

Practical Go

Building Scalable Network and
Non-Network Applications

Amit Saha

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

978-1-119-77381-8
978-1-119-77382-5 (ebk.)
978-1-119-77383-2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Website may provide or recommendations it may make. Further, readers
should be aware the Internet Websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at www
.wiley.com.

Library of Congress Control Number: 2021948021

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associ-
ated with any product or vendor mentioned in this book.

Cover image: © cthoman/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com
http://www.wiley.com

I dedicate this book to all those who are working hard every day to find the right
balance between the feeling of “Yes, I got this!” and “What am I even doing?” and

continuing the battle that we call living.

v

About the Author

Amit Saha is a software engineer at Atlassian, located in Sydney, Australia. He
has written Doing Math with Python: Use Programming to Explore Algebra, Statistics,
Calculus, and More! (No Starch Press, 2015) and Write Your First Program (PHI
Learning, 2013). His other writings have been published in technical maga-
zines, conference proceedings, and research journals. He can be found online
at https://echorand.me.

https://echorand.me

vii

About the Technical Editor

John Arundel is a well-known Go writer, teacher, and mentor. He has been
writing software for 40 years, and he thinks he’s finally starting to figure out
how to do it. You can find out more about John at bitfieldconsulting.com.

John lives in a fairytale cottage in Cornwall, England, surrounded by woods,
wildlife, and a slowly deepening silence.

http://bitfieldconsulting.com

ix

Acknowledgments

I want to thank the entire team at Wiley that made this book possible. First,
Jim Minatel, who responded to my initial email expressing interest in pub-
lishing a book with Wiley. Jim then connected me with Devon Lewis, with
whom I discussed the book proposal and who was instrumental in com-
missioning this book and overseeing the entire process. Next, I would like
to thank Gary Schwartz, who in his capacity as project manager guided me
throughout the entire project, ensuring that I was on track with my delivery
of the chapters. Thank you, Judy Flynn, for your meticulousness in your role
as the copyeditor. Finally, thank you, Barath Kumar Rajasekaran, for overseeing
the proofreading process. Working with this team of fine folks was my version
of a Ulysses pact.

John Arundel was kind enough to accept my request to be the technical
reviewer of this book, and his insights and comments greatly helped to make
the book better as well as making me a better Go programmer.

I want to thank all the community members on the Golang nuts and gRPC
mailing lists who were always helpful in answering my questions and clari-
fying my doubts. My initial days of learning Go were mostly spent copying
and pasting code from the “Go by example” project at https://gobyexample
.com; hence I would like to acknowledge the efforts of the creator and main-
tainers of this project for their super-helpful resource.

Finally, I appreciate the efforts of the folks at Cooperpress who publish Golang
Weekly (and the authors of the articles to which they linked) and The Go Time
podcast. They helped me in learning Go and staying up to date with the latest
happenings in the Go community.

 — Amit Saha

https://gobyexample.com
https://gobyexample.com

xi

Contents at a Glance

Introduction� xvii

Getting Started� xxi

Chapter 1	 Writing Command-Line Applications� 1

Chapter 2	 Advanced Command-Line Applications� 33

Chapter 3	 Writing HTTP Clients� 57

Chapter 4	 Advanced HTTP Clients� 81

Chapter 5	 Building HTTP Servers� 105

Chapter 6	 Advanced HTTP Server Applications� 133

Chapter 7	 Production-Ready HTTP Servers� 161

Chapter 8	 Building RPC Applications with gRPC� 193

Chapter 9	 Advanced gRPC Applications� 229

Chapter 10	 Production-Ready gRPC Applications� 275

Chapter 11	 Working with Data Stores� 311

Appendix A	 Making Your Applications Observable� 349

Appendix B	 Deploying Applications� 367

Index� 375

xiii

Contents

Introduction� xvii

Getting Started� xxi

Chapter 1	 Writing Command-Line Applications� 1
Your First Application� 1
Writing Unit Tests� 8
Using the Flag Package� 14

