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Introduction

The C++ Standard Library

The C++ Standard Library is a collection of essential classes and functions used by
millions of C++ programmers on a daily basis. Being part of the ISO Standard of the
C++ Programming Language, an implementation is distributed with virtually every
C++ compiler. Code written with the C++ Standard Library is therefore portable across
compilers and target platforms.

The Library is more than 20 years old. Its initial versions were heavily inspired by
a (then proprietary) C++ library called the Standard Template Library (STL), so much
so that many still incorrectly refer to the Standard Library as “the STL.” The STL library
pioneered generic programming with templated data structures called containers and
algorithms, glued together with the concept of iterators. Most of this work was adapted by
the C++ standardization committee, but nevertheless neither library is a true superset of
the other.

The C++ Standard Library today is much more than the STL containers and
algorithms. For decades, it has featured STL-like string classes, extensive localization
facilities, and a stream-based I/O library, as well as all headers of the C Standard Library.
In recent years, the C++11 and C++14 editions of the ISO standard have added, among
other things, hash map containers, generic smart pointers, a versatile random-number-
generation framework, a powerful regular expression library, more expressive utilities
for function-style programming, type traits for template metaprogramming, and a
portable concurrency library featuring threads, mutexes, condition variables, and atomic
variables. Many of these libraries are based on Boost, a collection of open-source C++
libraries.

And this is just the beginning: the C++ community has rarely been as active and alive
as in the past few years. The next version of the Standard, tentatively called C++17, is
expected to add even more essential classes and functions.

Why This Book?

Needless to say, it is hard to know and remember all the possibilities, details, and
intricacies of the vast and growing C++ Standard Library. This handy reference guide
offers a condensed, well-structured summary of all essential aspects of the C++ Standard
Library and is therefore indispensable to any C++ programmer.

You could consult the Standard itself, but it is written in a very detailed, technical
style and is primarily targeted at Library implementors. Moreover, it is very long: the C++
Standard Library chapters alone are over 750 pages in length, and those on the

Xix



INTRODUCTION

C Standard Library encompass another 250 pages. Other reference guides exist but are
often outdated, limited (most cover little more than the STL containers and algorithms),
or not much shorter than the Standard itself.

This book covers all important aspects of the C++14 and C11 Standard Libraries,
some in more detail than others, and always driven by their practical usefulness. You will
not find page-long, repetitive examples; obscure, rarely used features; or bloated, lengthy
explanations that could be summarized in just a few bullets. Instead, this book strives to
be exactly that: a summary. Everything you need to know and watch out for in practice is
outlined in a compact, to-the-point style, interspersed with practical tips and short,
well-chosen, clarifying examples.

Who Should Read This Book?

The book is targeted at all C++ programmers, regardless of their proficiency with the
language or the Standard Library. If you are new to C++, its tutorial aspects will quickly
bring you up to speed with the C++ Standard Library. Even the most experienced C++
programmer, however, will learn a thing or two from the book and find it an indispensable
reference and memory aid. The book does not explain the C++ language or syntax itself,
but is accessible to anyone with basic C++ knowledge or programming experience.

What You Will Learn

How to use the powerful random-number-generation facilities
e  How to work with dates and times
e  What smart pointers are and how to use them to prevent memory leaks
e  How to use containers to efficiently store and retrieve your data
e  How to use algorithms to inspect and manipulate your data
e  Howlambda expressions allow for elegant use of algorithms

e  What functionality the library provides for file and
stream-based I/0

e  How to work with characters and strings in C++
e  How to write localized applications

e  How to write safe and efficient multithreaded code using the C++11
concurrency library

e  How to correctly handle error conditions and exceptions

e And more!

