding New Connections between
12	Pathways Using the Small Molecule Sertin1 285
	Churchua Zhana Clann D. Hicke, and Natasha V. Daikhal
10.1	Chunnud Zhang, Gienn R. Hicks, and Natasha V. Raikhei
19.1	Introduction 285
19.2	The Biological Problem 285
19.3	The Chemical Approach 286
19.3.1	Chemical Library Screening 286
19.3.2	Identification of Pathway(s) that are Targeted by Sortin1 287
19.3.3	Sortin1-Hypersensitive Mutants Link Vacuolar Trafficking to
	Flavonoids Metabolism 289
19.3.4	Sortin1 Resembles the Effects of Buthionine Sulfoximine
	(BSO) 290
19.3.5	Substructures Required for Sortin1 Bioactivity 290
19.4	Biological Research/Evaluation 292
19.4.1	Chemicals That Disrupt Yeast Vacuolar Trafficking also Target Plant
	Vacuolar Trafficking Pathway 292
19.4.2	Sortin1 Disrupts Vacuolar Trafficking of both Proteins and
	Flavonoids 292
1943	Mechanism of Sortin1 Action 293
195	Conclusion 293
17.0	Acknowledgment 203
	Pataroncos 204
	Kelefelices 294
20	Calandian Tanandian of Darkain lakana diana Madiata dika DET
20	Selective Targeting of Protein Interactions Mediated by BET
	Bromodomains 295
	Susanne Muller, Hannah Lingard, and Stefan Knapp
20.1	Introduction 295
20.2	The Biological Problem 295
20.2.1	Druggability of the BET Acetyl-Lysine-Binding Pocket 297
20.3	The Chemical Approach 298
20.3.1	Development of High-Throughput Assays 298
20.3.2	Secondary Screening Assays 300
20.3.3	Cellular Testing 300
20.3.4	Discovery of Acetyl-Lysine Competitive Inhibitors 300
20.3.4.1	Acetyl-Lysine Mimetic Fragments Crystallized with
	Bromodomains 300
20.3.4.2	Discovery of Benzo- and Thienodiazepines 302
20.2.4.2	
20.3.4.3	Other BET Inhibitors 302

20.5	Conclusion 305
	References 306
21	The large of of Distant Debug barreness large in the Chamical Distance of
21	I ne impact of Distant Polypharmacology in the Chemical Biology of
	Albert A Antolin and Jordi Mestres
21.1	Introduction 309
21.1	The Biological Problem 309
21.2	Studying the Function of Proteins Using Chemical Probes with
21.2.1	Unknown Polypharmacology 309
21.2.2	Development of Poly(ADP-Ribose)Polymerase-1 (PARP-1) Chemical
	Probes and Follow-on Drugs 311
21.2.3	Unexpected Differential Effects between PARP Inhibitors 312
21.3	The Chemical Approach 312
21.3.1	Molecular Informatics 312
21.3.2	<i>In silico</i> Target Profiling 313
21.4	Chemical Biological Research/Evaluation 315
21.4.1	In silico Identification and In Vitro Confirmation of Novel Targets for
	PJ34 315
21.4.2	Implications for the Use of PJ34 and Follow-on Drugs 316
21.5	Conclusions 319
	References 320
22	Splicing Inhibitors: From Small Molecule to RNA Metabolism 323
00.1	Tilman Schneider-Poetsch and Minoru Yoshida
22.1	The Biological Duckland 202
22.2	Ine Diological Problem 525
22.2.1	Alternative Splicing 225
22.2.2	mDNA Processing 226
22.2.3	The Chemical Approach 326
22.3 22.3 1	The First Splicing Inhibitors 326
22.3.1	Inhibition 328
22.3.2	Chemical Biological Research/Evaluation 331
22.1	Cellular Effect 331
22.4.2	Clinical Utility 331
22.5	Conclusion 333
	References 333
23	Photochemical Control of Gene Function in Zebrafish Embryos with
	Links A structure Manual a line and 202
	Light-Activated Morpholinos 337
22.1	Light-Activated Morpholinos 337 Qingyang Liu and Alexander Deiters
23.1	Light-Activated Morpholinos 337 Qingyang Liu and Alexander Deiters Introduction 337 The Biological Duckley 237