Testing the Parsing Logic� 20
Improving the User Interface� 22

Removing Duplicate Error Messages� 23
Customizing Usage Message� 24
Accept Name via a Positional Argument� 25

Updating the Unit Tests� 28
Summary� 32

Chapter 2	 Advanced Command-Line Applications� 33
Implementing Sub-commands� 33

An Architecture for Sub-command-Driven Applications� 37
Testing the Main Package� 43
Testing the Cmd Package� 45

Making Your Applications Robust� 47
User Input with Deadlines� 48
Handling User Signals� 52

Summary� 56

Chapter 3	 Writing HTTP Clients� 57
Downloading Data� 57

Testing the Data Downloader� 59
Deserializing Received Data� 61
Sending Data� 66

xiv	 Contents

Working with Binary Data� 72
Summary� 80

Chapter 4	 Advanced HTTP Clients� 81
Using a Custom HTTP Client� 81

Downloading from an Overloaded Server� 81
Testing the Time-Out Behavior� 85
Configuring the Redirect Behavior� 88

Customizing Your Requests� 91
Implementing Client Middleware� 92

Understanding the RoundTripper Interface� 93
A Logging Middleware� 94
Add a Header to All Requests� 96

Connection Pooling� 99
Configuring the Connection Pool� 103

Summary� 104

Chapter 5	 Building HTTP Servers� 105
Your First HTTP Server� 105
Setting Up Request Handlers� 108

Handler Functions� 109
Testing Your Server� 112
The Request Struct� 114

Method� 115
URL� 115
Proto, ProtoMajor, and ProtoMinor� 116
Header� 116
Host� 116
Body� 116
Form, PostForm� 116
MultipartForm� 117

Attaching Metadata to a Request� 118
Processing Streaming Requests� 121
Streaming Data as Responses� 126
Summary� 132

Chapter 6	 Advanced HTTP Server Applications� 133
The Handler Type� 133
Sharing Data across Handler Functions� 134
Writing Server Middleware� 139

Custom HTTP Handler Technique� 139
The HandlerFunc Technique� 140
Chaining Middleware� 142

Writing Tests for Complex Server Applications� 147
Code Organization� 147
Testing the Handler Functions� 153
Testing the Middleware� 155
Testing the Server Startup� 157
Summary� 159

	 Contents	 xv

Chapter 7	 Production-Ready HTTP Servers� 161
Aborting Request Handling� 161

Strategies to Abort Request Processing� 165
Handling Client Disconnects� 169

Server-Wide Time-Outs� 173
Implement a Time-Out for All Handler Functions� 173
Implementing Server Time-Out� 174

Implementing Graceful Shutdown� 179
Securing Communication with TLS� 184

Configuring TLS and HTTP/2� 184
Testing TLS Servers� 188

Summary� 192

Chapter 8	 Building RPC Applications with gRPC� 193
gRPC and Protocol Buffers� 193
Writing Your First Service� 197

Writing the Server� 198
Writing a Client� 203
Testing the Server� 207
Testing the Client� 211

A Detour into Protobuf Messages� 214
Marshalling and Unmarshalling� 214
Forward and Backward Compatibility� 219

Multiple Services� 220
Error Handling� 226
Summary� 228

Chapter 9	 Advanced gRPC Applications� 229
Streaming Communication� 229

Server-Side Streaming� 230
Client-Side Streaming� 237
Bidirectional Streaming� 239

Receiving and Sending Arbitrary Bytes� 247
Implementing Middleware Using Interceptors� 256

Client-Side Interceptors� 257
Server-Side Interceptors� 263
Wrapping Streams� 269
Chaining Interceptors� 271

Summary� 272

Chapter 10	 Production-Ready gRPC Applications� 275
Securing Communication with TLS� 275
Robustness in Servers� 278

Implementing Health Checks� 278
Handling Runtime Errors� 286
Aborting Request Processing� 289

xvi	 Contents

Robustness in Clients� 297
Improving Connection Setup� 298
Handling Transient Failures� 300
Setting Time-Outs for Method Calls� 305

