Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Christopher Beck Numerische Analyse der Zweiphasenströmung und Kühlwirkung in nasslaufenden Elektromotoren

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von

Michael Bargende, Stuttgart, Deutschland Hans-Christian Reuss, Stuttgart, Deutschland Jochen Wiedemann, Stuttgart, Deutschland

Das Institut für Fahrzeugtechnik Stuttgart (IFS) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation. Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement - auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten. Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen. Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose. Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal. Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IFS.

Reihe herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe Institut für Fahrzeugtechnik Stuttgart Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik Institut für Fahrzeugtechnik Stuttgart Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen Institut für Fahrzeugtechnik Stuttgart Universität Stuttgart Stuttgart, Deutschland

Weitere Bände in der Reihe http://www.springer.com/series/13535

Christopher Beck

Numerische Analyse der Zweiphasenströmung und Kühlwirkung in nasslaufenden Elektromotoren

Christopher Beck IFS, Fakultät 7, Lehrstuhl für Fahrzeugantriebe Universität Stuttgart Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2020

D93

ISSN 2567-0042 ISSN 2567-0352 (electronic) Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-32606-7 ISBN 978-3-658-32607-4 (eBook) https://doi.org/10.1007/978-3-658-32607-4

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung der Verlage. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Die Dissertation ist im Rahmen meiner Tätigkeit in der Forschung & Entwicklung der Mercedes-Benz AG in Stuttgart entstanden und wurde durch Herrn Prof. Dr.-Ing. M. Bargende vom Institut für Fahrzeugtechnik Stuttgart betreut.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. M. Bargende für das Ermöglichen, die fachlichen Diskussionen und die Unterstützung dieser Arbeit sowie die Übernahme des Hauptreferates.

Herrn Prof. Dr. techn. Ch. Beidl danke ich für das Interesse an dieser Arbeit und die Übernahme des Koreferates.

Ein herzliches Dankeschön geht an Herrn Dr.-Ing. Christian Krüger für die wissenschaftliche Betreuung und an Herrn Dr.-Ing. Rüdiger Steiner, der als Abteilungsleiter meine Arbeit stets gefördert hat. Besonders bedanke ich mich bei Herrn Harald Echtle für die fachliche Unterstützung sowie die Möglichkeit zur Diskussion jedweder Ideen. Ebenfalls gilt mein Dank Herrn Dr. Jürgen Schorr für die hervorragende Zusammenarbeit auf dem Themengebiet der optischen Diagnostik. Für die fachlichen Diskussionen zur thermischen Auslegung danke ich Herrn Robert Lehmann. Ebenso gilt meine Dankbarkeit den zahlreichen Kollegen und Studenten, die zum Gelingen dieser Arbeit beigetragen haben.

Meiner Familie und meinen Freunden möchte ich ebenfalls für die Geduld, die Unterstützung und das aufgebrachte Verständnis danken.

"Es ist nicht genug zu wissen, man muss auch anwenden. Es ist nicht genug zu wollen, man muss auch tun." Johann Wolfgang von Goethe

Inhaltsverzeichnis

Vo	rwort			V
Ab	bildu	ngsverz	eichnis	XI
Tał	bellen	verzeicl	hnis	XIII
Ab	kürzu	ingsverz	zeichnis	XV
Sy	mbolv	verzeich	nis	XVII
Ku	rzfass	sung		XXI
Ab	stract			XXIII
1	Einl	eitung .		1
	1.1	Motiva	ation	1
	1.2	Ziel de	er Arbeit	3
_	~			_
2	Gru	ndlager	n und Stand der Technik	5
	2.1	Elektri	ische Maschinen	5
	2.2	Verlus	t- und Schädigungsmechanismen der PSM	6
	2.3	Kühlp	rinzipien	8
	2.4	Nassla	ufende permanenterregte Synchronmaschine	
		2.4.1	Grundlegender Aufbau	10
		2.4.2	Kühlkonzept	
	2.5	Stand	der Technik – Simulation und Analyse	
		2.5.1	3D-Simulation	
		2.5.2	Analyse	
•			.	
3	Met	hodisch	les Vorgehen	
	3.1	Anford	derungen an die Systemsimulation	
		3.1.1	Vorhersagegüte	
		3.1.2	Rechenzeit	
	3.2	Allgen	neine Herausforderungen der Diskretisierung	
		3.2.1	Zeitskalen	
		3.2.2	Längenskalen	
	3.3	Abgele	eiteter Handlungsbedarf	

