ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Markus Rüngeler

Analyse der Übertragbarkeit des Schrägverzahnungspulsens auf den Laufversuch

Analyse der Übertragbarkeit des Schrägverzahnungspulsens auf den Laufversuch

Analysis of the Transferability of Pulsating Helical Gears to the Running Test

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Markus Rüngeler

Berichter:

Univ.-Prof. Dr.-Ing. Christian Brecher Univ.-Prof. Dr.-Ing. Peter W. Gold

Tag der mündlichen Prüfung: 16. Dezember 2020

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Markus Rüngeler

Analyse der Übertragbarkeit des Schrägverzahnungspulsens auf den Laufversuch

Herausgeber:

Prof. Dr.-Ing. T. Bergs

Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh

Prof. Dr.-Ing. C. Brecher

Prof. Dr.-Ing. R. H. Schmitt

Band 3/2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Markus Rüngeler:

Analyse der Übertragbarkeit des Schrägverzahnungspulsens auf den Laufversuch

1. Auflage, 2021

Apprimus Verlag, Aachen, 2021 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-954-6

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter im Forschungsbereich Getriebetechnik am Lehrstuhl für Werkzeugmaschinen am Werkzeugmaschinenlabor (WZL) der RWTH Aachen.

An erster Stelle gilt mein Dank Herrn Prof. Dr.-Ing. Christian Brecher, dem Leiter des Lehrstuhls für Werkzeugmaschinen, für seine freundliche und konstruktive Unterstützung und Kritik, die maßgeblich zum Gelingen dieser Arbeit beigetragen hat. Weiterhin möchte ich Herrn Prof. Dr.-Ing. Peter Werner Gold, dem ehemaligen Leiter des Instituts für Maschinenelemente und Maschinengestaltung der RWTH Aachen, für die Übernahme des Korreferats und die konstruktiven Verbesserungsvorschläge danken. Ebenfalls gilt mein Dank Herrn Prof. Dr.-Ing. Christian Hopmann für die Übernahme des Vorsitzes meiner Promotionsprüfung.

Die in der vorliegenden Dissertation vorgestellten Arbeiten basieren im Wesentlichen auf Untersuchungen aus dem von der Deutschen Forschungsgemeinschaft (DFG) geförderten Forschungsvorhaben BR2905/38-1. Ich danke hiermit für die finanzielle Unterstützung. Weiterhin bedanken möchte ich mich bei den Mitgliedsfirmen des WZL-Getriebekreises, die eine weitere Diskussion der Ergebnisse ermöglicht haben.

Mein besonderer Dank gilt allerdings den Mitgliedern der WZL Getriebeabteilung, ohne die die Durchführung der Untersuchungen und Simulationen nicht möglich gewesen wären. Insbesondere möchte ich hier meine Bürokollegen Dr. Jannik Henser, Dr. Jonas Pollaschek und Dr. René Greschert hervorheben, die mich stets auch über die Arbeitstätigkeit hinaus unterstützt haben und viel zu meiner Motivation beigetragen haben. Ebenfalls danke ich meinen Studien-, Bachelor-, Master- und Diplomarbeitern, sowie meinen studentischen Hilfskräften, die mich stets tatkräftig unterstützt haben. Weiterhin gilt mein Dank den Herren Jürgen Krause, Ed Winkler, Andreas Schumacher und Peter Reinart (†) für die unermüdliche Arbeit und Unterstützung im Prüfstandsbereich, Lothar Emonts in der Fertigung sowie Peter Becker in der Konstruktion. Weiterhin möchte ich den Herren Dr.-Ing. Christoph Löpenhaus und Dr.-Ing. Jens Brimmers für die kritische Durchsicht meiner Arbeit und fortwährende Unterstützung bei der Erstellung der Dissertation danken.

An dieser Stelle möchte ich mich herzlichst bei meiner Familie und Freunden bedanken. Insbesondere meine Eltern und mein Bruder Dr. Matthias Rüngeler waren nicht nur stets mit tatkräftigem Rat zur Stelle, sondern haben auch maßgeblich motivierend zu dem Promotionsprozess beigetragen. Vielen Dank dafür!

Mein größter Dank gilt meiner Frau Alejandra, die mir in schwierigen Situationen den Rücken freigehalten hat und mich stets motiviert und mit Liebe unterstützt hat. Ohne sie wäre der Abschluss der Arbeit nicht möglich gewesen.

