(++ Standard
Library Quick
Reference

Peter Van Weert
Marc Gregoire

Apress’

C++
Standard Library
Quick Reference

Peter Van Weert
Marc Gregoire

Apress’

C++ Standard Library Quick Reference

Peter Van Weert Marc Gregoire
Kessel-Lo, Belgium Meldert, Belgium
ISBN-13 (pbk): 978-1-4842-1875-4 ISBN-13 (electronic): 978-1-4842-1876-1

DOI10.1007/978-1-4842-1876-1
Library of Congress Control Number: 2016941348
Copyright © 2016 by Peter Van Weert and Marc Gregoire

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Bart Vandewoestyne

Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert
Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Tiffany Taylor

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www. springeronline.com. Apress Media, LLCis a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484218754. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218754
www.apress.com/source-code/

To my parents and my brother and his wife.
Their support and patience helped me in finishing this book.
—Marc Gregoire

In loving memory of Jeroen. Your enthusiasm and courage
will forever remain an inspiration to us all.
—Peter Van Weert

Contents at a Glance

About the AUthOrs.........cccsrismmmismmmsmm s ———— Xv
About the Technical ReVIEWErcsvcusssessssssssssssasssssssssnsssassssnsnsns xvii
Introduction.......cccniemismmimme s ——————— Xix
Chapter 1: Numerics and Math..........cccccccinninsseeennnnnnnnnnsssssssnmns 1
Chapter 2: General UtilitieS.......cusserrrsssnnnsnssssnnnsssssssnnsssssssnssssssnns 23
Chapter 3: Containers.......ccocummmmmmsssssnnmmmmmmmsssssssn 51
Chapter 4: Algorithmsccunnsmeemmmnnnnnmmmssssssssnseesssssssms 81
Chapter 5: Stream 1/0.........cccuccmmismmmsssnmsssssmssssssssssssssssssssssnssssas 101
Chapter 6: Characters and Stringsccccunseemnnnssssnnnssssssnsnnnsns 125
Chapter 7: CONCUITENCYccummrrsssssnnssssssannnssssssnnnssssssnnnsssssnnnnsssss 161
Chapter 8: DiagnoStiCsccrsssmmrsssnmmsssnsssssnsssssnsssssnnsssssnssssnnssssas 183
Appendix A: Standard Library Headersccccuumnmssnnssnssnnnsssssnns 195
INA@X..iiieiiiesrsmsssmssss s s ——— 201

Contents

About the AULNOLS.......ccouremmiiirrenerirrensssr s nnna s s nnnnns XV
About the Technical REVIEWETceeeeersrmemmssssmsmnssssmsnnsssssssnnsssssnnnnns Xvii

[(1100 10 [T (1] | ORI () (

Chapter 1: Numerics and Math...........ccccccvninnsmeeennnnnnnnssssssssnnns 1
Common Mathematical Functions............ccccoovverriicnnnicnennicnens <cmaths 1
BaSiC FUNCLIONSccvviiirirricnssss s 1
Exponential and Logarithmic FUNCLIONScccceerevrcerererese e nennens 2
POWET FUNCLIONS ..ottt 2
Trigonometric and Hyperbolic FUNCLIONSccccevercereerereercre e see e e 2
Error and Gamma FUNCLIONS ... 3
Integral Rounding of Floating-Point NUMDErSccceoererrerrerre e renens 3
Floating-Point Manipulation FUNCLIONS........ccccverrerrrere et rennens 3
Classification and Comparison FUNCLIONS...........cocveevercererererere e seesereesesaesennens 4
Error Handling........cccnminsssas 5
Fixed-Width Integer TYPeS.......cccverrrrerrrsessesses s s ses s sessenens <cstdinty 5
Arithmetic Type Propertiesccccvvvvvercrvensenseessesseessessensans <limits> 5
CompleX NUMDEISooeveverireerieree e sesssesss s e sssssssssssssens <complexs 8
Compile-Time Rational Numbersccccvveervrerricrnscsesenenns <ratio» 9
Random NUMDETS........ccooucreninerneiesese s sesnens <random> 10
Random NUmMDbEr GENETALOrScoerereresesmssnesesssessse s 10
Random Number DiStributions ... 13

vii

CONTENTS

NUMENIC AITAYS.....cceereerrerererresesessssessesessessesessessssesssssssesns <valarrays 17
L3 o7 N ol 19
Std: 1gS1iceu i —————— 20
std:imask_array ... —————— 21
std:iindirect_array..... i ——————— 21

