ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Philippe Ackermann

Optische Kohärenztomographie für Laserdurchstrahlschweißprozesse bei Kunststoffen

Fraunhofer

Optische Kohärenztomographie für Laserdurchstrahlschweißprozesse bei Kunststoffen

Optical Coherence Tomography for Laser Transmission Welding of Polymers

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Philippe Ackermann

Berichter:

Univ.-Prof. Dr.-Ing. Robert Heinrich Schmitt Univ.-Prof. Dr.-Ing. Michael Schmidt

Tag der mündlichen Prüfung: 03. März 2020

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Philippe Ackermann

Optische Kohärenztomographie für Laserdurchstrahlschweißprozesse bei Kunststoffen

Herausgeber: Prof. Dr.-Ing. T. Bergs Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 15/2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Philippe Ackermann:

Optische Kohärenztomographie für Laserdurchstrahlschweißprozesse bei Kunststoffen

1. Auflage, 2020

Apprimus Verlag, Aachen, 2020 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-882-2

D 82 (Diss. RWTH Aachen University, 2020)

Vorwort/Danksagung

Die folgende Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Fraunhofer Institut für Produktionstechnologie IPT zwischen 2014 und 2019.

Dass sie neben meiner beruflichen Tätigkeit, dem täglichen Pendeln, im Stau stehen und meiner Verantwortung als Ehemann und Vater zweier Kinder zustande kam, macht mich wirklich stolz.

Zum erfolgreichen Gelingen dieser Arbeit haben natürlich auch andere Personen beigetragen. Bedanken möchte ich mich zunächst bei meinem Doktorvater Prof. Robert Schmitt und meinem Abteilungsleiter Dipl.-Phys. Niels König, dass sie mich damals eingestellt haben und mir somit die Möglichkeit gegeben haben, mit diesem Unterfangen durchzustarten. Darüber hinaus möchte ich mich persönlich bei meinem Hiwi Fabian Hübenthal bedanken, der mich seit Beginn meiner Tätigkeit am IPT durch seine tatkräftige Hilfe und seine Bereitschaft nicht nur Dienst nach Vorschrift zu machen, bei allen Projekten unterstützt hat. Bedanken möchte ich mich darüber hinaus bei meinen anderen Hiwis, Praktikanten und Abschlußarbeitern.

Nicht zu vergessen haben natürlich die lieben Kollegen der 320 und auch der 310 ihren Teil zur Entstehung dieser Arbeit beigetragen. Insbesondere gilt mein Dank Kevin, Jelena, Rouwen, Emely, Max und Christoph, mit denen ich mich nicht nur fachlich, sondern auch grundsätzlich über den Dissertationsprozess und das mitschwingende Leiden beim Erstellen der Arbeit austauschen konnte.

Darüber hinaus möchte ich mich auch bei den Projektpartnern des Weldable Forschungsprojekts bedanken. Insbesondere bei Herrn Hubert Aehling von der Firma Amtron, Herrn Tobias Jaus von der Firma LPKF und Herrn Bastian Geissler sowie Herrn Philipp Amend vom blz.

Zu guter Letzt möchte ich mich ganz besonders bei meiner Frau Sandra bedanken, dass sie meine Launen erträgt, für ihr Verständnis, und ihre nicht-endenden Bemühungen mich aufzumuntern. Ohne dich wäre ich nicht soweit gekommen. Darüber hinaus gilt mein Dank meiner Mutter, die mich in all den Jahren in meinen Unternehmungen unterstützt hat.

Für Mama, Sandra, Charlotte und Magalie

"And all this science I don't understand It's just my job five days a week" Rocketman – Elton John

Zusammenfassung

Laserdurchstrahlschweißen (LDS) ist ein etabliertes Kunststofffügeverfahren, welches hermetisch dichte Verbindungen unterhalb der Werkstückoberfläche ermöglicht. Um einen stabilen Prozess zu gewährleisten, ist eine Prozessüberwachung erforderlich.

Die Herausforderung bei der Stabilität des LDS besteht in der Anpassung an neue Materialien, um eine optimale schweißtechnische Lösung zu finden. Die Laserprozesse sind bei bekannten Materialien sehr stabil und bestehende Überwachungsmethoden (z.B. Pyrometer-basierte Methoden oder Fügewegüberwachung) liefern hervorragende Resultate. Die genannten Überwachungsmethoden haben dennoch einen entscheidenden Nachteil. Die eigentliche Überwachung der erzeugten Schweißnaht ist mit ihnen nicht möglich. Das heißt, dass diese Systeme keine geometrischen Informationen über das Fügen des Materials liefern. Hierzu muss, je nach Lage der erzeugten Schweißnaht, das Materialinnere tomographisch untersucht werden, was nur mit wenigen Prüfmethoden physikalisch zu realisieren ist.