Connection Management� 306
Summary� 309

Chapter 11	 Working with Data Stores� 311
Working with Object Stores� 312

Integration with Package Server� 313
Testing Package Uploads� 323
Accessing Underlying Driver Types� 325

Working with Relational Databases� 327
Integration with Package Server� 328
Testing Data Storage� 339
Data Type Conversions� 343
Using Database Transactions� 346

Summary� 348

Appendix A	 Making Your Applications Observable� 349
Logs, Metrics, and Traces� 349
Emitting Telemetry Data� 352

Command-Line Applications� 352
HTTP Applications� 360
gRPC Applications� 364

Summary� 366

Appendix B	 Deploying Applications� 367
Managing Configuration� 367
Distributing Your Application� 370
Deploying Server Applications� 372
Summary� 373

Index� 375

	 N OT E     A glossary of relevant terms is available for free download from the book’s
web page: https://www.wiley.com/go/practicalgo.

https://www.wiley.com/go/practicalgo

xvii

Introduction

Google announced the Go programming language to the public in 2009, with the
version 1.0 release announced in 2012. Since its announcement to the community,
and the compatibility promise of the 1.0 release, the Go language has been used
to write scalable and high-impact software programs ranging from command-line
applications and critical infrastructure tools to large-scale distributed systems.
The Go language has made a huge contribution to the growth of a number of
modern software success stories. For a number of years, my personal interest
in Go has been due to its, for the lack of a better word, boring nature—that’s
what I like about it. It felt like it combined the power of the second program-
ming language I learned, C, with the batteries-included approach of another
favorite language of mine, Python. As I have written more programs using the
Go language, I have learned to appreciate its focus on providing all the necessary
tools and features to write production-quality software. I have often found
myself thinking, “Will I be able to implement this failure-handling pattern in
this application?” Then I look at the standard library package documentation,
and the answer has always been a resounding “Yes!” Once you have grasped
the fundamentals of Go, with almost zero effort on your part as the software
developer, the result is a highly performant application out of the box.

My goal in this book is to showcase the various features of the Go language
and the standard libraries (along with a few community-maintained packages)
by developing various categories of applications. Once you have refreshed or
learned the language fundamentals, this book will help you take the next step.
I have adopted a writing style where the focus is on using various features of
the language and its libraries to solve the particular problem at hand—one that
you care about.

xviii	 Introduction

You will not find a detailed walk-through of a language feature or every fea-
ture of a certain package. You will learn just enough to build a command-line
tool, a web application, or a gRPC application. I focus on a strictly chosen subset
of the fundamental building blocks for such applications to provide a compact
and actionable guide. Hence, you may find that the book doesn’t cover the more
higher-level use cases that you may want to learn about. That is intentional,
as the implementation of those higher-level use cases is often dependent on
domain-specific software packages, and hence no single book can do justice to
recommending one without missing out on another. I also strive to use standard
library packages as far as possible for writing the applications in the book. This
is again done to ensure that the learning experience is not diluted. Nonetheless, I
hope that the building blocks you learn about in the book will provide you with
a solid foundation to leverage higher-level libraries to build your applications.

What Does This Book Cover?

This book teaches you concepts and demonstrates patterns to build various
categories of applications using the Go programming language. We focus on
command-line applications, HTTP applications, and gRPC applications.

The Getting Started chapter will help you set up your Go development
environment, and it lays down some conventions for the rest of the book.

Chapter 1 and Chapter 2 discuss building command-line applications. You
will learn to use the standard library packages to develop scalable and testable
command-line programs.

Chapter 3 and Chapter 4 teach you how to build production-ready HTTP
clients. You will learn to configure time-outs, understand connection pooling
behavior, implement middleware components, and more.

Chapters 5 through 7 discuss building HTTP server applications. You will
learn how to add support for streaming data, implement middleware compo-
nents, share data across handler functions, and implement various techniques
to improve the robustness of your applications.

Chapters 8 through 10 delve deep into building RPC applications using gRPC.
You will learn about Protocol Buffers, implement various RPC communication
patterns, and implement client-side and server-side interceptors to perform
common application functionality.