Chapter 2: General Utilities..........cccenmsssmmmmmmssssnnnmssssssnnsssssssnsssssnnns 23

Moving, Forwarding, SWappingc.cceeeerrrrerressessessessessensenas <utilityy 23
11017 o 23
FOrWArdiNgcccoveererereerereserereseresserse e sae e saese s e se s e sae e sas e saesessessssessssesassesasnessenes 25
SWaAPPING..vrercirir i —————— 26

Pairs and TUPIEScccoeeeceeeereree s 26
T T <utilityy 26
TUDIES ottt s <tuple> 27

Relational Operators.............coocvrerenennenenesesnse s <utilitys 28

SMart POINTEIScccoccveeerereererene e sese s <memory> 28
Exclusive-0wnership POINTEIS........cccverererirererseres e ree e sseressesessessssesaenessenes 29
Shared-0wWnership POINTETS.........ccoevrvererrererreresereseresesseressessesessesessesessessssessssesaens 31

Function ODJECEScccererrerricrrrrre e <functionals 33
REferenCe WIaPPEIScceveereerirserer st s s s e s se sttt st 34
Predefined FUNCLOFSccouvniniininiii s 34
Generic FUNCLION WIAPPELScoverrerererereressessssessessssessssesssessessssssssssssssesssnssssssaens 35
Binding FUNction Argumentscccceciesniesnscsnscss e enns 36
Functors for Class MEmDErS..........ccocvinnnnncns s 37

Initializer ListSccovevrennscrenesersesesese s <initializer_ listy 39

Date and Time ULIlItIeSouvvvvrmnmnenemnnsisese s <chrono> 39
DUFALIONS ...t ———— 40
TIME POINTS....ovcisrcrri i 41
ClOCKS ...urrrescsssr i 41
C-style Date and Time ULIlItieSc.ccceeeerrnrermrennsesesrssnsesesesessssesesessssenens <ctimey 42

viii

CONTENTS

C-Style File ULIlItIeSccoeererererrerrrrreerss e see e ses e e sessesses e <cstdioy 45
TYPE VLIS ...creeeeererer s 45
Runtime Type Identificationc.cooernenenninrenenas <typeinfoy, <typeindexs 45
TYPE TrAIS ... <type_traitsy 46

Chapter 3: Containers........ccccnmmmmmmmmsnnmmmmmmmsssssssnnsmsssssssssssseees 3 1

RErators......cvvrncnrr e ————— <iterators 51
105 £ (0] g F- Vo SRS PSSRSO 52
Non-Member Functions to Get Rerators...........ccvvmmnncnsnnnsnssnsessssesesssns 53
Non-Member Operations on RErators..........c.uvnsmsisininesnsssssssssssssssssssssns 54

Sequential CoNtaINErSccceeeeececr e 54
Std: iVeCtOT .. —————— <vector» 54
std:zdeque... e —————— <deque> 60
STA: 1ATTAY i ————————— <array» 60
std::1list and std: : forward_list.......ccouurrnnee. <listy, <forward_lists 61
Sequential Containers REfEIrENCEcooueeererrercrerireecrere s 63
Std: ihitset. i ———— <bitsets 66

Container AdAPLOrS.......cccvveerierreerierree s s rse e rse s sn e snesaessnesaess 67
Std: 1QUEUE.... i —————— <queuey 68
std: :priority_queue...... <queuey 68
std:zstack...———— <stacks 69
EXAMPIE ... p e np e nrenne 69
REEIENCE ...ttt 70