4	Schl	lüsselfa	ktoren der Kühlungssimulation	
	4.1	Wärm	equellen	
		4.1.1	Elektromagnetische Verlustmechanismen	
		4.1.2	Mechanische Verlustmechanismen	
	4.2	Therm	nische Widerstände	
		4.2.1	Wärmeleitwiderstand	
		4.2.2	Thermische Kontaktwiderstände	44
		4.2.3	Wärmesenken	45
	4.3	Bewer	tung der Schlüsselfaktoren	50
		4.3.1	Simulationsmodell	
		4.3.2	Einfluss der Solid-Modellierung	
		4.3.3	Einfluss der Wärmesenkenmodellierung	56
5	Flui	d-Mode	ellierung	59
	5.1	Allger	neine Strömungsmechanik	59
		5.1.1	Erhaltungsgleichungen	59
		5.1.2	Numerische Modellierung	61
		5.1.3	Turbulenz	
		5.1.4	Wandwärmeübergang	64
	5.2	Mehrp	bhasenströmung	65
		5.2.1	Freie Oberflächen	65
		5.2.2	Strömungen mit disperser Phase	66
	5.3	Fehler	analyse	68
		5.3.1	Fehlertypen	69
		5.3.2	Parameterstudien	
	5.4	Model	llierung der Fluid-Strömung	
		5.4.1	Rotorwelleninnenströmung	
		5.4.2	Innenraum	
		5.4.3	Spalt zwischen Rotor und Stator	86
		5.4.4	Wassermantel	
	5.5	Bewer	tung der Subsysteme	100
6	Syst	eminte	gration und Validierung	
	6.1	Subsy	stem-Integration	

6.	.2	Elektro	motorprüfstand	107
		6.2.1	Messtechnik und Fehleranalyse	107
		6.2.2	Wahl der Bewertungsmatrix	109
6.	.3	Validie	rung	111
		6.3.1	Auswertung und Diskussion	112
7 Z	usai	mmenfa	assung und Ausblick	121
			C	
Litera	aturv	verzeich	nis	125
Litera Anha	aturv ing .	verzeich	unis	125
Litera Anha A	aturv ing	verzeich Stoffda	nis	125 135 135
Litera Anha A	aturv ing 1	verzeich Stoffda A1.1	nis ten ATF134FE	125 135 135 135
Litera Anha A	aturv ing 1	verzeich Stoffda A1.1 A1.2	ten ATF134FE Wasser-Ethylenglykol-Gemisch	125 135 135 135 136

Abbildungsverzeichnis

1.1	Vergleich verschiedener Kühlkonzepte	2
2.1	Verlustanteile in den Komponenten	7
2.2	Grundlegender Aufbau der verwendeten PSM	. 11
2.3	Fluidraum der verwendeten PSM	. 12
2.4	Thermische Absicherung elektrischer Maschinen	. 13
2.5	Prinzipdarstellung eines thermischen Netzwerks	. 13
3.1	Adaptiertes 3-Ebenen-Vorgehensmodell	. 21
3.2	Zieldefinition der Kühlkonzeptauslegung	. 23
3.3	Schematische Darstellung der relativen Strahlablenkung aufgrund	
	der Rotation	. 28
3.4	Strahlzerfall der stehenden Düse	. 30
3.5	Filmdicke von Öl auf der rotierenden Scheibe	. 32
4.1	Detaillierungsstufen der Wickelkopfmodellierung	. 40
4.2	Definition der Drahtrichtung innerhalb eines Wicklungsstrangs	. 41
4.3	Mikroskopische Aufnahme des Querschnitts der untersuchten Kup-	
	fereinzugswicklung	. 42
4.4	Radiale und axiale Wärmeleitung der Kupfereinzugswicklung	. 43
4.5	Abstand zwischen Magnet und Rotorblechpaket aus der Struktur-	
	berechnung	. 45
4.6	Definition der Kühlflächen	. 46
4.7	Nußelt-Zahl in rotierenden, durchströmten Rohren	. 47
4.8	Vereinfachtes Modell zur Bestimmung des Wärmeübergangs am	
	Wickelkopf	. 48
4.9	Wärmeübergangskoeffizient an der Wickelkopfoberfläche	. 49
4.10	Variablen des Luftspalts	. 50
4.11	Sektormodell der PSM	. 51
4.12	Verlustverteilung im Sektormodell	. 53
5.1	Vereinfachtes Modell zur Analyse des Beschreibungswechsels	. 70
5.2	Zerlegung des Fluidraums in Teilbereiche	. 75
5.3	Rechengitter für die CFD-Simulation im Bereich des Strahls	. 76
5.4	CFD-Simulation der Strömung in rotierenden Düsen	. 77