23.3 The Chemical Approach 340

XIV Contents

23.3.1 23.3.2 23.3.3 23.3.4 23.4 23.5	Hairpin-Caged MO 340 Sense-Caged MO 342 Nucleobase-Caged MO 344 Cyclic-Caged MO 345 Chemical Biological Research/Evaluation 347 Conclusion 349 Acknowledgment 349 References 349
24	Life Cell Imaging of mRNA Using PNA FIT Probes 351 Andrea Knoll, Susann Kummer, Felix Hövelmann, Andreas Herrmann, and
24.1 24.2 24.2.1 24.3 24.3.1 24.4 24.4.1 24.4.2	Oliver SeltzIntroduction 351The Biological Problem 351Selection of Biological Targets 352The Chemical Approach 352Design and Synthesis of PNA FIT Probes 352Chemical Biological Research/Validation 355Probe Validation by Fluorescence Measurement 355Ouventitation of Viral mRNA by aPCR 356
24.4.2 24.4.3 24.5	Quantitation of Viral mRNA by qPCK356Imaging of Viral mRNA in Living Cells358Conclusion361References362
25	Targeting the Transcriptional Hub β -Catenin Using Stapled Peptides 365 Tom N. Grossmann and Gregory I. Verdine
25.1 25.2 25.2.1 25.2.2 25.3 25.4 25.5 25.6	Introduction 365 The Biological Problem 365 Canonical Wnt Signaling 366 Oncogenic Activation of Wnt Signaling 366 The Chemical Approach: Hydrocarbon Peptide Stapling 368 The Biological Approach: Phage-Display-Based Optimization 371 Biochemical and Biological Evaluation 375 Conclusions 376 References 377
26	Diversity-Oriented Synthesis: Developing New Chemical Tools to Probe and Modulate Biological Systems 379 Warren R. J. D. Galloway, David Wilcke, Feilin Nie, Kathy Hadje-Georgiou, Luca Laraja, and David R. Spring
26.1 26.2 26.2.1	Introduction 379 The Biological Problem 379 How to Discover New Chemical Modulators of Biological Function? 379

Contents XV

- 26.2.2 Sources of Small Molecules for Screening 380
- 26.2.2.1 Natural Products 380
- 26.2.2.2 Chemical Synthesis and the Need for Structural Diversity 380
- The Chemical Approach 382 26.3
- Diversity-Oriented Synthesis 382 26.3.1
- 26.3.1.1 DOS and Scaffold Diversity 382
- 26.4 Chemical Biology Research 384
- 26.4.1 DOS as a Tool for Identifying New Modulators of Mitosis 384
- 26.4.1.1 DOS Library Synthesis 384
- Biological Studies: Phenotypic Screening for Antimitotic 26.4.1.2 Effects 384
- 26.4.1.3 Biological Studies: Target Identification 385
- Conclusion 388 26.5 References 388

27 Scaffold Diversity Synthesis with Branching Cascades Strategy 391 Kamal Kumar

- 27.1Introduction 391
- 27.2 The Biological/Pharmacological Problem: Discovering Small Bioactive Molecules 391
- 27.3The Chemical Approach: Scaffold Diversity 395
- 27.3.1 Beyond the Biased Exploration of Chemical Space 395
- 27.3.2 Scaffold Diversity Synthesis 397
- 27.4 Chemical/Biological Evaluation - Branching Cascades Strategy in Scaffold Diversity Synthesis 399
- Conclusions 409 27.5References 410

Index 415

List of Contributors

Hans Aerts

University of Amsterdam Department of Medical Biochemistry Academic Medical Centre Amsterdam The Netherlands

Albert A. Antolín

Universitat Pompeu Fabra Systems Pharmacology Research Program on Biomedical Informatics IMIM Hospital del Mar Medical Research Institute Doctor Aiguader 88 08003 Barcelona Spain

Thomas Beenakker

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Rolf Boot

University of Amsterdam Department of Medical Biochemistry Academic Medical Centre Amsterdam The Netherlands