Die Erfassung von geometrischen Parametern in Bauteilen (Materialfehler, Poren in der Schweißnaht, Lücke zwischen den Schweißpartnern etc.) benötigt eine Messmethode, welche in der Lage ist, tomographische oder topographische Daten aufnehmen zu können. Mittels der Optischen Kohärenztomographie (OCT) können diese Parameter erfasst werden.

In dieser Arbeit wird ein OCT-basiertes Konzept zur In-Prozess-Erfassung von geometrischen Parametern im Laserdurchstrahlschweißprozess erarbeitet, validiert und bewertet. Zunächst wird das System optisch simuliert, um eine mechanische und optische Adaption an die Laseranlage zu gewährleisten. Dabei werden die erforderlichen OCT-Systemparameter bestimmt, um eine Auswahl relevanter Komponenten zu ermöglichen. Das Messsystem wird als Prototyp im Labor aufgebaut, charakterisiert und validiert. Zur Tauglichkeitsprüfung des OCT-Systems wird eine Messmittelfähigkeitsanalyse nach VDA 5 vorgenommen. Abschließend erfolgt die optische Integration in den Strahlengang einer Laseranlage. In-Prozess-Messungen der generierten Schweißnaht dienen der finalen Charakterisierung und Validierung der OCT als Inline-Überwachungstool. Damit kann gezeigt werden, dass eine qualitative Erfassung der Materialstrukturen sowie der Schweißnaht In-Prozess möglich ist. Das Messsystem basiert auf dem Prinzip der kurzkohärenten optischen Interferometrie.

Summary

Laser transmission welding is a well-established plastic joining process that allows for hermetically sealed connections below the workpiece surface. To ensure a stable process, a process control is required.

The challenge for the stability of the process consists in the adaption to new materials and to find an optimal welding solution for this purpose. The laser processes for known materials are inherently very stable and existing monitoring methods (e.g., pyrometer-based or joining path monitoring) provide excellent results. The mentioned monitoring methods have nonetheless a decisive disadvantage. The actual monitoring of the weld seam produced is not possible with them. This means that these systems do not provide any geometric information about the joining of the material. For this purpose, depending on the position of the weld seam produced, it must be "looked" into the material, which is physically impossible to achieve with many test methods.

The detection of geometric parameters in components (material defects, pores in the weld seam, gap between the welding partners, etc.) requires a measuring method which is able to record tomographic or topographical data. By means of optical coherence tomography (OCT) these parameters can be detected.

In this work, an OCT-based concept for the In-process acquisition of geometrical parameters in the laser transmission welding process is developed and evaluated. For this purpose, the measuring system is first simulated optically to allow for a mechanical and optical adaption to the laser system. The OCT system parameters are identified, allowing for an optimal allocation of components. The system will be setup as a laboratory setup where it will be characterized and validated. A measuring system analysis according to VDA 5 will be performed. Finally the mechanical integration into the beam path of the laser system is done. In-process measurements of a generated weld seam are performed for a final characterization and validation of the measurement device as process control tool. These measurements enable the statement if a qualitative recording of the material structures and the weld seam is possible. The measuring system is based on the principle of low-coherence optical interferometry.

