RESEARCH

Andreas Singer

Analyse des Einflusses elektrisch unterstützter Lenksysteme auf das Fahrverhalten im On-Center Handling Bereich moderner Kraftfahrzeuge

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von

Michael Bargende, Stuttgart, Deutschland Hans-Christian Reuss, Stuttgart, Deutschland Jochen Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation. Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten. Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen. Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose. Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal. Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Reihe herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Weitere Bände in der Reihe http://www.springer.com/series/13535

Andreas Singer

Analyse des Einflusses elektrisch unterstützter Lenksysteme auf das Fahrverhalten im On-Center Handling Bereich moderner Kraftfahrzeuge

Andreas Singer IVK, Fakultät 7 Lehrstuhl für Kraftfahrwesen Universität Stuttgart Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2019

D93

ISSN 2567-0042 ISSN 2567-0352 (electronic) Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-29604-9 ISBN 978-3-658-29605-6 (eBook) https://doi.org/10.1007/978-3-658-29605-6

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) der Universität Stuttgart.

Mein spezieller Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. Jochen Wiedemann für die stete Förderung und Unterstützung dieser Arbeit sowie die Übernahme des Hauptberichts. Ebenfalls danke ich Herrn Prof. Dr.-Ing. Stefan Böttinger für die freundliche Übernahme des Mitberichts sowie Herrn Prof. Dr.-Ing. Thomas Maier für die Übernahme der Leitung der Prüfungskommission und der mündlichen Prüfung.

Ein herzlicher Dank gilt auch meinen Kollegen und allen Mitarbeitern der Institute IVK und FKFS der Universität Stuttgart, die durch fachliche Diskussionen zu vertiefenden Erkenntnissen und zum Gelingen dieser Arbeit beigetragen haben. Im Besonderen sei an dieser Stelle Herr Dr.-Ing. Jens Neubeck und Herr Dr.-Ing. Werner Krantz genannt.

Nicht zuletzt möchte ich mich für den Rückhalt und die Unterstützung während des Studiums und der Promotion ganz herzlich bei meiner Frau Rena, meiner Familie und meinem Freundeskreis bedanken.

Mein besonderer Dank gilt meinen Eltern, die mir meine Ausbildung erst ermöglichten. Ihnen ist diese Arbeit gewidmet.

Andreas Singer

Inhaltsverzeichnis

V	orwor	t	V
Αł	bildu	ıngsverzeichnis	IX
Та	belle	nverzeichnis	XIII
Fo	rmel-	und Abkürzungsverzeichnis	. XV
Zυ	ısamn	nenfassung	XIX
Αł	ostrac	t	XXI
1	Ein	leitung	1
	1.1	Darstellung des Entwicklungsprozesses eines Automobils	1
	1.2	Relevanz des On-Center Handling Bereichs	
	1.3	Ziel der Arbeit	
2	Sta	nd der Technik	7
	2.1	Fahrzeugmodell - Literaturübersicht	7
	2.2	Lenkungsmodell - Literaturübersicht	8
	2.3	Objektive Kennwerte zur Beschreibung des Lenkverhaltens im On-Center Bereich	11
3	Fah	rzeugverhalten	13
	3.1	Fahrzeugmessungen	13
	3.2	Fahrzeugmodell	22
4	Len	ıkungsverhalten	35
	4.1	Lenkungsprüfstand	35
	4.2	Durchführung der Messungen	37

	4.3	Lenkungsmodell	51
5	Ges	amtfahrzeugmodell	55
	5.1	Validierung ohne Hilfskraftunterstützung	55
	5.2	Validierung mit Hilfskraftunterstützung	65
6	Sen	sitivitätsanalyse	73
	6.1	Variation der Vorderachssteifigkeit	73
	6.2	Variation der Lenkübersetzung	81
	6.3	Variation der Reibung	90
	6.4	Variation der Handmomentenunterstützung	98
	6.5	Variation des aktiven Rücklaufs	106
7	Sch	lussfolgerung und Ausblick	111
Lit	eratu	rverzeichnis	113
An	hang		117
	A1.	Anhang 1	117
	A2.	Anhang 2	120