Gerjan de Bruin

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Atwood K. Cheung

Novartis Institutes for BioMedical Research, Inc. Global Discovery Chemistry 250 Massachusetts Avenue Cambridge, MA 02139 USA

Jeroen Codée

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Feng Cong

Novartis Institutes for BioMedical Research, Inc. Developmental and Molecular Pathways 250 Massachusetts Avenue Cambridge, MA 02139 USA XVII

XVIII List of Contributors

Alexander Deiters

University of Pittsburgh Department of Chemistry Chevron Science Center 219 Parkman Avenue Pittsburgh, PA 15260 USA

Frank J. Dekker

Groningen University Department of Pharmaceutical Gene Modulation Antonius Deusinglaan 1 9713 av Groningen Netherlands

Hans van den Elst

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Bogdan Florea

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Yushi Futamura

RIKEN Antibiotics Laboratory 2-1 Hirosawa Wako Saitama 351-0198 Japan

Warren R. J. D. Galloway

University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1 EW UK

Malte Gersch

Technische Universität München Department of Chemistry Lichtenbergstraße 4 85748 Garching Germany

Paul Geurink

The Netherlands Cancer Institute (NKI) Division of Cell Biology Plesmanlaan 121 CX 1066 Amsterdam The Netherlands

Roger S. Goody

Max Planck Institute of Molecular Physiology Department of Physical Biochemistry Otto-Hahn-Straße 11 44227 Dortmund Germany

Tom N. Grossmann

Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Straße 15 44227 Dortmund Germany

Kathy Hadje-Georgiou

University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1 EW UK

Christian Hedberg

Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Straße 11 44227 Dortmund Germany

Andreas Herrmann

Humboldt University Berlin Department of Biology Invalidenstrasse 42 10115 Berlin Germany

Glenn R. Hicks

University of California Riverside Center for Plant Cell Biology and Department of Botany and Plant Sciences 900 University Avenue Riverside, CA 92521 USA

Birgit Hoeger

European Molecular Biology Laboratory (EMBL) Genome Biology Unit Meyerhofstrasse 1 69117 Heidelberg Germany

Felix Hövelmann

Humboldt University Berlin Department of Chemistry Brook-Taylor-Straße 2 12489 Berlin Germany

Barbara Imperiali

Massachusetts Institute of Technology Departments of Biology and Chemistry 68-380, 77 Massachusetts Avenue Cambridge, MA 02139 USA

Aymelt Itzen

Technische Universität München Center of Integrated Protein Science Munich Department Chemie AG Proteinchemie Lichtenbergstraße 4 85748 Garching Germany

Jianbing Jiang

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Markus Kaiser

Universität Duisburg-Essen Zentrum für Medizinische Biotechnologie Fakultät für Biologie Universitätsstrasse 2 45117 Essen Germany

Wouter Kallemeijn

University of Amsterdam Department of Medical Biochemistry Academic Medical Centre Amsterdam The Netherlands

Stefan Knapp

University of Oxford Nuffield Department of Clinical Medicine Structural Genomics Consortium and Target **Discovery Institute** Roosevelt Drive Oxford OX3 7FZ UK

XX List of Contributors

Andrea Knoll

Humboldt University Berlin Department of Chemistry Brook-Taylor-Straße 2 12489 Berlin Germany

Maja Köhn

European Molecular Biology Laboratory (EMBL) Genome Biology Unit Meyerhofstrasse 1 69117 Heidelberg Germany

Yasumitsu Kondoh

RIKEN Center for Sustainable Resource Science (CSRS) Chemical Biology Research Group 2-1 Hirosawa Wako Saitama 351-0198 Japan

and

RIKEN Antibiotics Laboratory 2-1 Hirosawa Wako Saitama 351-0198 Japan

Kamal Kumar

Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Straße 11 44227 Dortmund Germany

Susann Kummer

Universitätsklinikum Heidelberg Department of Infectiology Im Neuenheimer Feld 324 69120 Heidelberg Germany

Luca Laraia

University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1 EW UK

Kah-Yee Li

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Nan Li

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Hannah Lingard

University of Oxford Nuffield Department of Clinical Medicine Structural Genomics Consortium and Target Discovery Institute Roosevelt Drive Oxford OX3 7FZ UK