Ordered Associative CONtaINErscoovvmmnninnsssssssssas 71
std::map and std: :multimap....... e ————— <mapy 71
std::set and std: :multiset.....rnrnn <sety 72
SEAICHINGeerriecrer e e e 72
Order Of EIBMENTS.......coviieririsiisisinssssss s ssnaes 73
0] 11 10]) OO OO 73
RETEIENCE ... ————— 73

ix

CONTENTS

Unordered Associative Containers <cunordered_map, <unordered_sets> 75

HASH MAP.....ceucercereeremreeeer s ressesese e st sssnsnssses 76
Template Type Parameters ... 76
Hash FUNCHIONS ..o 76
(0] 110 1= 77
RETEIENCEvtrrccsrntri st 77
AOCALONS ... —————— 79
Chapter 4: Algorithmscccoinnemmmmmnnsssnnmnssssnnmmssssssssssssssensees 81
Input and Output RErators ... 81
AIGOrtRMS ... <algorithmy 82
TEIMINOIOQY .e.eeecereeece e se e e e s ne e 82
General GUIdEIINES.........cvverirerir e 82
Applying a Function on @ RaNGE.......c.cccececeerrincninnecirssseese s 83
Checking for the Presence of Elements...........coovcirnencnennescncnenseseesese s 84
Finding EIEMENTS ..o 84
BiNary SEArCH ..o e 85
SUDSEQUENCE SEAICH........ceeec e 86
MIN/MX.....ceciie s 87
SeqUENCE COMPANISON......cccovrrreeererreeeresseesesesss e sesesss s sesesss e e e sss e e ssssssssssenns 88
COPY, MOVE, SWAPceivieiciirireceres e se e 88
GENErating SEQUENCES.......ccourureerererrereere e se st se s s 89
Removing and Replacingoccoceerereerinineeserens e 90
Reversing and ROatingcococerinnienininrseserie s 91
PartitioNiNgcceeeeiece e s 92
0] 1] 3o OO 93
SRUFFIING .. 94

CONTENTS

Permutation ..o ————— 96
L3 (T 1oL OSSOSO 97
Numeric AIgOrthMS........cccccerrinr e <numericy 98
Iterator Adaptors ... <iterators 99
Chapter 5: Stream 1/0..........ccccirnnnnmmmmnsssssnmmmssssssnmssssssssmsssssssnsnss 101
Input and Output with Streams ..., 101
HEIPEE TYPES ..o nees <iosy 102
Std: 1105 _DAaSe ... ————— <ios» 103
1/0 Manipulators ... <iosy, <iomanip> 105
6 11 1) T 106
ST 1108 s <iosy 106
Stz 10STTEAM.....eeee s <ostreamy 108
Std: tiStTEAM....eeee s <istreamy 110
Std: :10StTEAM . <istreamy 112
STriNg Sreamscccvvvvvrrr s ¢sstreamy 112
e 101 [SRR S 113
File Streams ... <fstreams 113
e 111][S SS 114
operator<< and >> for Custom TyYPes........cccorvrerrnsererssssesssesesnnnes 115
Stream Ierators ... <iterators 115
std::ostream_iterator......——— 115
std::istream_iterator...... - 116
Stream BUFfers ... <streambuf> 117
C-Style Output and Input.........ccoeeerererrrrrecee e, <cstdioy 117
std: iprintf () FaMl ... 118
std:scan () FAMIlY ... enens 122

