Wiley Finance Series

Asset-Liability and Liquidity Management

POOYA FARAHVASH

Asset-Liability and Liquidity Management

The Wiley Finance series contains books written specifically for finance and investment professionals as well as sophisticated individual investors and their financial advisors. Book topics range from portfolio management to e-commerce, risk management, financial engineering, valuation and financial instrument analysis, as well as much more. For a list of available titles, visit our Web site at www.WileyFinance.com.

Founded in 1807, John Wiley & Sons is the oldest independent publishing company in the United States. With offices in North America, Europe, Australia and Asia, Wiley is globally committed to developing and marketing print and electronic products and services for our customers' professional and personal knowledge and understanding.

Asset-Liability and Liquidity Management

POOYA FARAHVASH

WILEY

© 2020 by Pooya Farahvash. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Names: Farahvash, Pooya, author. Title: Asset-liability and liquidity management / Pooya Farahvash. Description: First Edition. | Hoboken : Wiley, 2020. | Series: Wiley finance series | Includes index. Identifiers: LCCN 2020005300 (print) | LCCN 2020005301 (ebook) | ISBN 9781119701880 (hardback) | ISBN 9781119701927 (adobe pdf) | ISBN 9781119701910 (epub) Subjects: LCSH: Asset-liability management. | Bank liquidity. Classification: LCC HG1615.25 .F367 2020 (print) | LCC HG1615.25 (ebook) | DDC 332.1068/1—dc23 LC record available at https://lccn.loc.gov/2020005300 LC ebook record available at https://lccn.loc.gov/2020005301

Cover Design: Wiley Cover Image: © fractal-an / Shutterstock

Printed in the United States of America

 $10 \hspace{0.1in} 9 \hspace{0.1in} 8 \hspace{0.1in} 7 \hspace{0.1in} 6 \hspace{0.1in} 5 \hspace{0.1in} 4 \hspace{0.1in} 3 \hspace{0.1in} 2 \hspace{0.1in} 1$

To my parents: Mahin and Ahmad

Contents

About the Author	xvii
Preface	xix
Abbreviations	xxiii
INTRODUCTION	1
Asset-Liability Management Metrics	5
ALM Risk Factors	7
Organization of This Book	8
CHAPTER 1	
Interest Rate	17
Interest Rate, Future Value, and Compounding	18
Use of Time Notation versus Period Notation	22
Simple Interest	23
Accrual and Payment Periods	24
Present Value and Discount Factor	29
Present Value of Several Cash Flows	32
Present Value of Annuity and Perpetuity	33
Day Count and Business Day Conventions	34
Treasury Yield Curve and Zero-Coupon Rate	40
Bootstrapping	43
LIBOR	48
Forward Rates and Future Rates	49
Implied Forward Rates	50
Forward Rate Agreements	55
Interest Rate Futures	56
Swap Rate	58
Determination of the Swap Rate	61
Valuation of Interest Rate Swap Contracts	66
LIBOR-Swap Spot Curve	70

Interpolation Methods	75
Piecewise Linear Interpolation	76
Piecewise Cubic Spline Interpolation	78
Federal Funds and Prime Rates	84
Overnight Index Swap Rate	87
OIS Discounting	88
Secured Overnight Financing Rate	94
Components of Interest Rate	95
Risk Structure of Interest Rate	97
Term Structure of Interest Rate	98
Expectation Theory	100
Market Segmentation Theory	102
Liquidity Premium Theory	102
Inflation and Interest Rate	102
Negative Interest Rate	103
Interest Rate Shock	105
Parallel Shock	106
Non-Parallel Shock	107
Interest Rate Risk	109
Summary	110
Notes	112
Bibliography	114

CHAPTER 2

Valuation: Fundamentals of Fixed-Income and Non-Maturing	
Products	115
Principal Amortization	116
Bullet Payment at Maturity	116
Linear Amortization	117
Constant Payment Amortization	118
Sum-of-Digits Amortization	121
Custom Amortization Schedule	123
Fixed-Rate Instrument	124
Valuation	124
Yield	130
Duration and Convexity	133
Dollar Duration and Dollar Convexity	142
Portfolio Duration and Convexity	143
Effective Duration and Effective Convexity	144
Interest Rate Risk Immunization	145

