evealed

Building Web Applications in .NET

Peter Himschoot

Apress’

Blazor Revealed
Building Web Applications in .NET

Peter Himschoot

Apress’

Blazor Revealed: Building Web Applications in .NET

Peter Himschoot
Melle, Belgium

ISBN-13 (pbk): 978-1-4842-4342-8 ISBN-13 (electronic): 978-1-4842-4343-5
https://doi.org/10.1007/978-1-4842-4343-5

Library of Congress Control Number: 2019932722

Copyright © 2019 by Peter Himschoot

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243428. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4343-5

Table of Contents

About the AUROFcccciiemrissmnmissnnmmssssssssssnssssnsssssnsesssnsessansessannesssnnesssnnesssnnssssnnssnns ix
About the Technical REVIEWETcceussesrssssssssssnsssssnsssssnssssansssssnsssssnsssssnsssssnnssssnnssssns Xi
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xiii
Introduction to WebAssembly and Blazorcccccvvvinmmmsssssssssmnmsmmmsssssssssssssssssssssnsnns XV
Chapter 1: Your First Blazor Project..........ccccunmmmmmmmmnnnmmmmsmsssssssssnsmsssssssssssssssssssssssnss 1
Installing BIazor PrereqUISITEScocvvvreriiriennie s sse s s s s s se s s s e s saesae s s 1
018 00 - O 1
ViSUAL STUAIO 2017 ...t 2
ASP.NET Core Blazor Language SEIVICES.......ccuvrerrerersrrerseressssersessessessssessessesssssssessesssssssessenes 3
ViSU@l STUTIO COUE........ovevieeeccereriseee e 3
Installing the Blazor Templates for VS/COUE.......c.cuvvvrrerierenensensesessessssesesesessessessessssessessesees 4
Generating Your Project With Visual StUTI0ccverrevvrerrriererensersere e sesseresessssesse e seesessessessens 5
Creating a Project with Visual STUCIOcccerrverernrerrerieresersere s s sessessessessssessessessssessessesaes 6
Generating the Project with dotnet Cli........ccccvreriernnnini e enes 7
RUNNING the PrOJECT ..ot r e s r e s 8
Examining the Project’s Parts ..o s s snes 10
THE SOIULION......citiecircir s e s se s ae e 10

TRE SEIVEL ..ottt e e d e e b e e et e b et b e e e R 10

The Shared PrOJECTccvevererierereserere s s sese s s e s see e s e s s s s e ssesaeseesesnesaesaesssnessesaes 12

The Client Blazor PrOJECTccvvverererrerierersssersersessssessesseseessssessessessssessessesssssssessessssssessesses 13
1] 4= OSSOSO 17

iii

TABLE OF CONTENTS

Chapter 2: Data Binding........ccccsrmsssmnnmmsssssnnsmssnssssssnnnssnss 19
A QUICK LOOK @t RAZOTccueueucereressenesesesesssssesesesesss s ssse e sssssssesessssssssssssessssssssssssesssssnsassnens 19
One-Way Data BindiNgc.ccoorenerererercreneserese e se s s esssnens 21

One-Way Data Binding SYNtaX.........cccviriininininnnsnseness s sssssssessessessssessessens 21
Conditional AtDULEScoeeeeeeeee s 22
Event Handling and Data Binding..........cccueeeerermrnnenesnnesnsesessesessse s sessssessssesessesenns 23
Event Binding SYNTaX........ccoveimrenrnesresesese s s nsens 23
EVENT AFQUMENTS ... nns s 23
Using C# Lambda FUNCLIONS ..o e 24
Two-Way Data BiNGiNg.......ccccvivrernienrnenenesesnsesesesesess s sesssss e s ssssesssssssssssssssssssssssessnses 24
Two-Way Data Binding SYNaX.........cccvveernnmnennnmrnsmsensesssssessssssssssesssssssssssssssssssssssssssssssenens 24
FOrmatting DAteS........ccvvererinmresesrnessse s 26
RepOrting ChanQES........cccvvererinerrisesinsessssesesse e srsse s e ss s e ss e s sss e sassesssssessnsssnns 26
The Pizza Place Single Page ApPliCationcccvievrrrienierenessersenese s s s ssesessessessessssessessens 28
Creating the PizzaPlace ProjECt.........ccccvivvrririenisrserse s se e se s s e s ssesessessesnens 29
Adding Shared Classes to Represent the Data...........ccccvvrvvnvninennnnienie e sessesenees 30
Building the Ul to ShOW the MENU ... s 34
Enter the CUSTOMEN ... 42
Validating the Customer INformation...........ccocuverneennennnsesnse e 45
ES 1] 4= 7R 52

Chapter 3: Components and Structure for Blazor Applications.........cccuecurrssenssssana 53

What Is a Blazor COmMPONENT?Z ... st se s s s e snesnens 53
Examining the SurveyPrompt COmponent.........c.coooivninnnnnnnc e 54
Building a Simple Alert Component with Razor ..o 55
Separating View and View-Model..........ccoorvrnnnininnn s snes 58