In Chapter 11, you will learn to interact with object stores and relational data-
base management systems from your applications.

Appendix A briefly discusses how you can add instrumentation into your
applications.

Appendix B provides some guidelines around deploying your applications.
Each group of chapters is mostly independent from the other groups. So feel

free to jump to the first chapter of a group; however, there may be references
to a previous chapter.

	 Introduction	 xix

Within each group, however, I recommend reading the chapters from beginning
to end, as the chapters within a group build upon the previous chapter. For
example, if you are keen to learn more about writing HTTP clients, I suggest
reading Chapter 3 and Chapter 4 in that order.

I also encourage you to write and run the code yourself as you work through
the book and to attempt the exercises as well. Writing the programs yourself
in your code editor will build that Go muscle, as it certainly did for me while
writing the programs in the book.

Reader Support for This Book

You can find links to the source code and resources related to the book at https://
practicalgobook.net. The code from the book is also posted at https://
www.wiley.com/go/practicalgo.

If you believe that you’ve found a mistake in this book, please bring it to our
attention. At John Wiley & Sons, we understand how important it is to provide
our customers with accurate content, but even with our best efforts an error
may occur. To submit your possible errata, please email it to our Customer
Service Team at wileysupport@wiley.com with the subject line “Possible Book
Errata Submission.”

https://practicalgobook.net
https://practicalgobook.net
https://www.wiley.com/go/practicalgo
https://www.wiley.com/go/practicalgo
https://wileysupport@wiley.com

xxi

Getting Started

To start off, we will install the necessary software needed for the rest of the
book. We will also go over some of the conventions and assumptions made
throughout. Finally, I will point out key language features you will use in the
book and resources to refresh your knowledge about them.

Installing Go

The code listings in this book work with Go 1.16 and above. Follow the instruc-
tions at https://go.dev/learn/ to install the latest version of the Go compiler
for your operating system. It usually involves downloading and running a
graphical installation process for Windows or macOS. For Linux, your distribu-
tion’s package repository may contain the latest version already, which means
that you can use your package manager to install the Go compiler as well.

Once you have it installed, no further configuration is necessary to run the
programs that you will write throughout the book. Verify that you have every-
thing set up correctly by running the command go version from your terminal
program. You should see an output telling you which Go version is installed
and the operating system and architecture. For example, on my MacBook Air
(M1), I see the following:

$ go version
go version go1.16.4 darwin/arm64

If you can see an output like the above, you are ready to continue with the
next steps.

https://go.dev/learn/

xxii	 Getting Started

Choosing an Editor

If you don’t yet have a favorite Go editor/integrated development environment
(IDE), I recommend Visual Studio Code (https://code.visualstudio.com/
download). If you are a Vim user, I recommend the vim-go extension (https://
github.com/fatih/vim-go).

Installing Protocol Buffer Toolchain

For some chapters in the book, you will need the Protocol Buffers (protobuf) and
gRPC tools for Go installed. You will install three separate programs: the proto-
buf compiler, protoc, and the Go protobuf and gRPC plug-ins, protoc-gen-go
and protoc-gen-go-grpc, respectively.

Linux and macOS
To install the compiler, run the following steps for Linux or macOS:

1.	 Download the latest release (3.16.0 at the time of this book’s writing) file
from https://github.com/protocolbuffers/protobuf/releases, cor-
responding to your operating system and architecture. Look for the files in
the Assets section. For example, for Linux on a x86_64 system, download the
file named protoc-3.16.0-linux-x86_64.zip. For macOS, download
the file named protoc-3.16.3-osx-x86_64.zip.

2.	 Next, extract the file contents and copy them to your $HOME/.local direc-
tory using the unzip command: $ unzip protoc-3.16.3-linux-x86_64
.zip -d $HOME/.local.

3.	 Finally, add the $HOME/.local/bin directory to your $PATH environment
variable: $ export PATH="$PATH:$HOME/.local/bin" in your shell’s initiali-
zation script, such as $HOME/.bashrc for Bash shell and .zshrc for Z shell.