Inhaltsverzeichnis

Content

1 Einleitung			1				
	1.1	Motivation					
	1.2	Forsch	ungsansatz	4			
	1.3	Aufbau	ı der Arbeit	6			
2	Gru	ndlager	n der Prozessüberwachung beim				
	Las	Laserdurchstrahlschweißen					
	2.1	Funktio	onsprinzip des Laserdurchstrahlschweißens	9			
		2.1.1	Bestrahlungsarten	11			
		2.1.2	Parameter des Prozessabaufs	13			
	2.2	Polymere		15			
		2.2.1	Thermoplaste	15			
		2.2.2	Optische Eigenschaften	16			
		2.2.3	Polyamid 6	17			
		2.2.4	Polycarbonat	18			
	2.3	Prozes	süberwachung beim Laserdurchstrahlschweißen	19			
		2.3.1	Allgemein	19			
		2.3.2	Stand der Technik	20			
		2.3.3	DIN-Norm	24			
	2.4	Relevante Material- und Prozesseigenschaften25					
		2.4.1	Geometrische Ausdehnung und Lage der Schweißnaht sowie				
			Blasenbildung	25			
		2.4.2	Prüfkriterien	27			
	2.5	Katego	risierung geometrischer Parameter	29			
2.6 Optische Kohärenztomographie		he Kohärenztomographie	31				
		2.6.1	Interferenzprinzip	31			
		2.6.2	(Kurz)-kohärente Interferenz und polarisationsbedingte				
			Signaleinwirkung	34			
		2.6.3	Prinzip Fourier-domain-OCT	39			
		2.6.4	Swept-Source-OCT	44			
	2.7	Charak	terisierung von OCT-Systemen	45			
		2.7.1	Point-spread function (PSF)	45			
		2.7.2	Axiale Auflösung	46			
		2.7.3	Laterale Auflösung, Schärfentiefe, Messbereich u. Abbildungstie	fe46			
		2.7.4	Sichtfeld (Field of view)	48			
		2.7.5	SNR, Sensitivität, Dynamikumfang und Roll-Off	48			
		2.7.6	Rauschen	51			
	2.8	Elektro	magnetische Strahlung	52			
		2.8.1	Wechselwirkung zwischen Kunststoff und optischer Strahlung	52			
		2.8.2	Dispersion	53			

		2.8.3 Absorption, Eindringtiefe und Abbildungstiefe	54	
	2.9	Zwischenfazit und Ableitung des Forschungsbedarfs	57	
3	Gestaltung eines OCT-basierten Messsystems für die			
	Proz	zessüberwachung	59	
	3.1	Laboraufbau und Parametrisierung	63	
		3.1.1 OCT-System und Komponenten	63	
		3.1.2 Strahlkopplung und Gesamtsystem	76	
	3.2	Simulation	77	
		3.2.1 Grundlagen	78	
		3.2.2 Fokusversatz zwischen Messstrahl und Prozessstrahl	79	
		3.2.3 Dispersionskompensation	83	
		3.2.4 Messstrahldurchmesser, laterale Auflösung und Versatz	86	
		3.2.5 Scanwinkel der zweiten galvanometrischen Scaneinheit zur	0.5	
		Ablenkung des Messstrahls	95	
	2.2	3.2.6 Potentielle Optimierung des optischen Systems	98	
	3.3	Zwischeniazit	103	
4	Cha	rakterisierung und Validierung des Messsystems	105	
	4.1	Einflüsse auf die Messung	105	
	4.2	Charakterisierung	107	
		4.2.1 Systemrelevante Parameter	107	
		4.2.2 SNR, Sensitivität, Roll-Off und Dynamikumfang	118	
	4.3	Messmittel-Fähigkeitsanalyse	120	
	4.4	Messung praxisrelevanter Bauteile	125	
	4.5	Zwischenfazit	130	
5	Vali	dierung des Messsystems im Laserdurchstrahlschweißprozess	133	
	5.1	Auslegung der Messstrategie	133	
	5.2	Integration in das Laserdurchstrahlschweißsystem	134	
	5.3	Zwischenfazit	139	
6	Zus	ammenfassung und Ausblick	141	
7	Lite	Literaturverzeichnis		
8	Anh	ang	161	
-		- U		

Formelzeichen und Abkürzungsverzeichnis

Formula Symbols and Abbreviations

Α		Komplexe Amplitude
b	m	Konfokaler Parameter
B _n	Hz	Rauschbandbreite
Cp	ms⁻¹	Phasengeschwindigkeit
Cg	ms⁻¹	Gruppengeschwindigkeit
D _{db}	dB	Dynamikumfang
d	m	Spotdurchmesser
E	Vm ⁻¹	Elektrische Feldstärke
Ei	Vm ⁻¹	Elektrisches Feld der einfallenden Welle
e ^{iφ}		Euler´sche Formel
е	С	Elementarladung
E _R	Vm ⁻¹	Elektrisches Feld der reflekt. Welle des Referenzarms
Es	Vm ⁻¹	Elektrisches Feld der reflekt. Welle des Messarms
FOV _{lateral}	m	Laterales Sichtfeld
FOV _{axial}	m	Axiales Sichtfeld
I	Wm ⁻²	Intensität
< ² _n >	Wm ⁻²	Gesamtrauschen
l _c	m	Kohärenzlänge
l _{opt}	m	Optische Weglänge
I _{ph}	Wm ⁻²	Photostrom
< _{Signal} >	Wm ⁻²	Gemittelte elektrische Signalleistung
<i<sub>Shot></i<sub>	Wm ⁻²	Schrotrauschen
k(t)	m ⁻¹	Wellenzahl
k _B	JK ⁻¹	Boltzmann-Konstante
k ₀	m ⁻¹	Wellenzahl im Vakuum
L	m	Scanfeld
Loss	dB	Verlust bei NA Fehlanpassung
n		Brechungsindex
OPL(dB)	dB	Verlust durch Refl. am Faserende (Opt. Return Loss)