xi

CONTENTS

Chapter 6: Characters and Stringsccovnseeemnmssssnnnssssssnssnnnans 125
R3] (10N ¢stringy 125
Searching in STNGS ..o s 126
MOdifYing SEHNGScveeeeeereeeeere e s 127
ConStruCting SHriNGScoceieereeere e 128
SHANG LENGHN ..o s 128
Copying (SUD)SINGSccerereeirere e 128
COMPANING STNGS ...cvevieieerireeire e 129
StriNG CONVEISIONScvevreirerirerir ettt r s e 129
Character Classificationc.coovvererrnenerenenens <cctypes, <cwctypes> 130
Character-Encoding Conversion...........c.ccoeeeeruene <locale, <codecvty 131
Localizationc.cccvrenernnninsenr s <locale> 134
LOCaIE NAMES.......cciiiiee s 134
The GIODAI LOCAIEcoceeeeiiiiiiiieeeeee s enes 135
Basic std: :1ocale MEMDErS........cconninninncnn s 136
LOCalE FACELS.......cociiiieree s 136
Combining and Customizing LOCAIES..........cccceurereererinenenereses e 145
[I Tu LT <clocaley 147
Regular EXPressions..........cveveevernessessessessssssssessessessessessesenses <regex> 148
The ECMAScript Regular EXpression Grammarcovevesesesessesssesessssssssessansnens 149
Regular EXpression ODJECTS........cucucceerrnsesesrsssesesssess s sesese s sesssessanes 153
Matching and Searching Patternscccuvnvesernnsesesesnssesese s sesesessens 155
Match RErators ... 158
Replacing Patternsc.coouccceverenesesmsessesesesss s sesssessssesesssssssssssssssssesssssanes 159

xii

CONTENTS

Chapter 7: CONCUITENCYoccueererssssnnsssssssnnssssssnnnsssssssnnssssssnnnnsssss 161
TRrEAAS ...t <thread> 161
Launching @ NeW TRIead...........ccoceeeureeicnernesesereee e 161
A Thread’s LIfetime.......c.coovvrrnnnnnssssssssssssssssss s 162
Thread [dentifiers ... ——— 162
ULlity FUNCTIONS ...t 163
EXCEPLIONS ...ttt e 163
FULUPES ... s <futurey 164
RetUrn ODJECLS ...cveveeeeerrreererer e 164
o (010 S 165
EXCEPHONS ...ttt 167
Mutual EXCIUSION.......coviiirirn s <mutex> 168
Mutexes and LOCKS........cocovrrnnnmnnnnsssssssssssssssssss s 168
MULEX TYPBS e r e e e e s 170
0T G] LSS 171
Locking Multiple MUEEXES.......ccevereririririre st sse e sse e s sns e 172
EXCEPLIONS ... e e 173
Calling @ FUNCLION ONCE......ccovvereeerrererre e rese s se s e e sassesaenenes <mutexy 173
Condition Variables..........cccocverenriernnescsennenns <condition_variables> 174
Waiting for @ CONAItiono.ceeeerreicrreeerr et 174
NOTIfICALION ... ——————— 175
(=] 0 [0 LSRR 176
SYNCHIONIZALION.......ceceeeeeereerer e 176
Atomic Operations..........cccevveeenersesnnesessssesse e sss s seseseens <atomicy 178
ALOMIC VariablesS.......ocvvririsisinisisisisisississs s 178
D (0] L[=T S SSS 181
Nonmember FUNCLIONS ... 181
FENCES ..o ————— 182

xiii

CONTENTS

Chapter 8: DIagnoStiCSsccuvssemrrssanssssanssssansssssnsssssnsssssnsssssnnsssnns 183
ASSEBITIONS ... <cassert> 183
EXCEplionS......ccocvverrrercerer e <exceptiony, <stdexcepts> 184
Exception PoINters........ccocnrnrnnninnnnssesesse s <exceptiony 184
Nested EXCeplions........ccccverrinnnnnennnesssesesese s <exceptions 186
SYSteM EITOrs.......covceveeercrresesserss e sesssennens ¢system_error» 187
std: :eXT0r_Category.... 188
STA: 1@TTOT_COME ... 188
std::error_condition..... 189