Once you have completed the preceding steps, open a new terminal window,
and run the command protoc --version:

$ protoc --version
libprotoc 3.16.0

If you see output like the one above, you are ready to move on to the next step.
To install the protobuf plug-in for Go, protoc-gen-go (release v1.26), run the

following command from a terminal window:

$ go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.26

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://github.com/fatih/vim-go
https://github.com/fatih/vim-go
https://github.com/protocolbuffers/protobuf/releases
google.golang.org/protobuf/cmd/protoc-gen-go@v1.26

	 Getting Started	 xxiii

To install the gRPC plug-in for Go, protoc-gen-go-grpc (release v1.1) tool,
run the following command:

$ go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.1

Then add the following to your shell’s initialization file ($HOME/.bashrc or
$HOME/.zshrc):

$ export PATH="$PATH:$(go env GOPATH)/bin"

Open a new terminal window, and run the following commands:

$ protoc-gen-go --version
protoc-gen-go v1.26.0
$ protoc-gen-go-grpc --version
protoc-gen-go-grpc 1.1.0

If you see an output like above, the tools have been installed successfully.

Windows

	 N OT E     You will need to open a Windows PowerShell window as an administrator to
run the steps.

To install the protocol buffers compiler, run the following steps:

1.	 Download the latest release (3.16.0 at the time of this book’s writing) file
from https://github.com/protocolbuffers/protobuf/releases, cor-
responding to your architecture. Look for a file named protoc-3.16
.0-win64.zip in the Assets section.

2.	 Then create a directory where you will store the compiler. For example,
in C:\Program Files as follows: PS C:\> mkdir 'C:\Program Files\
protoc-3.16.0'.

3.	 Next, extract the downloaded .zip file inside that directory. Run the fol-
lowing command while you are inside the directory where you downloaded
the .zip file: PS C:\> Expand-Archive.\protoc-3.16.0-win64\
-DestinationPath 'C:\Program Files\protoc-3.16.0’.

4.	 Finally, update the Path environment variable to add the above path: PS
C:\> [Environment]::SetEnvironmentVariable("Path", $env:Path +

";C:\Program Files\protoc-3.16.0\bin", "Machine").

Open a new PowerShell window, and run the command protoc --version:

$ protoc --version
libprotoc 3.16.0

https://github.com/protocolbuffers/protobuf/releases

xxiv	 Getting Started

If you see an output like the one above, you are ready to move on to the next
step.

To install the protobuf compiler for Go, protoc-gen-go tool (release v1.26),
run the following command from a terminal window:

C:\> go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.26

To install the gRPC plug-in for Go, protoc-gen-go-grpc (release v1.1) tool,
run the following command:

C:\> go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.1

Open a new Windows PowerShell Window, and run the following commands:

$ protoc-gen-go --version
protoc-gen-go v1.26.0
$ protoc-gen-go-grpc --version
protoc-gen-go-grpc 1.1.0

If you see an output like the one above, the tools have been installed suc-
cessfully.

Installing Docker Desktop

For the last chapter in the book, you will need the ability to run applications in
software containers. Docker Desktop (https://www.docker.com/get-started)
is an application that allows us to do that. For macOS and Windows, download
the installer from the above website corresponding to your operating system
and architecture, and follow the instructions to complete the installation.

For Linux, the installation steps will vary depending on your distribution. See
https://docs.docker.com/engine/install/#server for detailed steps for your
specific distribution. I also recommend that for ease of use (not recommended
for production environments), you configure your docker installation to allow
non-root users to run containers without using sudo.

Once you have followed the installation steps for your specific operating
system, run the following command to download a docker image from Docker
Hub and run it to ensure that the installation has been successfully completed:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
109db8fad215: Pull complete
Digest: sha256:0fe98d7debd9049c50b597ef1f85b7c1e8cc81f59c8d
623fcb2250e8bec85b38
Status: Downloaded newer image for hello-world:latest

https://www.docker.com/get-started
https://docs.docker.com/engine/install/#server

	 Getting Started	 xxv

Hello from Docker!
This message shows that your installation appears to be
working correctly.
..