P(L)	W	Leistungsverlust innerhalb einer Faser
P _R	W	Referenzarmleistung
P _{S.min}	W	Eingangsleistung im Messarm
RIN	Wm ⁻²	Intensitätsrauschen
r _{min}	m	Radius des 1. Rings des Airy-Scheibchens
R	Ω	Trans-Impedanz Widerstand
R _{S,min}		Reflektivität
S(v)	WHz ⁻¹	Spektrale Leistungsdichte einer Lichtquelle
$S_{out,r}(\lambda)$	Asm ⁻²	Polarisationszustand Referenzarm
$S_{out,s}(\lambda)$	Asm ⁻²	Polarisationszustand Messarm
т	O ⁰	Temperatur
U _{MS}		Erweiterte Messunsicherheit
u(x _i)		Standardmessunsicherheit
u(y)		Kombinierte Messunsicherheit
V _{Scan}	ms ⁻¹	Scangeschwindigkeit
у		Gauß-Fit
y Scan	m	Scanweg
Z	m	Axiale Tiefe
Z _{max}	m	Maximale Abbildungstiefe
%g _{MS}		Eignungskennwert
α	m ⁻¹	Absorptionskoeffizient
ΔI	m	Weglängenunterschied
Δλ	m	Linienbreite
δ _{opt}	m ⁻¹	Optische Eindringtiefe
Δs	m	Radius Strahlaufweitung
< <u>∆</u> т>	S	Statistischer Mittelwert der Laufzeitverzögerung
Δx	m	Laterale Auflösung
Δz	m	Abbildungstiefe
δz	m	Axiale Auflösung
Σ_{dB}	dB	Sensitivität
γSR(τ)		Komplexer Grad der Kohärenz
η		Quanteneffizienz

\wedge	m	Schwebungslänge
ρ	AW _{opt} ⁻¹	Detektorempfindlichkeit
σ		Standardabweichung
hv	Js	Photonenenergie
ABS		AcryInitril-Butadien-Styrol
DAQ Board		Data Acquisition Board
DGV / DGD		Differentialgruppenverzögerung (Diff. group delay)
DOF		Degree of freedom
EP		Eintrittspupille
FD-OCT		Frequency-domain-OCT
FOV		Sichtfeld (Field of view)
FWHM		Full width at half maximum
GUM		Guide to the Expression of Uncertainty in Measurement
IR		Infrarot
LDS		Laserdurchstrahlschweißen
NDT		Non-destructive testing
NIR		Nah-Infrarot
OCT		Optical Coherence Tomography
PA 6		Polyamid 6
PC		Polycarbonat
PC		Polarisations-Controller
PMD		Polarisationsmodendispersion
PMMA		Polymethylmethacrylat
PP		Polypropylen
PSF		Point spread function
PVC		Polyvinylchlorid
RMS		Root mean square
SD-OCT		Spectral-domain-OCT
SNR		Signal-to-Noise Ratio
SS-OCT		Swept-Source OCT
TD-OCT		Time-domain-OCT

UV	Ultraviolett
WDR	Weld depth ratio
WEZ / HAZ	Wärmeeinflusszone (Heat affected zone)

1 Einleitung

1.1 Motivation

Kunststoffbasierte Produkte sind aus dem heutigen Alltag nicht mehr wegzudenken. Sie finden Anwendung in unterschiedlichen Gebieten wie der Fahrzeugindustrie, der Medizintechnik oder dem Konsumgüterbereich. Viele komplexe Produkte wären technisch oder wirtschaftlich nicht realisierbar ohne den Einsatz von Kunststoffen und deren Verarbeitung. Der weltweite Kunststoffverbrauch ist in den vergangenen Jahrzehnten stark angestiegen [Pla18]. Insbesondere durch Trends wie Leichtbau oder Ressourceneffizienz wird der Bedarf weiter steigen [Igb14]. Aus den Eigenschaften der Kunststoffe ergibt sich ein hohes Gestaltungspotential. Kunststoffe sind leicht und durchlässig. Sie besitzen eine niedrige Leitfähigkeit, sind beständig gegenüber Chemikalien und wiederverwertbar. Zu den Vorzügen von Kunststoffen gehört, dass sie sich gut verarbeiten lassen und es durch das Einbringen von Additiven möglich ist, ihre Eigenschaften gezielt zu verändern.