Verzeichnisse

Inhaltsverzeichnis

O-		4
$C \cap$	nte	m

1	Einl	eitung	1
2	Star	nd der Technik in Forschung und Industrie	3
	2.1 2.2	Schadensformen im Zahnfuß von Verzahnungen	
		ISO 6336	
	2.3	Untersuchungen zur Zahnfußtragfähigkeit	
	2.4	Lokale Rechenverfahren	
	2.5	Vergleichbarkeit von Pulsator- und Laufversuchen	
3		setzung, Aufgabenstellung und Vorgehensweise	
4		schungsmethodik	
	4.1	Verspannungs- und Pulsatorprüfstand	
	4.1	Prüfstand für Untersuchungen mittels Dehnungsmessstreifen (DMS	
	4.3	Schrägverzahnungsaufnahme zum Pulsen im Stirnschnitt	
	4.4	Prüfverzahnungen	
	4.5	Simulationsprogramme	49
5 Einfluss des Belastungsverlaufes auf c		luss des Belastungsverlaufes auf die Zahnfußtragfähigkeit	. 51
	5.1	Vorgehensweise zur Bestimmung des Einflusses des	
		Belastungsverlaufes auf die Zahnfußtragfähigkeit	. 51
	5.2	Berechnung lokaler Zahnfußspannungsverläufe	. 52
	5.3	Untersuchungen zum Einfluss des Belastungsverlaufes auf die	
	- A	Zahnfußtragfähigkeit	
	5.4	Fazit	
6	Übe	rtragbarkeit zwischen Pulsator- und Laufversuch	61
	6.1	Herausforderungen beim Schrägverzahnungspulsen	
	6.2	Vorgehensweise zur Analyse der Übertragbarkeit der Prüfsysteme .	
	6.3	Validierung des Simulationssystems mittels DMS-Ketten-Messung .	
	6.4	Einfluss der Berührlinienlage auf die Zahnfußtragfähigkeit	
	6.5 6.6	Analyse der Übertragbarkeit zwischen Pulsator- und Laufversuch Fazit	
_			. 00
7		nerische Ermittlung des Übertragungsfaktors zwischen rägverzahnungspulsen und Laufversuch	01
	7.1	Vorgehensweise	
	7.2 7.3	Anwendung des erweiterten Fehlstellenmodells im Laufversuch Anwendung des erweiterten Fehlstellenmodells im Pulsatorversuch	
	1.3	Anwending des erweiterten Fenistellenmodells im Pulsatorversuch.	. 94

II Verzeichnisse

	7.4	Analyse der Berechnungs- und Untersuchungsergebnisse für	
		Schrägverzahnungen im Pulsator- und Laufversuch	. 95
	7.5	Fazit	100
8	Entv	vicklung einer Schrägverzahnungsaufnahme zum Pulsen im	
	Nor	malschnitt	101
	8.1	Motivation	101
	8.2	WZL Normalschnittaufnahme	103
	8.3	Validierung der Normalschnittaufnahme	106
	8.4	Fazit	113
9	Zusa	ammenfassung und Ausblick	115
	9.1	Zusammenfassung	115
	9.2	Ausblick	116
10	Lite	raturverzeichnis	119
An	hand		127

Verzeichnisse III

Formelzeichen und Abkürzungsverzeichnis

Formula Symbols and Abbreviations

Lateinische Formelzeichen

а	mm	Achsabstand
a _{Riss}	μm	Risslänge
\sqrt{area}	mm	Wurzel der projizierten Fehlstellengröße
Α	-	örtliche Anstrengung
Α	-	Beginn der Eingriffsstrecke
A ₀	mm²	Referenzoberfläche
b	mm	Zahnradbreite
C_{α}	μm	Profilballigkeit
C_{β}	μm	Breitenballigkeit
Сү	N/m	Eingriffsfedersteifigkeit
d	mm	Teilkreisdurchmesser
da	mm	Kopfkreisdurchmesser
d_b	mm	Grundkreisdurchmesser
d _{Ff}	mm	Fußformkreisradius
d_{Nf}	mm	Fußnutzkreisradius
dpuls	mm	Durchmesser der eingestellten Berührlinie
Dw	mm	Wellendurchmesser
E	-	Ende der Eingriffsstrecke
Fa	N	Axialkraft
F_{BL}	N	Linienlast
$f_{H\beta}$	μm	Flankenlinienwinkelabweichung
f_p	-	Umrechnungsfaktor von Pulsator- auf Laufversuch
f _{pe}	μm	Größtwert der Eingriffsteilungs-Abweichung
f _{puls}	Hz	Pulsfrequenz
F _{Mess}	N	Messkraft
F _{puls}	N	Pulsatorkraft
$F_{puls,o}$	N	Klemmkraft