5.5	Strahlbildung in der rotierenden Stufendüse	78
5.6	Übertrag von VOF nach LMP	79
5.7	CAD-Modell des elektrischen Transparent-Aggregats	81
5.8	Optische Analyse der Strömung in rotierenden Düsen	82
5.9	Fangring	83
5.10	Prinzipskizze des Aufbaus mit Lufteindüsung	83
5.11	Visualisierung der Mehrphasenströmung	85
5.12	Strömungsregime zwischen rotierenden Zylinder	86
5.13	Normiertes Schleppmoment am Prüfstand	88
5.14	Öl-Verteilung nach mehreren Umdrehungen mit $\phi_{\text{Ol.Start}} = 0.5$	89
5.15	Rechengitter für CFD-Simulation im Bereich des Luftspalts	90
5.16	Normiertes Drehmoment für verschiedene Öl-Anteile	91
5.17	Öl-Oberfläche bei 1000 min ⁻¹ und $\phi_{Ol} = 0.25$	91
5.18	Öl-Oberfläche bei 1000 min ⁻¹ und $\phi_{Ol} = 0.5$	92
5.19	Modellvorstellung der Luftspaltströmung	93
5.20	Datenstruktur des Spalt-Modells	95
5.21	Blockdiagramm des Spalt-Modells	95
5.22	Interpolationsschema der spezifischen Reibleistung	97
5.23	Interpolationsschema des spezifischen Wärmestroms am Rotor	98
5.24	Verteilung der Referenztemperatur des Wassermantels	99
6.1	Blockdiagramm der Systemsimulation	04
6.2	Messstellen im Elektromotor	108
6.3	Messstrategie	110
6.4	Temperaturverteilung in den Messebenen	111
6.5	Verlauf von Masse und Temperatur über den Umdrehungen	113
6.6	Komponententemperaturen in den Betriebspunkten mit 1000 min ⁻¹	
	und 41min ⁻¹	114
6.7	Komponententemperaturen in den Betriebspunkten mit 1000 min ⁻¹	
	und 81min ⁻¹	116
6.8	Komponententemperaturen in den Betriebspunkten mit 10000 min ⁻¹	
	und 41min ⁻¹	117
6.9	Komponententemperaturen in den Betriebspunkten mit 10000 min ⁻¹	
	und 81min ⁻¹	18
A2.1	Kühlkreisläufe der verwendeten PSM	137

Tabellenverzeichnis

2.1	Vergleich elektrischer Maschinen	6
3.1	Räumliche Dimensionen verschiedener Komponenten	
3.2	Abschätzung der Tropfengrößen am Rotationszerstäuber	
4.1	Eigenschaften des PSM-Modells	
4.2	Temperaturabhängige Wärmeleitung	
4.3	Betriebspunkte zur Ermittlung der Schlüsselfaktoren	52
4.4	Einfluss der Solid-Modellierung auf die Bauteiltemperaturen	55
4.5	Einfluss der Wärmesenken auf die Bauteiltemperaturen	57
A1.1	Getriebeöl	135
A1.2	Wasser-Ethylenglykol-Gemisch	136