Key Rate Duration	155
Fisher-Weil Duration	156
Key Rate Duration	160
Floating-Rate Instrument	165
Pre-Period-Initiation Rate Setting	166
Post-Period-Initiation Rate Setting	166
Valuation Using Estimated Interest Rates at Future Reset Dates	168
Using Implied Forward Rate	168
Using Forecasted Rate	171
Valuation Using Assumption of Par Value at Next Reset Date	177
Duration and Convexity	182
Valuation Using Simulated Interest Rate Paths	184
Non-Maturing Instrument	191
No New Business Treatment	192
No New Account Treatment	196
Constant Balance Treatment	197
Inclusion of Prepayment and Default: A Roll Forward Approach	198
Summary	207
Notes	210
Bibliography	210
CHAPTER 3	
Equity Valuation	213

	=
Dividend Discount Model	214
Discounted Free Cash Flow Method	217
Comparative Valuation Using Price Ratios	226
Summary	233
Note	234
Bibliography	235

CHAPTER 4 Ontion Valuation	237
	207
Stock Option	238
Boundary Values	240
Call Option	241
Put Option	243
Put–Call Parity	247
Underlying Stock Does Not Pay Dividends	247
Underlying Stock Pays Dividends or Provides Yield	251
Binomial Tree	252

The Black–Scholes–Merton Model	267
Generalization of the Black–Scholes–Merton Model	272
Option Valuation Using Monte Carlo Simulation	273
Sensitivity of Option Value	282
Sensitivity to Underlying Price	282
Sensitivity to Volatility	288
Sensitivity to the Interest Rate	290
Sensitivity to the Passage of Time	291
Volatility	292
Historical Volatility	292
Implied Volatility	295
Non-Constant Volatility	297
ARCH and GARCH Models	298
Forecasting Volatility Using the GARCH Model	303
The GARCH-M Model	305
The Exponentially Weighted Moving Average Model	306
The EWMA Model for Covariance	310
Option Valuation Using a GARCH Model	312
Futures Options	319
Futures Contract	319
Option on Futures Contract	320
Put–Call Parity for Futures Options	323
Black Model	324
Using a Binomial Tree for Valuation of Futures Options	326
Summary	328
Annex 1: Derivation of Put–Call Parity When the Underlying	
Pays Dividends	331
Annex 2: Derivation of Delta, Gamma, Vega, Rho, and Theta	338
Notes	343
Bibliography	344
CHAPTER 5	

Instantaneous Forward Rate and Short Rate3Vasicek Model3	347
Vasicek Model 3	347
	354
Hull-White Model 3	358
Ho-Lee Model 3	366
Black-Karasinski Model 3	367
Interest Rate Options 3	368
Swaption 3	368
Interest Rate Cap and Floor 3	370

Analytical Valuation of Bonds and Options	373
Zero-Coupon Bond	373
Option on a Zero-Coupon Bond	374
Interest Rate Cap and Floor	375
Option on a Coupon-Bearing Bond	376
Swaption	376
Interest Rate Tree	377
The Hull-White Tree	382
The Black-Karasinski Tree	400
Calibration	405
Calibration Using the Analytical Method	408
Calibration Using the Interest Rate Tree	413
LIBOR Market Model	420
Summary	425
Annex: Derivation of Zero-Coupon Bond Price Using a Δt -Period	
Rate from the Hull-White Tree	427
Notes	429
Bibliography	430

CHAPTER 6

Valuation of Bonds with Embedded Options	433
Callable Bond	433
Option-Adjusted Spread	441
Putable Bond	444
Summary	446
Note	447
Bibliography	447

CHAPTER 7 Valuation of Mortgage-Backed and Asset-Backed Securities

449

Mortgage Backed Securities	450
Mongage-Dackeu Securities	430
Fixed-Rate Conventional Mortgage Loans	452
Prepayment	460
Impact of Prepayment on Mortgage-Backed Securities	463
Valuation of Mortgage-Backed Securities	476
Short Rate Model	476
Mortgage Refinancing Rate Model	480
Prepayment Model	483
Cash Flow Generator	483
Discounting and Aggregation Platform	484

xi

Number of Simulated Paths and Convergence	486
Impact of Default on Mortgage-Backed Securities	488
Collateralized Mortgage Obligations	503
Valuation of Collateralized Mortgage Obligations	511
Asset-Backed Securities	513
Auto Loan ABSs	517
Collateral	517
Structure	520
Prepayment	521
Home Equity Loan ABSs	522
Collateral	522
Structure	523
Prepayment	524
Student Loan ABSs	524
Collateral	524
Structure	528
Prepayment	529
Credit Card Receivable ABSs	529
Collateral	529
Structure	530
Cash Flow Distribution Method	531
Prepayment	534
Early Amortization Event	534
Valuation of Asset-Backed Securities	535
Summary	550
Annex: Derivation of Survival Factor	552
Notes	553
Bibliography	554