C Error NUMDENS......coooeceerccrereesese s <cerrnoy 190
Failure Handling ... <exceptiony 190
std: :uncaught_exception() ... 190
Std: 1 eIMINATE() cererereereeeere e 191
STA: 1UNEXPECTRA() cereerereerecereereere et 191
Appendix A: Standard Library Headerscccusmrmssamsmsssnsssssnnas 195
Numerics and Math (Chapter 1) ..o 195
General Utilities (Chapter 2)cccvvrvrvrrerrnrerrenseses e 196
Containers (Chapter 3) ... 197
Algorithms (Chapter 4) ... 197
Stream 1/0 (Chapter 5).....cccvvrververrrrerrr e 198
Characters and Strings (Chapter 6).........cccccvreervevnreresssesesesesenennas 199
Concurrency (Chapter 7). 199
Diagnostics (Chapter 8)........ccvvrvrrerrrrrserrer e 200
The C Standard LiDrary..........ccccooveveeerienssssesenscsssessessssese e ssssessens 200
1T 201

Xiv

About the Authors

Peter Van Weert is a Belgian software engineer whose
main interest and expertise are programming
languages, algorithms, and data structures.

He received his master’s of science in computer
science summa cum laude with congratulations of the
Board of Examiners from the University of Leuven. In 2010,
he completed his PhD thesis on the design and efficient
compilation of rule-based programming languages at the
research group for declarative programming languages
and artificial intelligence of the same university.

During his doctoral studies, he was a teaching assistant for
object-oriented programming (Java), software analysis and
design, and declarative programming.

After graduating, Peter joined Nikon Metrology to work on large-scale, industrial
application software in the area of 3D laser scanning and point cloud inspection. At
Nikon, he has mastered C++ and refactoring and debugging of very large code bases
and has gained further proficiency in all aspects of the software development process,
including the analysis of functional and technical requirements, and agile and scrum-
based project and team management.

In his spare time, he has co-authored two award-winning Windows 8 apps, and he is
aregular speaker at and board member of the Belgian C++ Users Group.

Marc Gregoire is a software engineer from Belgium.
He graduated from the University of Leuven, Belgium,
with a degree in “Burgerlijk ingenieur in de computer
wetenschappen” (equivalent to a master’s of science in
engineering in computer science). The year after, he
received the cum laude degree of master’s in artificial
intelligence at the same university. After his studies,
Marc started working for a software consultancy
company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on
critical 2G and 3G software running on Solaris for
telecom operators. This required working in
international teams stretching from South America and
USA to EMEA and Asia. Now, Marc is working for Nikon
Metrology on industrial 3D laser scanning software.

XV

ABOUT THE AUTHORS

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework.
He has experience in developing C++ programs running 24/7 on Windows and Linux
platforms: for example, KNX/EIB home automation software. In addition to C/C++,
Marc also likes C# and uses PHP for creating web pages.

Since April 2007, he has received the yearly Microsoft MVP (Most Valuable
Professional) award for his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp.org), author of
Professional C++, and a member on the CodeGuru forum (as Marc G). He maintains a
blog at www.nuonsoft.com/blog/.

xvi

http://www.becpp.org/
http://www.nuonsoft.com/blog/

About the Technical

Reviewer

Bart Vandewoestyne is an enthusiastic, solo-parenting
software engineer living in Belgium. After obtaining his
master’s degree from the Computer Science
department at the University of Leuven, he worked as a
researcher in the numerical analysis and applied
mathematics section of that same university. He
successfully completed his PhD in 2008. Three years of
postdoctoral work later, Bart left the academic world for
industry. He now works as a senior development
software engineer for Esterline Belgium, where he
develops and maintains software for professional
flight-simulator alignment.