Wouter van der Linden

Standford University Department of Pathology School of Medicine 300 Pasteur Drive Stanford, CA 94305-5324 USA

Qingyang Liu

North Carolina State University Department of Chemistry 2620 Yarbrough Drive Raleigh, NC 27695-8204 USA

Gijs van der Marel

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Jordi Mestres

Universitat Pompeu Fabra Systems Pharmacology Research Program on Biomedical Informatics IMIM Hospital del Mar Medical Research Institute Doctor Aiguader 88 08003 Barcelona Spain

Susanne Müller

University of Oxford Nuffield Department of Clinical Medicine Structural Genomics Consortium and Target Discovery Institute Roosevelt Drive Oxford OX3 7FZ UK

Makoto Muroi

RIKEN Center for Sustainable Resource Science (CSRS) Chemical Biology Research Group 2-1 Hirosawa Wako Saitama 351-0198 Japan

and

RIKEN Antibiotics Laboratory Hirosawa 2-1 Wako Saitama 351-0198 Japan

Feilin Nie

University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1 EW UK

Julian Oeljeklaus

Universität Duisburg-Essen Zentrum für Medizinische Biotechnologie Fakultät für Biologie Universitätsstrasse 2 45117 Essen Germany

XXII List of Contributors

Hiroyuki Osada

RIKEN Center for Sustainable Resource Science (CSRS) Chemical Biology Research Group Hirosawa 2-1 Wako Saitama 351-0198 Japan

and

RIKEN Antibiotics Laboratory Hirosawa 2-1 Wako Saitama 351-0198 Japan

Herman Overkleeft

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Guillem Paniagua

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Laura B. Peterson

Massachusetts Institute of Technology Departments of Biology and Chemistry 68-380, 77 Massachusetts Avenue Cambridge, MA 02139 USA

Natasha V. Raikhel

University of California Riverside Center for Plant Cell Biology and Department of Botany and Plant Sciences 900 University Avenue Riverside, CA 92521 USA

Daniel Rauh

Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany

Shin-ichi Sato

Kyoto University Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto 611-0011 Japan

Tilmann Schneider-Poetsch

RIKEN Chemical Genetics Laboratory Hirosawa 2-1 Wako Saitama 351-0198 Japan

Oliver Seitz

Humboldt University Berlin Department of Chemistry Brook-Taylor-Straße 2 12489 Berlin Germany

Stephan A. Sieber

Technische Universität München Department of Chemistry Lichtenbergstraße 4 85748 Garching Germany

Jeffrey R. Simard

Amgen, Inc. 360 Binney St. Cambridge, MA 02142 USA

David R. Spring

University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1 EW UK

Mario van der Stelt

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Gemma Triola

Spanish National Research Council (CSIC) Institute of Advanced Chemistry of Catalonia (IQAC) Department of Biomedicinal Chemistry Jordi Girona 18-26 08034 Barcelona Spain

Nachiket Vartak

Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Straße 11 44227 Dortmund Germany

Motonari Uesugi

Kyoto University Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto 611-0011 Japan

and

Kyoto University Institute for Chemical Research Uji, Kyoto 611-0011 Japan

Gregory L. Verdine

Harvard University Departments of Stem Cell & Regenerative Biology Chemistry & Chemical Biology, and Molecular & Cellular Biology Cambridge, MA 02138 USA

Martijn Verdoes

Radboud University Department of Tumor Immunology Nijmegen Medical Centre Geert Grooteplein 26/28 GA 6525 Nijmegen The Netherlands

Bridget K. Wagner

Broad Institute Center for the Science of Therapeutics 7 Cambridge Center 3027 Cambridge, MA 02142 USA

XXIV List of Contributors

Marthe Walvoort

Massachusetts Institute of Technology Department of Biology 77 Massachusetts Avenue Cambridge, MA 02139 USA

Yansong Wang

European Molecular Biology Laboratory (EMBL) Genome Biology Unit Meyerhofstrasse 1 69117 Heidelberg Germany

David Wilcke

University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1 EW UK

Lianne Willems

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Martin Witte

University of Groningen Stratingh Institute of Chemistry Bio-Organic Chemistry Nijenborgh 7 AG 9747 Groningen The Netherlands