Abbildungsverzeichnis

Abbildung 1.1:	Übersicht über den Produktionszeitraum in Jahren der einzelnen Generationen des VW Golf [55]	1
Abbildung 1.2:	Erreichte Fahrzeugbeschleunigungen im realen Fahrbetrieb bei einer Versuchsfahrt für einen sport- lichen Fahrer (a) und einen normalen Fahrer (b) [2]	4
Abbildung 3.1:	Zahnstangenparallele Anbringung des Linearpotentiometers am Lenkgetriebe im Versuchsfahrzeug	15
Abbildung 3.2:	Lenkradwinkel, Querbeschleunigung und Fahrgeschwindigkeit als Zeitsignal der Gleitsinusmessung	16
Abbildung 3.3:	Amplitude (a) und Phasenwinkel (b) des Frequenzgangs des Lenkradwinkels auf Gierrate bei Messgeschwindigkeit 100 km/h	18
Abbildung 3.4:	Amplitude (a) und Phasenwinkel (b) des Frequenzgangs des Zahnstangenwegs auf Gierrate bei Messgeschwindigkeit 100 km/h	19
Abbildung 3.5:	Kohärenz der Übertragungsfunktion des Lenkradwinkels (a) bzw. des Zahnstangenwegs (b) auf Giergeschwindigkeit bei Messgeschwindigkeit 100 km/h	21
Abbildung 3.6:	Schematische Darstellung des invertierten Pendels zur Modellierung des Wankfreiheitsgrads	22
Abbildung 3.7:	Schematische Darstellung der Kräfte und Hebelarme am Rad	25
Abbildung 3.8:	Amplitude (a) und Phase (b) des Frequenzgangs Zahnstangenweg auf Gierrate bei Messgeschwin- digkeit 100 km/h	27
Abbildung 3.9:	Amplitude (a) und Phase (b) des Frequenzgangs Zahnstangenweg auf Schwimmwinkel bei Mess- geschwindigkeit 100 km/h	29
Abbildung 3.10:	Amplitude (a) und Phase (b) des Frequenzgangs Zahnstangenweg auf Querbeschleunigung bei Mess- geschwindigkeit 100 km/h	30

Abbildung 3.11:	Amplitude (a) und Phase (b) des Frequenzgangs Zahnstangenweg auf Rollwinkel bei Mess- geschwindigkeit 100 km/h31
Abbildung 3.12:	Amplitude (a) und Phase (b) des Frequenzgangs Zahnstangenweg auf Rollwinkelgeschwindigkeit bei Messgeschwindigkeit 100 km/h32
Abbildung 3.13:	Amplitude (a) und Phase (b) des Frequenzgangs Zahnstangenweg auf Vorderachsseitenkraft bei Messgeschwindigkeit 100 km/h
Abbildung 4.1:	Kennlinie des Druckfederelements
Abbildung 4.2:	Zahnstangenweg über Lenkritzelwinkel für die Bestimmung der Lenkübersetzung38
Abbildung 4.3:	Drehstabmoment über Drehstabwinkel für die Bestimmung der Steifigkeit des Drehstabs39
Abbildung 4.4:	Schematische Darstellung eines Druckstücks (a) und schematische Darstellung der "dual pinion"- Anordnung (b) [36]40
Abbildung 4.5:	Übersicht der Prüfstandsanordnung von Kraftmessdose an Linearaktuator41
Abbildung 4.6:	Reibkraft über Zahnstangenweg für die Zahnstangengeschwindigkeit 1 mm/s42
Abbildung 4.7:	Abhängigkeit der Reibkraft des Lenkgetriebes von der Zahnstangengeschwindigkeit43
Abbildung 4.8:	Absolutwert des Reibmoments über dem Lenkritzelwinkel für eine Drehgeschwindigkeit von 15 °/s44
Abbildung 4.9:	Abhängigkeit des Reibmoments des Lenkgetriebes von der Zahnstangengeschwindigkeit45
Abbildung 4.10:	Abhängigkeit der Reibkraft des Lenkgetriebes von der Zahnstangengeschwindigkeit für die zwei verschiedenen Bewegungseinleitungsvarianten "Drehmoment am Drehstab" (obere Linienschar) und "Kraft an der Zahnstange" (untere Linienschar)46
Abbildung 4.11:	Bild der Anordnung Linearaktuator mit Druckfeder- element an der Zahnstange

Abbildung 4.12:	Lastabhängigkeit der Reibung des Lenkgetriebes47
Abbildung 4.13:	Haft- und Gleitreibungsmessung des Lenkgetriebes48
Abbildung 4.14:	Zahnstangenkraft über Drehstabmoment für die Bestimmung der Handmomentunterstützung50
Abbildung 4.15:	Drehstabmoment über Drehstabwinkel für die Bestimmung des aktiven Rücklaufs51
Abbildung 4.16:	Vergleich Simulation mit und ohne Lastkraftüber- höhung mit Messung für das Manöver Weave Test53
Abbildung 5.1:	Schematische Darstellung des Gesamtfahrzeugmodells55
Abbildung 5.2:	Vergleich zwischen Simulation und Messung an- hand von Zeitbereichssignalen zur Validierung des Gesamtfahrzeugmodells ohne Hilfskraft- unterstützung
Abbildung 5.3:	Hysteresediagramme zur Validierung des Gesamt- fahrzeugmodells ohne Hilfskraftunterstützung anhand des Manövers Weave Test
Abbildung 5.4:	Vergleich zwischen Simulation und Messung anhand von Zeitbereichssignalen zur Validierung des Gesamtfahrzeugmodells mit Hilfskraftunterstützung67
Abbildung 5.5:	Hysteresediagramme zur Validierung des Gesamt- fahrzeugmodells mit Hilfskraftunterstützung anhand des Manövers Weave Test70
Abbildung 6.1:	Einfluss der Variante "erhöhte Vorderachssteifigkeit" auf die Hysteresediagramme im Fall ohne Hilfskraftunterstützung
Abbildung 6.2:	Einfluss der Variante "erhöhte Vorderachssteifigkeit" auf die Hysteresediagramme im Fall mit Hilfskraftunterstützung
Abbildung 6.3:	Einfluss der Variante "erhöhte Lenkübersetzung" auf die Hysteresediagramme im Fall ohne Hilfskraftunterstützung