CHAPTER 8	
Economic Value of Equity	557
Economic Value of Equity: Basics	559
Duration Gap	562
Risk-Adjusted Yield Curve	567
Interest Rate Scenario Analysis	574
Product Type and Value Sensitivity	575
Impact of Interest Rate Shocks on EVE	584
Balance Sheet Type and EVE Sensitivity	593
Currency Exchange Rate Scenario Analysis	594
Economic Value of Equity Risk Limits	597
Balance Sheet Planning and EVE Forecasting	597

Basel Accord Guidance on EVE Analysis	600
Principles of Managing Interest Rate Risk in the Banking Book	601
Scenario Construction and EVE Analysis	604
Standardized Framework	607
Summary	608
Notes	610
Bibliography	611

CHAPTER 9

Net Interest Income	613
Interest Income and Expense: Basics	614
Interest Income and Expense for Floating-Rate Instruments	620
Using the Implied Forward Rate	621
Using the Forecasted Rate	631
Incorporating Balance Sheet Change in NII Analysis	638
Runoff View: No New Volume	638
Static View: Replacement of Matured Positions	642
Dynamic View: Incorporation of Business Plan	644
Earning Gap	648
Interest Rate Scenario Analysis	653
Parallel Shocks	654
Non-Parallel Shocks	664
Balance Sheet Type and NII Sensitivity	670
Impact of Interest Rate Options on NII	673
Currency Exchange Rate Scenario Analysis	683
Currency Forward and Interest Rate Parity	683
Exchange Rate Shock Scenarios	687
Net Interest Income Hedging	691
Net Interest Income Risk Limits	697
Required Data and Other Considerations in NII Analysis	699
Basel Accord Guidance on NII Analysis	701
Summary	702
Notes	704
Bibliography	704

CHAPTER 10 Equity and Earnings at Risk

Introduction to Value-at-Risk	
Variance-Covariance Method	708
Historical Sampling Method	710
Monte Carlo Simulation Method	713
Conditional Value-at-Risk	717

705

779

Application of VaR Methodology in ALM	719
Scenario Generation	721
Historical Sampling	721
Monte Carlo Simulation	726
Standard and Generalized Brownian Motion	726
Multi-dimensional Brownian Motion	730
Geometric Brownian Motion	731
Mean-Reverting Brownian Motion	734
Geometric Mean-Reverting Brownian Motion	739
Calibration	743
Equity-at-Risk	743
Interest Rate Risk Factor	744
Component Contribution	748
Approximation Techniques	749
Currency Exchange Rate Risk Factor	752
Sample Size and Convergence	758
Earnings-at-Risk	762
Interest Rate Risk Factor	763
Currency Exchange Rate Risk Factor	769
Summary	775
Notes	776
Bibliography	777

CHAPTER 11 Liquidity Risk

Funding Source and Liquidity Risk	
Deposits	781
Short-Term Debt	783
Medium-Term Notes	788
Long-Term Debt	789
Securitization	790
Credit and Liquidity Facilities	793
Eurodollar Deposit and Federal Funds Market	795
Other Sources of Funding	796
Short-Term Secured Funding: Repurchase Agreements	796
Repo Basics	796
Repo Margin	800
Collateral Delivery Methods and Triparty Repo	801
Use of Repo	802
Security Lending	807
Repo and Liquidity Risk	809
Managing Liquidity Risk of Repo	811

816
823
833
841
849
854
855
856
857
859
873
874
874
884
892
893
893
896
897

CHAPTER 12 Funds Transfer Pricing

899

Funds Transfer Pricing: Basics	900
Pool Method	906
Matched Maturity Method	910
FTP Rate for Fixed-Rate Maturing Products	910
Weighted Average Method	913
Duration Method	914
Refinancing Method	915
FTP Rate for Floating-Rate Maturing Products	917
FTP Rate for Non-Maturing Products	920
Behavioral Model Method	920
Replicating Model Method	930
Components of FTP Rate	932
Characteristics of a Good FTP System	934
Summary	936
Notes	938
Bibliography	938
Appendix: Elements of Probability and Statistics	939

Inde

About the Author

Pooya Farahvash is vice president of Treasury Modeling and Analytics at American Express Company, overseeing the development of models used in ALM, liquidity risk management, stress testing, and deposit products. He previously worked at investment bank Jefferies in liquidity risk management and at CIT Group in asset-liability and capital management. His experience in the banking industry is focused in treasury department activities, specifically in the areas of interest rate risk, liquidity risk, asset-liability management, deposit modeling, and economic capital. Dr. Farahvash is also an adjunct instructor at New York University, teaching analytical courses. He received both his PhD degree in Industrial and Systems Engineering and MS degree in Statistics from Rutgers University, New Jersey. He currently lives in New York City.