XX



INTRODUCTION

General Remarks

e Alltypes, classes, functions, and constants of the C++ Standard Library
are defined in the std namespace (short for standard).

e  All C++ Standard Library headers must be included using #include
<header> (note: no . h suffix!).

e All C Standard Library headers are available to C++ programmers in a
slightly modified form by including <cheader> (note the c prefix).' The
most notable difference between the C++ headers and their original C
counterparts is that all functionality is defined in the std namespace.
Whether it is also provided in the global namespace is up to the
implementation: portable code should therefore use the std namespace
at all times.

e  This book generally only covers the C headers if there are no more
modern, C++-style alternatives provided by the C++ Standard Library.

e  More advanced, rarely used topics such as custom memory allocators are
not covered.

Code Examples

To compile and execute the code examples given throughout the book, all you need is

a sufficiently recent C++ compiler. We leave the choice of compiler entirely up to you,
and we further assume you can compile and execute basic C++ programs. All examples
contain standard, portable C++ code only and should compile with any C++ compiler
that is compliant with the C++14 version of the Standard. We occasionaly indicate known
limitations of major compilers, but this is not a real goal of this book. In case of problems,
please consult your implementation’s documentation.

Unless otherwise noted, code examples can be copied as is and put inside the main()
function of a basic command-line application. Generally, only two headers have to be
included to make a code snippet compile: the one being discussed in the context where
the example is given, and <iostream> for the command-line output statements (explained
shortly). If any other header is required, we try to indicate so in the text. Should we
forget, the appendix provides a brief overview of all headers of the Standard Library and
their contents. Additionally, you can download compilable source code files for all code
snippets from this book from the Apress website (www.apress.com/9781484218754).

'The original C headers may still be included with <header.h>, but their use is deprectated.
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Following is the obligatory first example (for once, we show the full program):

#include <iostream>
int main() {

std::cout << "Hello world!" << std::endl;
}

Many code samples, including those in earlier chapters, write to the standard output
console using std: : cout and the << stream operator, even though these facilities of the
C++1/0 library are only discussed in detail in Chapter 5. The stream operator can be
used to output virtually all fundamental C++ types, and multiple values can be written
on a single line. The I/0 manipulator std: :endl outputs the newline character (\n) and
flushes the output for std: : cout to the standard console. Straightforward usage of the
std: :string class defined in <string> may occur in earlier examples as well. For instance:

std::string piString = "PI";
double piValue = 3.14159;

std::cout << piString << " = " << piValue << std::endl;

More details regarding streams and strings are found in Chapters 5 and 6,
respectively, but this should suffice to get you through the examples in earlier chapters.

Common Class

The following Person class is used in code examples throughout the book to illustrate the
use of user-defined classes together with the Standard Library:

#include <string>
#include <ostream>

class Person {
public:
Person() = default;
explicit Person(const std::string® first,
const std::string& last = "", bool isVIP = false)
¢ m_first(first), m last(last), m isVIP(isVIP) {}

const std::stringd GetFirstName() const { return m first; }
void SetFirstName(const std::string& first) { m first = first; }

const std::stringd GetLastName() const { return m last; }
void SetLastName(const std::string® last) { m_last = last; }

bool IsVIP() const { return m_isVIP; }
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private:
friend bool operator<(const Persond, const Persond);
std::string m_first;
std::string m_last;
bool m_isVIP = false;
};

bool operator<(const Persond lhs, const Persond rhs) {
if (1hs.IsVIP() !'= rhs.IsVIP()) return rhs.IsVIP();
if (lhs.GetLastName() != rhs.GetLastName())
return lhs.GetLastName() < rhs.GetLastName();
return lhs.GetFirstName() < rhs.GetFirstName();

}

bool operator==(const Persond lhs, const Person& rhs) {
return lhs.IsVIP() == rhs.IsVIP() &&
lhs.GetFirstName() == rhs.GetFirstName() &&
lhs.GetLastName() == rhs.GetLastName();

std::ostreamd operator<<(std::ostreamd os, const Persond person) {
0s << person.GetFirstName() << ' ' << person.GetLastName();
return os;

}
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