Abbildung 6.4:	Einfluss der Variante "erhöhte Lenkübersetzung" auf die Hysteresediagramme im Fall mit Hilfskraftunterstützung
Abbildung 6.5:	Einfluss der Variante "erhöhte Lenkgetriebe- reibung" auf die Hysteresediagramme im Fall ohne Hilfskraftunterstützung
Abbildung 6.6:	Einfluss der Variante "erhöhte Lenkgetriebereibung" auf die Hysteresediagramme im Fall mit Hilfskraftunterstützung95
Abbildung 6.7:	Kennlinie für die Sensitivitätsanalyse der Handmomentenunterstützung98
Abbildung 6.8:	Einfluss der Variante 1 "erhöhte Handmomenten- unterstützung" auf die Hysteresediagramme im Fall mit Hilfskraftunterstützung
Abbildung 6.9:	Einfluss der Variante 2 "linearisierte Hand- momentenunterstützung" auf die Hysterese- diagramme im Fall mit Hilfskraftunterstützung104
Abbildung 6.10:	Einfluss der Variante "ohne aktiver Rücklauf" auf die Hysteresediagramme im Fall mit Hilfskraftunterstützung
Abbildung A.1:	Amplitude (a) und Phasenwinkel (b) des Frequenzgangs Zahnstangenweg auf Gierrate bei Messgeschwindigkeit 130 km/h118
Abbildung A.2:	Amplitude (a) und Phasenwinkel (b) des Frequenzgangs Zahnstangenweg auf Gierrate bei Messgeschwindigkeit 160 km/h119

Tabellenverzeichnis

Tabelle 3.1:	Messtechnik der Fahrzeugmessungen14
Tabelle 5.1:	Kennwerte der Hysteresediagramme für die Validierung ohne Hilfskraftunterstützung64
Tabelle 5.2:	Kennwerte der Hysteresediagramme für die Validierung mit Hilfskraftunterstützung72
Tabelle 6.1:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse der Vorderachssteifigkeit im Fall ohne Hilfskraftunterstützung76
Tabelle 6.2:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse der Vorderachssteifigkeit im Fall mit Hilfskraftunterstützung80
Tabelle 6.3:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse der Lenkübersetzung im Fall ohne Hilfskraftunterstützung84
Tabelle 6.4:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse der Lenkübersetzung im Fall mit Hilfskraftunterstützung89
Tabelle 6.5:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse der Zahnstangenreibung im Fall ohne Hilfskraftunterstützung93
Tabelle 6.6:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse der Zahnstangenreibung im Fall mit Hilfskraftunterstützung96
Tabelle 6.7:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse erhöhter Handmomentenunterstützung 101
Tabelle 6.8:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse linearer Handmomentenunterstützung 105
Tabelle 6.9:	Kennwerte der Hysteresediagramme für die Sensitivitätsanalyse des aktiven Rücklaufs109
Tabelle A.1:	Parameter des erweiterten Einspurmodells

XIV	Tabellenverzeichnis

Tabelle A.2:

Formel- und Abkürzungsverzeichnis

Abkürzung	Erklärung
DOF	Freiheitsgrad ("Degree of Freedom")
FFT	Fast-Fourier-Transformation
FKFS	Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart
HMU	Handmomentenunterstützung
IVK	Institut für Verbrennungsmotoren und Kraftfahrwesen
PT1	Verzögerung 1. Ordnung
SP	Schwerpunkt
VW	Volkswagen

Symbol	Einheit	Erklärung
$a_{Y,SP}$	m/s^2	Querbeschleunigung im Schwerpunkt
A	-	Systemmatrix des Fahrzeugmodells in Zustandsraumdarstellung
В	-	Eingangsmatrix des Fahrzeugmodells in Zustandsraumdarstellung
$c_{\rm r}$	Nm/rad	Rollsteifigkeit
c_{TB}	Nm/rad	Steifigkeit des Drehstabs ("Torsion Bar")
c_{α}	N/rad	Achssteifigkeit
C	-	Ausgangsmatrix des Fahrzeugmodells in Zustandsraumdarstellung
d	m	Abstand