That completes our software installation for the book. Next, we will quickly
cover some conventions used throughout the book.

Guide to the Book

In the following sections, you will learn various bits and pieces of information
that will help you get the most out of the book. First, I discuss the choice of the
module path for the code listings.

Go Modules
In this book, all applications will start by initializing a module as the first step.
This will translate to running the go command, go mod init <module path>.
Throughout the book, I have used a “placeholder” module path, which is github
.com/username/<application-name>. Thus, in applications where we have
written our module to consist of more than one package, the import path looks
like this: github.com/username/<application-name>/<package>.

You can use these module paths if you are not planning to share these appli-
cations. If you plan to share your applications, or develop them further, you
are encouraged to use your own module path, which is pointing to your own
repository, likely a Git repository hosted on https://bitbucket.org, https://
github.com or https://gitlab.com. Simply substitute username by your own
username in the repository hosting service. It’s also worth noting that the code
repository for the book, https://github.com/practicalgo/code, contains the
module path as github.com/practicalgo/code/<chap1>/<application-name>,
in other words, an actual path that exists rather than a placeholder path.

Command Line and Terminals
You will be required to execute command-line programs throughout the book.
For Linux and macOS, the default terminal program running your default
shell is sufficient. For Windows, I assume that you will be using the Windows
PowerShell terminal instead of the default command-line program. Most of the
command-line executions are shown as executed on a Linux/macOS terminal,
indicated by the $ symbol. However, you also should be able to run the same
command on Windows. Wherever I have asked you to execute a command to
create a directory or copy a file, I have indicated the commands for both Linux/
macOS and Windows, where they are different.

http://github.com/username/<application-name
http://github.com/username/<application-name>
http://github.com/username/<application-name>/<package>
https://bitbucket.org
https://github.com
https://github.com
https://gitlab.com
https://github.com/practicalgo/code
http://github.com/practicalgo/code/<chap1>/<application-name>

xxvi	 Getting Started

Terms
I have used some terms throughout the book that may be best clarified here to
avoid ambiguity and set the right expectations.

Robustness and Resiliency

Both terms, robustness and resiliency, express the ability of an application to handle
unexpected scenarios. However, these terms differ in their expected behavior under
these circumstances as compared to their normal behavior. A system is robust if
it can withstand unexpected situations and continue to function to some degree.
This will likely be suboptimal behavior, as compared to normal behavior. On
the other hand, a system is resilient if it continues exhibiting its normal behavior,
potentially taking a finite amount of time before being able to do so. I put forward
the following examples from the book to illustrate the difference.

In Chapter 2, you will learn to enforce time-outs for command-line application
functionality that is executing a user-specified program. By enforcing time-outs,
we avoid the scenario where the application continues to hang indefinitely
because of bad user output. Since we configure an upper bound on how long
we want to allow the user-specified command to be executed, we will exit with
an error when this duration expires before the command could be completed.
This is not the normal behavior of the application—that we should wait for the
command to complete—but this suboptimal behavior is necessary to allow the
application to recover from an unexpected situation, such as the user-specified
command taking longer than expected. You will find similar examples throughout,
notably when sending or receiving network requests in Chapters 4, 7, 10, and 11.
We will refer to these techniques as introducing robustness in our applications.

In Chapter 10, you will learn to handle transient failures in your gRPC client
applications. You will write your applications in a manner in which they can
tolerate temporary failures that are likely to be resolved soon. We refer to this
as introducing resilient behavior in our applications. However, we also intro-
duce an upper time limit, which we allow to resolve the potentially temporary
failure. If this time limit is exceeded, we consider that the operation cannot be
completed. Thus, we introduce robustness as well.

To summarize, resiliency and robustness both aim to handle unexpected situa-
tions in our applications, and this book uses these terms to refer to such techniques.

Production Readiness

I use the term production readiness in the book as all steps that you should think
about as you develop your application but before you deploy it to any kind

	 Getting Started	 xxvii

of a production environment. When the production environment is your own
personal server where you are the only user of your application, the techniques
that you will learn will likely be sufficient. If the production environment means
that your application will perform critical functionality for your users, then the
techniques in this book should be the absolute baseline and a starting point.
Production readiness consists of a vast body of often domain-specific techniques
across various dimensions—robustness and resiliency, observability, and security.
This book shows you how to implement a small subset of these topics.