Abkürzungsverzeichnis

ASM	Asynchronmaschine
Back-EMF BP	Back Electromotive Force Betriebspunkt
CAD CFD CHT	Computer-Aided Design Computational Fluid Dynamics Conjugate Heat Transfer
DNS	Direkte Numerische Simulation
FEM FKFS	Finite-Elemente-Methode Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart
GM GRM	Gleichstrommaschine geschaltete Reluktanzmaschine
HRIC HV	High-Resolution Interface Capturing Hochvolt
IFS	Institut für Fahrzeugtechnik Stuttgart
LES LMP	Large Eddy Simulation Lagrangesche Mehrphasenbeschreibung
MAG	NdFeB-Magnete
NdFeB	Neodym-Eisen-Bor
PSM	permanenterregte Synchronmaschine

RANS	Reynolds-gemittelte Navier-Stokes-Gleichungen
RBP	Rotorblechpaket
SBP	Statorblechpaket
SW	Statoreinzugswicklung
VOF	Volume of Fluid
WEG	Wasser-Ethylenglykol-Gemisch

Symbolverzeichnis

	Lateinische Buchstaben	
A	Oberfläche	m ²
а	Beschleunigung	m s ⁻²
В	Induktion	Т
b	spezifische Körperkraft	Nkg ⁻¹
b	Wärmeeindringkoeffizient	$J K^{-1} m^{-2} s^{-1/2}$
С	Wärmekapazität	J K ⁻¹
с	spezifische Wärmekapazität	$J(kgK)^{-1}$
cfl	Courant-Zahl	-
Ď	Durchmesser	m
d	Diffusionszahl	-
D	Deformationsratentensor	s ⁻¹
F	materialspezifischer Wert	$J s^{1/2} T^{-3/2} m^{-3}$
f	Frequenz	s ⁻¹
F	Kraft	Ν
g	Gravitationsbeschleunigung	m s ⁻²
ĥ	spezifische Enthalpie	Jkg ⁻¹
Ι	elektrische Stromstärke	A
1	Einheitstensor	-
$H_{\rm c}$	Koerzitivfeldstärke	$A m^{-1}$
k	Formfaktor	-
$l_{\rm b}$	Breite	m
$l_{\rm d}$	Dicke	m
l _h	Höhe	m
М	Moment	Nm
т	Masse	kg
$ ilde{M}$	normiertes Drehmoment	-
Ν	Umdrehungen	-
n	Drehzahl	min ⁻¹
Nu	Nußelt-Zahl	-
n	Normalenvektor	-

Oh	Ohnesorge-Zahl	-
Р	Leistung	W
р	statischer Druck	Pa
\tilde{P}	normierte Verlustleistung	-
$p_{ m v}$	spezifische Verlustleistung	Wkg ⁻¹
Ż	Wärmestrom	W
R	elektrischer Widerstand	Ω
r	Radius	m
Re	Reynolds-Zahl	-
$R_{\rm th}$	thermischer Widerstand	KW^{-1}
S	viskoser Teil des Spannungstensors	kg m ⁻¹ s ⁻²
Т	Temperatur	K
t	Zeit	S
Та	Taylor-Zahl	-
t _K	Kontaktzeit	S
T^+	dimensionslose Temperatur	-
Т	Spannungstensor	kg m ⁻¹ s ⁻²
\dot{V}	Volumenstrom	$m^3 s^{-1}$
V	Volumen	m ³
V	Geschwindigkeitsvektor	m s ⁻¹
ν	Geschwindigkeit	$\mathrm{ms^{-1}}$
W	volumetrische Wärmequellen/-senken	W m ⁻³
X	Ortsvektor	m
	Griechische Buchstaben	
α	Wärmeübergangskoeffizient	$W m^{-2} K^{-1}$
		TZ-1

$\alpha_{\rm R}$	Temperaturbeiwert	K ⁻¹
β	Winkel	rad
δ	Filmdicke	m
η	Wirkungsgrad	-
к	Temperaturleitfähigkeit	$m^2 s^{-1}$
λ	Wärmeleitfähigkeit	$W(mK)^{-1}$
μ	dynamische Viskosität	$kg(ms)^{-1}$
v	kinematische Viskosität	$m^{2} s^{-1}$
ω	Winkelgeschwindigkeit	rad s ⁻¹