Bart enjoys reading about and exploring all aspects
of C++ software development. In his spare time, and
when he’s away from his keyboard, he enjoys running,
swimming, paragliding, and spending quality time with
his now 6-year-old son Jenne. He wants the world to
know how much he cares about Jenne, and he hopes
that his child will also transform his passion into his
profession.

xvii

Introduction

The C++ Standard Library

The C++ Standard Library is a collection of essential classes and functions used by
millions of C++ programmers on a daily basis. Being part of the ISO Standard of the
C++ Programming Language, an implementation is distributed with virtually every
C++ compiler. Code written with the C++ Standard Library is therefore portable across
compilers and target platforms.

The Library is more than 20 years old. Its initial versions were heavily inspired by
a (then proprietary) C++ library called the Standard Template Library (STL), so much
so that many still incorrectly refer to the Standard Library as “the STL.” The STL library
pioneered generic programming with templated data structures called containers and
algorithms, glued together with the concept of iterators. Most of this work was adapted by
the C++ standardization committee, but nevertheless neither library is a true superset of
the other.

The C++ Standard Library today is much more than the STL containers and
algorithms. For decades, it has featured STL-like string classes, extensive localization
facilities, and a stream-based I/O library, as well as all headers of the C Standard Library.
In recent years, the C++11 and C++14 editions of the ISO standard have added, among
other things, hash map containers, generic smart pointers, a versatile random-number-
generation framework, a powerful regular expression library, more expressive utilities
for function-style programming, type traits for template metaprogramming, and a
portable concurrency library featuring threads, mutexes, condition variables, and atomic
variables. Many of these libraries are based on Boost, a collection of open-source C++
libraries.

And this is just the beginning: the C++ community has rarely been as active and alive
as in the past few years. The next version of the Standard, tentatively called C++17, is
expected to add even more essential classes and functions.

Why This Book?

Needless to say, it is hard to know and remember all the possibilities, details, and
intricacies of the vast and growing C++ Standard Library. This handy reference guide
offers a condensed, well-structured summary of all essential aspects of the C++ Standard
Library and is therefore indispensable to any C++ programmer.

You could consult the Standard itself, but it is written in a very detailed, technical
style and is primarily targeted at Library implementors. Moreover, it is very long: the C++
Standard Library chapters alone are over 750 pages in length, and those on the

Xix

INTRODUCTION

C Standard Library encompass another 250 pages. Other reference guides exist but are
often outdated, limited (most cover little more than the STL containers and algorithms),
or not much shorter than the Standard itself.

This book covers all important aspects of the C++14 and C11 Standard Libraries,
some in more detail than others, and always driven by their practical usefulness. You will
not find page-long, repetitive examples; obscure, rarely used features; or bloated, lengthy
explanations that could be summarized in just a few bullets. Instead, this book strives to
be exactly that: a summary. Everything you need to know and watch out for in practice is
outlined in a compact, to-the-point style, interspersed with practical tips and short,
well-chosen, clarifying examples.

Who Should Read This Book?

The book is targeted at all C++ programmers, regardless of their proficiency with the
language or the Standard Library. If you are new to C++, its tutorial aspects will quickly
bring you up to speed with the C++ Standard Library. Even the most experienced C++
programmer, however, will learn a thing or two from the book and find it an indispensable
reference and memory aid. The book does not explain the C++ language or syntax itself,
but is accessible to anyone with basic C++ knowledge or programming experience.

What You Will Learn

How to use the powerful random-number-generation facilities
e How to work with dates and times
e What smart pointers are and how to use them to prevent memory leaks
e How to use containers to efficiently store and retrieve your data
e How to use algorithms to inspect and manipulate your data
e Howlambda expressions allow for elegant use of algorithms

e What functionality the library provides for file and
stream-based I/0

e How to work with characters and strings in C++
e How to write localized applications

e How to write safe and efficient multithreaded code using the C++11
concurrency library

e How to correctly handle error conditions and exceptions

e And more!