Die meisten kunststoffbasierten Produkte setzen sich aus mehreren Einzelteilen zusammen, die aus verschiedenen Kunststoffen gefertigt werden. Die geometrische Komplexität des Produktes und der Einsatz unterschiedlicher Kunststoffe innerhalb eines Produktes erlaubt es bisher nicht, dieses in einem einzigen Umformprozess herzustellen. Eine wesentliche Herausforderung ist die Art und Weise des Zusammenfügens der Einzelteile zum Gesamtprodukt. Die Beschaffenheit der Verbindung entscheidet beispielsweise wesentlich darüber, ob das Produkt dicht bleibt oder bspw. Wasser eindringen kann und dadurch z.B. die in das Gesamtteil integrierte Elektronik beschädigt wird.

Das Verbinden der Einzelteile zum Gesamtkonstrukt erfolgt mit Fügetechnik. In der Produktion hat die Fügetechnik einen hohen Stellenwert. Sie trägt maßgeblich zur Wertschöpfung in Deutschland bei [WV12]. Eine der wichtigsten Fügetechniken ist das Laserdurchstrahlschweißverfahren (LDS). Es bietet einerseits wirtschaftliche Vorteile in der Produktion. Seine hohe Flexibilität erlaubt z.B. kurze Taktzeiten. Es hat zum anderen entscheidende technologische Vorteile. Die erzeugten Schweißnähte sind optisch hochwertig, das Schweißen ist partikelfrei und die Bauteile werden durch den Laserenergieeintrag nur geringfügig und lokal thermisch belastet.

Eine wesentliche Herausforderung beim LDS besteht in der Anpassung des Verfahrens an neue Materialien, die Entwicklung einer optimalen schweißtechnischen Lösung für diese sowie der Kontrolle des Fügeprozesses. Die Laserprozesse sind bei bekannten Materialien zwar sehr stabil und bestehende Überwachungsmethoden (z.B. Pyrometer-basierte Methoden oder Fügewegüberwachung) liefern sehr gute Resultate beim Fügen von Kunststoffen, jedoch besteht bei der Online-Qualitätssicherung - dem nicht-invasiven und nicht-destruktiven Überwachen des laufenden Prozesses und dem damit verbundenen Eingreifen zur Korrektur von Prozessparametern - nach wie vor erhöhter Forschungsbedarf. Dieser betrifft die Handhabung von Prozessunsicherheiten, wie z.B. herstellungsbedingte Materialschwankungen, Degradation von Prozesskomponenten oder Umwelt- und Bedienereinflüsse. Der Einsatz adäquater Messtechnik bietet ein hohes Potential, um Prozessunsicherheiten zu minimieren und ggf. bislang nicht in Betracht gezogene Parameter zu überwachen.

Die oben beispielhaft genannten Überwachungsmethoden (z.B. Pyrometer-basiert oder Fügewegüberwachung) haben einen entscheidenden Nachteil. Sie liefern zwar Informationen zum Prozessablauf und zu den Prozessparametern, die eigentliche Überwachung der erzeugten Schweißnaht ist mit ihnen aber nicht möglich, da sie keine geometrischen Informationen über den Fügeprozess liefern. Hierzu muss - je nach Lage der erzeugten Schweißnaht - das Materialinnere tomographisch geprüft werden, was mit vielen Prüfmethoden physikalisch nicht realisierbar ist. Computer Tomographen bieten hierzu zwar die nötige Umsetzungsmöglichkeit, sind aber im regulären Einsatz als Prozessüberwachung zu aufwändig bzw. ermöglichen nicht die Integration in bestehende Laseranlagen für Online-Messungen. Sie erfordern daher einen separaten und nachgelagerten Messeinsatz. Um den Blick ins Materialinnere zu ermöglichen, wird in der Regel auf destruktive Verfahren zurück-gegriffen. Nachteil der destruktiven Verfahren ist der - je nach Prüfprozess und Prüfart (Stichproben oder 100% Prüfuna) - unnötia hohe Ausschuss. Die Produkte sind im Anschluss nicht mehr nutzbar. Dies zeigen auch die Veröffentlichungen in diesem Bereich [KPJ+18, Bmw18, MZKR18]. In der Praxis nutzen Unternehmen das Verfahren daher mehr oder weniger unter der Annahme einwandfrei laufender Prozesse und fehlerfreier Produkte.