Preface

n recent years, use of quantitative methods in asset-liability management (ALM) has increased significantly, particularly among medium- to large-size banks and insurance companies. This partly reflects the importance of effective balance sheet planning and managing related risks in achieving earnings and equity valuation targets. Traditionally and in the past, balance sheet management efforts were mainly focused on funding activities to ensure that the bank's assets are properly funded at the lowest cost possible. Lack of risk awareness, however, was always a major weakness in this approach and recent history has shown that poorly managed balance sheets can lead to catastrophic events for banks. In one view, the failures of several banks and investment banks during the financial crisis of 2007-2009 were partially due to ineffective balance sheet management practices. Newer banking strategies rely on ALM techniques that are based on accurate and precise calculations to evaluate the impact of various risk factors on earnings and value of the firm. These metrics are designed to assess the efficiency of the balance sheet management efforts while taking various risks, such as interest rate risk, into consideration.

This book presents the fundamentals of asset-liability management in banking. During my years of practice as an ALM analyst in various banks, I generally felt that there was a need for a book that provides a comprehensive view of ALM as it is exercised in practice. The goal of this book is to present the fundamentals and methodologies that are commonly used by banks in their ALM analysis. The book is written for professionals who are active in asset-liability management, financial risk management, and treasury analytics. This book can also be used as the main textbook for a graduate-level course in the aforementioned areas.

The main materials in the book are organized in three parts. The first part, consisting of Chapters 1 through 7, is focused on the interest rate concept and related topics, interest rate modeling methods, and valuation of financial instruments. Many ALM analyses require valuation of positions on the balance sheet of a bank, as well as valuation of off-balance-sheet exposures, such as derivative contracts. Materials in this part provide the fundamentals for valuation of common financial instruments, including fixed- and floating-rate loans, fixed-income securities such as bonds, equity securities, mortgage-backed and asset-backed securities, and callable or putable bonds. Valuations of common derivative products such as stock options, future options, interest rate swaps, interest rate forwards, interest rate caps and floors, and swaptions are also discussed. Since some topics reviewed in the interest rate models chapter require knowledge of valuation methods, that chapter is placed after the fundamentals of valuation are explained.

The second part of the book, consisting of Chapters 8, 9, and 10, is focused on two fundamental ALM metrics: economic value of equity and net interest income, and their related scenario analysis. The topics discussed in this part rely on the materials explained in Part One.

The third part of the book, consisting of Chapters 11 and 12, covers two topics that are closely related to ALM: liquidity risk and funds transfer pricing. Liquidity risk is the risk factor behind one of the gap measurements that the ALM process aims to optimize and funds transfer pricing is an internal allocation method of the net interest income. There are some practitioners who view liquidity risk management and funds transfer pricing as separate and independent topics from ALM. Recent trends, however, indicate that banks are moving toward a holistic view in managing the interest rate risk and the liquidity risk by combining the resources and required analysis of the two risk types. Particularly, there are many commonalities between data required for ALM and liquidity risk management. Funds transfer pricing, if done properly, internalizes the interest rate risk and liquidity risk among business units of a bank, and hence plays an important role in balance sheet management.

Asset-liability management studies are part of quantitative finance. In ALM, mathematical modeling and statistical concepts are mixed with high-level business decision making on how to run a bank. For the quantitative techniques discussed and used in this text, the general approach is to focus on applications and outcomes rather than providing deep discussions on supporting theories and proof of equations. For readers who are interested in theoretical background, each chapter provides a list of references for the origins of methods and further discussions. Since several subjects introduced in this book rely on statistical concepts, an appendix is added to cover the basic elements of probability and statistics in a concise form. These materials should help a reader who is not proficient in statistics to gain an understanding of the subjects that are needed in other parts of the book.

Methods discussed in this text when applied to the entire balance sheet of a bank require extensive computations. For the most part, examples provided are simple enough so the reader can follow and understand the topics. In practice, software packages are available that can perform the analysis explained here for balance sheets with a large number of positions. The book is not written with any particular software in mind, however, as the concepts discussed here are applicable to any ALM analysis, regardless of the software used.