XX

INTRODUCTION

General Remarks

e Alltypes, classes, functions, and constants of the C++ Standard Library
are defined in the std namespace (short for standard).

e All C++ Standard Library headers must be included using #include
<header> (note: no . h suffix!).

e All C Standard Library headers are available to C++ programmers in a
slightly modified form by including <cheader> (note the c prefix).' The
most notable difference between the C++ headers and their original C
counterparts is that all functionality is defined in the std namespace.
Whether it is also provided in the global namespace is up to the
implementation: portable code should therefore use the std namespace
at all times.

e This book generally only covers the C headers if there are no more
modern, C++-style alternatives provided by the C++ Standard Library.

e More advanced, rarely used topics such as custom memory allocators are
not covered.

Code Examples

To compile and execute the code examples given throughout the book, all you need is

a sufficiently recent C++ compiler. We leave the choice of compiler entirely up to you,
and we further assume you can compile and execute basic C++ programs. All examples
contain standard, portable C++ code only and should compile with any C++ compiler
that is compliant with the C++14 version of the Standard. We occasionaly indicate known
limitations of major compilers, but this is not a real goal of this book. In case of problems,
please consult your implementation’s documentation.

Unless otherwise noted, code examples can be copied as is and put inside the main()
function of a basic command-line application. Generally, only two headers have to be
included to make a code snippet compile: the one being discussed in the context where
the example is given, and <iostream> for the command-line output statements (explained
shortly). If any other header is required, we try to indicate so in the text. Should we
forget, the appendix provides a brief overview of all headers of the Standard Library and
their contents. Additionally, you can download compilable source code files for all code
snippets from this book from the Apress website (www.apress.com/9781484218754).

'The original C headers may still be included with <header.h>, but their use is deprectated.

xxi

http://www.apress.com/9781484218754

INTRODUCTION

Following is the obligatory first example (for once, we show the full program):

#include <iostream>
int main() {

std::cout << "Hello world!" << std::endl;
}

Many code samples, including those in earlier chapters, write to the standard output
console using std: : cout and the << stream operator, even though these facilities of the
C++1/0 library are only discussed in detail in Chapter 5. The stream operator can be
used to output virtually all fundamental C++ types, and multiple values can be written
on a single line. The I/0 manipulator std: :endl outputs the newline character (\n) and
flushes the output for std: : cout to the standard console. Straightforward usage of the
std: :string class defined in <string> may occur in earlier examples as well. For instance:

std::string piString = "PI";
double piValue = 3.14159;

std::cout << piString << " = " << piValue << std::endl;

More details regarding streams and strings are found in Chapters 5 and 6,
respectively, but this should suffice to get you through the examples in earlier chapters.

Common Class

The following Person class is used in code examples throughout the book to illustrate the
use of user-defined classes together with the Standard Library:

#include <string>
#include <ostream>

class Person {
public:
Person() = default;
explicit Person(const std::string® first,
const std::string& last = "", bool isVIP = false)
¢ m_first(first), m last(last), m isVIP(isVIP) {}

const std::stringd GetFirstName() const { return m first; }
void SetFirstName(const std::string& first) { m first = first; }

const std::stringd GetLastName() const { return m last; }
void SetLastName(const std::string® last) { m_last = last; }

bool IsVIP() const { return m_isVIP; }

xxii

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_6

INTRODUCTION

private:
friend bool operator<(const Persond, const Persond);
std::string m_first;
std::string m_last;
bool m_isVIP = false;
};

bool operator<(const Persond lhs, const Persond rhs) {
if (1hs.IsVIP() !'= rhs.IsVIP()) return rhs.IsVIP();
if (lhs.GetLastName() != rhs.GetLastName())
return lhs.GetLastName() < rhs.GetLastName();
return lhs.GetFirstName() < rhs.GetFirstName();

}

bool operator==(const Persond lhs, const Person& rhs) {
return lhs.IsVIP() == rhs.IsVIP() &&
lhs.GetFirstName() == rhs.GetFirstName() &&
lhs.GetLastName() == rhs.GetLastName();

std::ostreamd operator<<(std::ostreamd os, const Persond person) {
0s << person.GetFirstName() << ' ' << person.GetLastName();
return os;

}

xxiii