Eine andere Möglichkeit des Zugangs zu geometrischen Parametern bieten nichtdestruktive und nicht-invasive Messmethoden, die in Laseranlagen integriert werden und online den Prozess überwachen, d.h. die entstehende Schweißnaht detektieren. Diese Methoden erlauben bisher nicht, die bedarfsweise Anpassung des Prozesses anhand geometrischer Daten während der Online-Überwachung, wodurch Kosten und Ausschuss gesenkt werden können.

Ein vielversprechendes optisches Messverfahren ist die Optische Kohärenztomographie (OCT). Sie basiert auf der Detektion kurzkohärenter Strahlung. Im Messprozess interferieren die von, aus oder an einem Messobjekt gestreute bzw. reflektierte Strahlung, sowie die reflektierte Strahlung aus einem Referenzpfad. Das tomographische Signal liefert nach der Fourier-Transformation des spektralen Reflexions- und Streuprofils eine Tiefeninformation, die Auskunft über Materialgegebenheiten in unterschiedlichen Tiefenabständen liefert [DF15]. Neben der technologischen Bedeutung für die unterschiedlichsten Anwendungsfälle hat die OCT eine wirtschaftliche Relevanz [Bio09, Swa16, Mar09].

Abb. 1.1 zeigt eine schematische Darstellung des OCT-Messprinzips.

B-Scan, Detektion des Rückreflexes am diskreten Übergang zwischen den Brechungsindexunterschieden

Bild 1.1: Schematische Darstellung der Signalerzeugung und Detektion von Defekten Schematic of signal generation and defect detection

Im biomedizinischen Bereich und bei Life Science-Anwendungen ist OCT bereits heute ein etabliertes Diagnostik-Tool. Die kommerzielle Verbreitung begann schon zu Beginn der 1990er Jahre. Ursprünglich genutzt in der Ophthalmologie, wo es als Diagnosestandard gilt, hat sich das Verfahren inzwischen auch in anderen medizinischen Bereichen etabliert. Der Einsatz in nicht-medizinischen und nicht-biologischen Anwendungen ist bislang deutlich geringer. Ein besonders interessanter, da vielversprechender Anwendungsbereich ist die Qualitätskontrolle transparenter technischer Materialien. In den letzten Jahren zeigt sich verstärkt das Potential dieser Technologie in der Anwendung für NDT (Non-destructive testing). [Sti07] bietet eine Übersicht der OCT-Technologie-Nutzung außerhalb der Biomedizin. [Kaw13] beschreibt verschiedene industrielle Anwendungsgebiete. Diese reichen von Schichtdickenmessungen über Laserstrukturieren von Oberflächen bis Polymeranwendungen oder die Datierung und Restaurierung von Kunstwerken. In [SM13] wird der Einsatz von OCT-Verfahren zur Überwachung von Laserstrukturierverfahren beschrieben. Das Verfahren wird bereits kommerziell von Firmen wie Precitec oder Lessmüller zur topographischen Überwachung von Laserprozessen eingesetzt. Die Lösung hat wirtschaftliche Vorteile, weil sich der Aufwand durch die Nutzung vorhandener Komponenten (z.B. des Scanobjektivs) reduziert. Es gibt bereits eine Reihe von Firmen, die OCT für verschiedene Anwendungen vermarkten oder Komponenten für OCT-Systeme anbieten [Swa16]. [RM17] und [MRF18] liefern eine Marktanalyse, mehrheitlich für medizinische Anwendungen, für die nächsten vier bis sieben Jahre.

Auf den Ablauf des Laserprozesses können sich unterschiedliche Parameter auswirken. Generell gilt, dass geometrische Parameter wie etwa Materialoberfläche oder beschaffenheit, Schweißnaht- oder Bauteilgeometrie bislang nicht erfasst und zur Prozessüberwachung herangezogen werden. Gerade diese können aber bei entsprechender Auswertung eine qualitative Aussage liefern, d. h. eine Höheninformati-