Yaowen Wu

Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Straße 15 44227 Dortmund Germany

Bo-Tao Xin

Leiden University Leiden Institute of Chemistry Einsteinweg 55 CC 2333 Leiden The Netherlands

Minoru Yoshida

RIKEN Chemical Genetics Laboratory Hirosawa 2-1 Wako Saitama 351-0198 Japan

Chunhua Zhang

University of California Riverside Center for Plant Cell Biology and Department of Botany and Plant Sciences 900 University Avenue Riverside, CA 92521 USA

Lei Zhao

Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Straße 15 44227 Dortmund Germany

Slava Ziegler

Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Straße 11 44227 Dortmund Germany

Introduction and Preface

"Chemical Biology may be defined as the application of chemical methods and techniques to the study of biological phenomena, that is, chemical biology research seeks new insights into biology by means of an approach originating from an enabling chemistry tool box.

The chemical biological approach often starts with the analysis of a biological phenomenon in order to deduce structural information, for instance, about biomacromolecules or small molecules that interact with them. On the basis of this information, unsolved chemical problems are identified and the ability of the synthetic chemist to design and prepare tailor-made reagents and tool compounds, that is, proteins equipped with reporter groups and tags or potent and selective small molecule modulators of protein function, is employed as key enabling technology for subsequent research. Very frequently, the biochemical and biophysical properties of these reagents need to be determined for the proper design and execution of biological experiments, giving new insights into the originally motivating biological phenomenon. The results gleaned thereby may then lead to a better understanding of biology and fuel additional cycles of chemical biology research following the same logic Figure 1 illustrates the cycle of chemical biology research.

By its very nature, chemical biology is multidisciplinary and needs to bridge the approaches and cultures of the neighboring sciences, chemistry, biology, and physics, within a given research group or in collaborations between groups of complementary expertise (as is very frequently the case).

Thus, education in chemical biology requires training in these disciplines on a more or less advanced level. A chemical biology textbook, planned and organized similar to that of established textbooks of the individual disciplines mentioned, would have to face the challenge of not growing too large to be readable but at the same time be sufficiently comprehensive to cover the individual disciplines in the required scientific depth.

An alternative, and probably more efficient and appropriate, approach to chemical biology education may be to resort to the well-established, proven textbooks of chemistry, biology, and physics for in-depth courses and to complement them by lecture series, seminars, and practical courses that demonstrate the combination

xxv

Figure 1 Illustration of the cycle of chemical biology research.

of and the interplay between these sciences and the corresponding experimental techniques in chemical biology." [1]

With this goal in mind, we planned and prepared our previous book *Chemical Biology: Learning through Case Studies* [1] in 2009. By concentrating on a series of individual successful cases of chemical biology research, it highlighted the combination of the different sciences involved in gaining new insights into biological phenomena with approaches originating from chemistry and integrating biophysics, biochemistry, and other disciplines whenever required.

The same concept has been chosen for this new book, entitled *Concepts and Case Studies in Chemical Biology*. It covers 27 new case studies in Chemical Biology, reflecting the rapid growth in this interdisciplinary topic since 2009.

Again, in each chapter, initially a biological problem is presented. To address this problem, a chemical approach is described and both together lead to chemical biology research. Following this line, for several different examples the reader is introduced into thinking and research in Chemical Biology, arriving at important scientific results and techniques and methods used in this field at the same time.

In contrary to the previous *Learning through Case Studies* book, we asked the researchers themselves to write a case study that has the origin in their own lab, rather than writing the chapters based on literature reports only.

Introduction and Preface XXVII

We hope the book will be a valuable source of information for advanced students, postdoctoral researchers, and researchers working on the borderline between chemistry, biology, and biochemistry.

We are grateful to all authors of the individual chapters for their excellent work and trust in the concept. We are also grateful to Bernadette Gmeiner and Dr Anne Brennführer from Wiley-VCH for their editorial help and encouragement.

Dortmund, February 2014

Petra Janning Herbert Waldmann

References

 Waldmann, H. and Janning, P. (eds) (2009) Chemical Biology – Learning through Case Studies, Wiley-VCH Verlag GmbH, Weinheim.