IV Verzeichnisse

Ft	N	Nenn-Umfangskraft
FtH	N	Umfangskraft im Stirnschnitt
h _F	mm	Biegehebelarm für Fußbeanspruchung
ht	mm	Zahnhöhe
i	-	Übersetzungsverhältnis
k	-	Weibullfaktor
k		DMS-spezifischer k-Faktor
kA	-	Oberflächenweibullfaktor
kv	-	Volumenweibullfaktor
KA	-	Anwendungsfaktor
$K_{F\alpha}$	-	Stirnfaktor
$K_{F\beta}$	-	Breitenfaktor
Кнβ	-	Breitenfaktor für die Flanke
K_V	-	Dynamikfaktor
La	-	Verhältnis zwischen der Länge der Zahnfußsehne im Berechnungsquerschnitt s_{FN} und dem Biegehebelarm für Fußbeanspruchung h_{F}
l _F	mm	Länge des Pressverbandes
m	N	Mittelwert für Dauerfestigkeit
mn	mm	Normalmodul
m _{red}	kg·m²	reduziertes Massenträgheitsmoment
M	Nm	Drehmoment
n	1/s	Drehzahl
n	-	Anzahl
NE1	1/s	Resonanzdrehzahl
N	-	Lastspielzahl
N	-	Bezugsdrehzahl
N _F	-	Exponent zur Berechnung des Breitenfaktors
N _G	-	Grenzlastspielzahl
p	MPa	Flächenpressung
PA	-	Ausfallwahrscheinlichkeit
Pü	-	Überlebenswahrscheinlichkeit

Verzeichnisse V

qs	-	Kerbparameter
R	-	Spannungsverhältnis
R	Ω	Elektrischer Widerstand
Re	MPa	Streckgrenze
R_{m}	MPa	Bruchgrenze
r _{pa}	mm	Pulskopfkreisradius
\mathbf{r}_{pf}	mm	Pulsfußkreisradius
s	mm	Auslenkung der Pulsatorbacke
SFn	mm	Zahnfußsehne im Berechnungsquerschnitt
S _{F min}	-	Sicherheitsfaktor
S _R	-	Rutschsicherheit
SR	mm	Zahnkranzhöhe
t	μm	Randabstand
t	S	Zeit
U _A	V	Messsignal
U _B	V	Brückenspeisespannung
V_0	mm³	Referenzvolumen
W	N/mm	Kraft je Zahnbreiteneinheit (Linienlast)
X	-	Profilverschiebungsfaktor
y α	μm	Einlaufbetrag
Y _{Fa}	-	Formfaktor
Y_{B}	-	Radkranzdickenfaktor
Y_{DT}	-	Hochverzahnungsfaktor
Y _{RrelT}	-	relativer Oberflächenfaktor
Y_{NT}	-	Lebensdauerfaktor
YR	-	Oberflächeneinflussfaktor
Ysa	-	Spannungskorrekturfaktor
Yx	-	Größeneinflussfaktor
Y_{β}	-	Schrägungsfaktor
$Y_{\delta relT}$	-	relative Stützziffer
Y_{ϵ}	-	Überdeckungsfaktor

VI Verzeichnisse

z - Zähnezahl

Griechische Formelzeichen

αFen	0	Kraftangriffswinkel im äußeren Einzeleingriffspunkt der Ersatz-Geradverzahnung
α_n	0	Normaleingriffswinkel
β	0	Schrägungswinkel
β_b	0	Grundschrägungswinkel
ε	-	Dehnung
εα	-	Profilüberdeckung
εβ	-	Sprungüberdeckung
ϵ_{γ}	-	Gesamtüberdeckung
φ	0	Drehwinkel
μ	-	Reibwert
σa	MPa	Lastamplitude
σ_{D}	MPa	Dauerfestigkeitsgrenze
$\Delta\sigma_D$	MPa	Schwellenspannung
σε	MPa	Eigenspannung
σ_{F}	MPa	Zahnfußspannung
σ_{Flim}	MPa	Zahnfußdauerfestigkeit (Norm)
σ_{F0}	MPa	Zahnfußnennspannung (Norm)
σ _{FP}	MPa	zulässige Zahnfußspannung (Norm)
σ_{m}	MPa	Mittelspannung
σ_{u}	MPa	Unterspannung
$\sigma_{W,ZD}$	MPa	Zug-Druck-Wechselfestigkeit
υ	-	Querkontraktionszahl
υöι	°C	Öltemperatur

Verzeichnisse VII

Abkürzungen

DIN Deutsches Institut für Normung

DMS Dehnungsmessstreifen

EHT Einsatzhärtetiefe FE Finite Elemente

FEM Finite Elemente Methode

FVA Forschungsvereinigung Antriebstechnik e.V.

HV Vickershärte

ISO International Organization for Standardization

Indizes

1 Ritzel 1 2 Rad 2

4, 5, 6, 7 Abstand der Zähne im Pulsatorversuch

A Kopf ax Axial

df Dauerfest

F Fuß

laufLaufversuchmaxMaximummeanMittelnormNormiert

puls Pulsatorversuch

tan Tangential

50% 50%-Ausfallwahrscheinlichkeit