Reference Documentation
The code listings in the book use various standard library packages and a few
third-party packages. The descriptions of the various functions and types are
limited to the contextual usage. Knowing where to look when you want to find
out more about a package or function is important to get the most out of the book.
The key reference documentation for all standard library packages is https://
pkg.go.dev/std. When I import a package as net/http, the documentation for
that package will be found at the path https://pkg.go.dev/net/http. When I
refer to a function such as io.ReadAll(), the function reference is the package
io’s documentation at https://pkg.go.dev/io.

For third-party packages, the documentation is available by going to the
address https://pkg.go.dev/<import path>. For example, the Go gRPC package
is imported as google.golang.grpc. Its reference documentation is available at
https://pkg.go.dev/google.golang.org/grpc.

Go Refresher

I recommend going through the topics in “A Tour of Go,” at https://tour
.golang.org/list, to serve as a refresher of the various features that we will be
using to implement programs in the book. These include for loops, functions,
methods, struct and interface types, and error values. Additionally, I want to
highlight the key topics that we will use extensively, along with references to
learn more about them.

Struct Type
We will be using struct types defined by the standard library and third-party
packages, and we will also be defining our own. Beyond defining objects of struct
types, we will be working with types that embed other types—other struct types
and interfaces. The section “Embedding” in the “Effective Go” guide (https://
golang.org/doc/effective_go#embedding) describes this concept. We will also

https://pkg.go.dev/std
https://pkg.go.dev/std
https://pkg.go.dev/net/http
https://pkg.go.dev/io
https://pkg.go.dev/<import path>
https://pkg.go.dev/google.golang.org/grpc
https://tour.golang.org/list
https://tour.golang.org/list
https://golang.org/doc/effective_go#embedding
https://golang.org/doc/effective_go#embedding

xxviii	 Getting Started

be making use of anonymous struct types when writing tests. This is described
in this talk by Andrew Gerrand, “10 things you (probably) don’t know about
Go”: https://talks.golang.org/2012/10things.slide#1.

Interface Type
To use the various library functions and to write testable applications, we will
be making extensive use of interface types. For example, we will be making
extensive use of alternative types that satisfies the io.Reader and io.Writer
interfaces to write tests for applications that interface with the standard input
and output.

Learning to define a custom type that satisfies another interface is a key step
to writing Go applications, where we plug in our functionality to work with
the rest of the language. For example, to enable sharing data across HTTP han-
dler functions, we will define our own custom type implementing the http.
Handler interface.

The section on interfaces in “A Tour of Go,” https://tour.golang.org/
methods/9, is useful to get a refresher on the topic.

Goroutines and Channels
We will be using goroutines and channels to implement concurrent execution
in our applications. I recommend going through the section on Concurrency
in “A Tour of Go”: https://tour.golang.org/concurrency/1. Pay special
attention to the example use of select statements to wait on multiple channel
communication operations.

Testing
We will be using the standard library’s testing package exclusively for writing
all of the tests, and we will use Go test to drive all of the test executions. We
have also used the excellent support provided by libraries such as net/http/
httptest to test HTTP clients and servers. Similar support is provided by gRPC
libraries. In the last chapter, we will use a third-party package, https://github.
com/testcontainers/testcontainers-go, to create local testing environments
using Docker Desktop.

In some of the tests, especially when writing command-line applications, we
have adopted the style of “Table Driven Tests,” as described at https://github
.com/golang/go/wiki/TableDrivenTests, when writing the tests.

https://talks.golang.org/2012/10things.slide#1
https://tour.golang.org/methods/9
https://tour.golang.org/methods/9
https://tour.golang.org/concurrency/1
https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/testcontainers-go
https://github.com/golang/go/wiki/TableDrivenTests
https://github.com/golang/go/wiki/TableDrivenTests