In some of the examples and illustrations throughout the book I occasionally use a LIBOR–swap curve for coupon calculation of floating-rate instruments or for discounting. The principles discussed, however, are applicable if any other interest rate, such as SOFR or OIS, was used instead. In some of the examples presented in the book, the reader may notice some minor differences between the results shown here and results if calculations are performed using a spreadsheet software. This is due to rounding errors that may occur at a calculation step and those errors generally make no difference in the final outcomes.

I would like to thank those individuals who commented on the manuscript, and those who were involved in the production process of the book.

Pooya Farahvash New York February 2020

Abbreviations

ABCP:	asset-backed commercial paper
ABS:	asset-backed security
ACT:	Actual (used in day count conventions)
ADR:	annual default rate
AFC:	available funds cap
ALLL:	allowance for loan and lease losses
APR:	annual prepayment rate
APS:	absolute prepayment speed
BAU:	business as usual
BBA:	British Bankers' Association
BCBS:	Basel Committee on Banking Supervision
BHC:	bank holding company
BIS:	Bank for International Settlements
bps:	basis points (0.01%)
CB:	coupon-bearing bond
CD:	certificate of deposit
CDF:	cumulative distribution function
CDO:	collateralized debt obligation
CDR:	constant default rate
CDS:	credit default swap
CFP:	contingency funding plan
CMBS:	commercial mortgage-backed security
CME:	Chicago Mercantile Exchange
CMO:	collateralized mortgage obligation
CP:	commercial paper
CPI:	Consumer Price Index
CPR:	constant prepayment rate
CVaR:	conditional value-at-risk

DCF:	discounted cash flow
DF:	discount factor
DR:	default rate (periodic)
DV01:	dollar value of a basis point
DVP:	delivery versus payment
EaR:	earnings-at-risk
EBIT:	earnings before interest and taxes
EBITDA:	earnings before interest, taxes, depreciation,
	and amortization
ECB:	European Central Bank
EMTN:	Europe medium-term note
EONIA:	Euro Overnight Index Average
EPS:	earnings per share
EVE:	economic value of equity
EWI:	early waning indicator
FASB:	Financial Accounting Standards Board
FCFE:	free cash flow to equity
FCFF:	free cash flow to firm
FDIC:	Federal Deposit Insurance Corporation
Fed:	Federal Reserve System
FOMC:	Federal Open Market Committee
FRA:	forward rate agreement
FRBNY:	Federal Reserve Bank of New York
FSA:	Financial Services Authority
FTP:	funds transfer pricing
FX:	foreign exchange
GDP:	gross domestic product
GMRA:	global master repurchase agreement
HELOC:	home equity line of credit
HIC:	hold in custody
HQLA:	high quality liquid asset
IBF:	international banking facility
IBR:	income-based repayment
ICAAP:	internal capital adequacy assessment process
ICE:	Intercontinental Exchange
IID:	independent and identically distributed
IRRBB:	interest rate risk in the banking book
ISDA:	International Swaps and Derivatives Association
LCR:	liquidity coverage ratio
LGD:	loss given default
LIBOR:	London Interbank Offered Rate

LR:	loss rate
LRNVR:	locally risk-neutral valuation relationship
LTV:	loan to value
MBS:	mortgage-backed security
MDR:	monthly default rate
MMDA:	money market deposit account
MPR:	monthly payment rate
MSRP:	manufacturer's suggested retail price
MTL:	month to liquidation
MTN:	medium-term note
NAS:	non-accelerated senior
NII:	net interest income
NOW:	negotiable order of withdrawal
NSFR:	net stable funding ratio
NWCI:	net working capital investment
OAS:	option-adjusted spread
OIS:	overnight index swap
OTS:	Office of Thrift Supervision
PAC:	planned amortization class
PB:	price-to-book value
PCA:	principal component analysis
PD:	probability of default
PDF:	probability density function
PE:	price-to-earnings
PFE:	potential future exposure
PLUS:	Parent Loan for Undergraduate Students
PMF:	probability mass function
PPC:	prospectus prepayment curve
PR:	prepayment rate (periodic)
PS:	price-to-sales
PSA:	Public Securities Association
PV:	present value
PV01:	present value of a basis point
QRM:	qualified residential mortgage
Repo:	repurchase agreement
Reverse repo:	reverse repurchase agreement
RMBS:	residential mortgage-backed security
ROE:	return on equity
SDA:	standard default assumption
SIV:	structured investment vehicle

SLABS:	student loan asset-backed security
SMM:	single monthly mortality
SOFR:	Secured Overnight Financing Rate
SONIA:	Sterling Overnight Index Average
SPE:	special purpose entity
SPV:	special purpose vehicle
VaR:	value-at-risk
WAC:	weighted average coupon
WACC:	weighted average cost of capital
WAM:	weighted average maturity
ZB:	zero-coupon bond

Introduction

A bank at its core is a financial intermediary institution that collects funds from those individuals or entities who do not have immediate use for them and lends to those who can use the capital to generate economic benefits. Depositors with excess cash can benefit from the interest earned on their deposits while borrowers can benefit from the borrowed funds for their personal needs, such as purchasing real properties, or business needs, such as investing in their small business ventures. As the facilitators of such fund transfers, banks earn the difference between the interest paid to the depositors and the interest earned from the borrowers. A bank with an asset-driven business model seeks to originate assets through lending activities and simultaneously pursue funding methods to fund those assets, whereas a bank with a liability-driven business model primarily focuses on collecting deposits and then attempts to lend or invest the proceeds from the deposits. While traditionally deposits are the main source of funds in the banking industry, nowadays banks use a variety of methods to raise funds, including the issuance of short-term and long-term notes, securitization, and collateralized borrowings. Use of funds is also evolved from traditional lending in the form of loans to individuals and businesses, in investment in securities, and even in speculation using derivatives. The net revenue a bank makes is the difference between the costs associated with its sources of funds and earnings from the instruments where available funds are invested and used.

A bank manages its sources and uses of funds by trying to match them based on different criteria. One such criterion is based on the principal cash flows. The status of a bank as a financial intermediary, which is often supported by the central bank of the country, allows it to have a lower cost of funds compared to other entities. In particular, the bank's short-term borrowings are usually significantly cheaper compared to long-term alternatives. This allows the bank to fund long-term assets that are more profitable by cheaper short-term liabilities. While economically this seems like a sound business model, it potentially increases the risk for banks of not being able to fulfill their obligations when they are due. When the return of the principal amount borrowed by the bank is due before the principal lent is returned, this may lead to the bank's failure, should it not have any alternative source to replace the needed funds. A prudent banking practice is to align or overlap the terms of asset and liability positions such that there are always available funds to cover short- to medium-term liability maturities. However, in practice this is hard to achieve for individual asset or liability positions. Except in rare cases in which a particular debt position is raised to fund a large asset portfolio or a particular investment project, individual asset positions, such as loans and investment in securities, are not funded by distinct liability positions. Banks raise funds in micro form through deposits or in bulk form by issuing bonds. This makes the principal matching between assets and liability difficult, if not impossible. Due to this, banks may attempt to match the principal cash flows on a portfolio level. But even this approach has its limitations, since non-maturing products such as credit card accounts or savings accounts do not have contractual maturity dates. To overcome this, existing balances of non-maturing products are assumed to follow some modeled runoff profiles that act as amortization schedules for them. This allows the bank to estimate principal cash flows related to these products and to create principal cash flow schedules at an aggregated level, for example, for the bank as a whole or at a subsidiary level. Such schedules provide an overview of amounts and timings of expected principal cash flows and help in the planning and coordination of asset originations and debt issuances. This approach, however, does not incorporate planned changes in the assets and the liabilities. For example, if the bank is planning to grow a certain asset portfolio or to issue new debt securities in the near future, they are not reflected in a static cash flow schedule. Particularly, expected changes in balances of non-maturing products due to macroeconomic factors are not included. A dynamic cash flow schedule incorporates planned and expected changes in the asset and liability portfolios. A more sophisticated version of such a schedule considers all principal and interest payments to create a comprehensive view of cash flows a bank can experience in a short- to medium-term time horizon in the future. Cash flow gap, sometimes referred to as maturity gap, is the net value of cash flows generated by assets and liabilities in a specific time period. Minimizing cash flow gap is one way to reduce the risk of adverse events due to the mismatch between asset and liability cash flows, particularly their principal flows.

A bank may manage its uses of funds based on the reliability and persistency of the sources of funds. Funding sources being unavailable when they are needed may lead to the bank's failure. To assess their readiness, banks often perform scenario analysis to evaluate the impact of unavailability of one or more funding sources on their cash flow schedules and ultimately on their balance sheets. This enables them to obtain a view of the potential *liquidity gap* they may face in the future.