Building @ Component LIDFary..........cococorenerennnesrsesesssesesse s sessssessssesessssessssssssssssssesenns 66
Creating the Component Library Projectcocoeernvennienmresc s 67
Adding Components t0 the LIDIary ... sesesese s sessesessenens 68
Refering to the Library from YOur Project ... 70

iv

TABLE OF CONTENTS

Refactoring PizzaPlace into COMPONENESccccvveriereverserserie s e ssesse s ssssesessessesessessesnes 72
Creating a Component to Display a List 0f Pizzasccccoevvvvrrenevnsnsenennsensenesessssenensens 73
Updating the Ul after Changing the State ObJEct........c.ccovvrrvrrerevnsnrere e 75
Showing the ShoppingBasket COMPONENtcccvcvvrierrnnsnsene e sessesees 76
Creating a Validation Component LiDFarycccceeevvvrverennnensensesessssessesessssessesessessssessessens 78
Adding the CustomerEntry COMPONENTccccvverererrrerere e ssesesesse e sessessessesessessesaes 81

Component LIfECYCIE HOOKS.......ccvverevrererrererensesseresesessenessesessasessessessssessessesssssssessesaesssssssessees 86
OnInit and ONINIASYINCvevvrererererserere s sesse s e s sse e ssese s e ssesaessssessesassssssssessesaesassensesaens 86
OnParametersSet and ONParameterSSEIASYNGcccvvererrererrerereressensessessesessessessessssensessens 87
OnAfterRender and OnAFtErRENAEIASYNCccvevreveereriereresersere e see s ssesessessessesassessesaens 87
IDISPOSADIEcceiieieier e e 88

Using Templated COMPONENLTS.........ccoveiririrnrerrerire s se e e 89
Creating the Grid Templated COmMPONENt...........ccoevirerriecrr e 89
Using the Grid Templated COMPONENt ... e 91
Specifying the Type Parameter’s Type EXpliCitly........ccccovvvriinrinsnninnns s 94
(3000 L1010 oL 94

The Blazor Compilation MOel ... aens 96

SUIMIMANY....eiecrteere s e e s e re s e e e e e e e R e e s e e e se e e e nRe e e se e nennn e nrnnnes 99

Chapter 4: Services and Dependency Injection..........cccccuinemmnmnnssnnnsnsssssnsmssssannns 101

What Is Dependency INVEISION?cccvcerierennnenesessssessesessesessessessessssessessessessssessessesssssssessees 101
Understanding Dependency INVEISION..........ccvererrrerienienessensesesss s sesse s sessessessessssessessees 102
Using the Dependency INVErsion PrNCIPIEccccvvvervrierenessensenesis s s sessesessessssessessees 103
Adding Dependency INJECLIONccccevevererierere s s r e enes 105
Applying an Inversion-of-Control CONtAINETcccvievrrrrrienienn s seeees 106

Configuring Dependency INJECHIONccvceveriererieriere s s se e s ss s e s saesae e s e saesnes 108
SinGIeton DEPENUENCIES......ccverrererrererrerresersererre s s s sse s sae e s e ssesresaese e e saesaesasensesaens 110
TranSient DEPENUENCIESccvevreierierrereriesersere et ss e e s resae e s e ae e e e e aennes 111
SCOPEU DEPENUCNCIESveereerrerrererserersessssessesessesesseressessesssessesasssssessessessssessessessessssensessens 111
Disp0oSing DEPENUENCIEScccvvereereririeriererersere e s ss e saesre e s e saesae e s e saesnes 114

TABLE OF CONTENTS

BUIlAING BIAZOI SEIVICES ...uevverreierersersessnsersersesssssssessesssssssessessesssssssessesssssssessesssssssessessesssssnsessens 115
Adding the MenuService and IMenuService abstraction.........c.ccocvvvrerrernnnsenseniesesessensenes 116
Ordering Pizzas With @ SEIVICE.......cuucviererrrerierenesessere e s s s sse e ssssessessesssssssesnees 119

3111117 OO RS 123

Chapter 5: Data Storage and MiCroSErviCescccusmrrsssmsesssnsssssnsssssnnssssnnssssnnsssas 125

WRAL IS REST? ... s s ettt 125
UNderstanding HTTP ... e 125
Universal Resource Identifiers and Verbs..........ccovoorerrnrnnesesese s 126
HTTP STAUS COUES ... 127

Invoking Server Functionality USiNg RESTcooiiennenrcserncsesese s 127
oI T2 Vo T T 127
JavaScript Object NOTation ... s 128
Some Examples of REST CallS........cccoieiinnninnninsinesiess e sesse s sessessesssssssessessens 128

Building a Simple Microservice USing ASP.NET COreccuoueernnernsenensenmssssesessesessssessesesessesenns 130
Services and Single ReSponSibility.........ccccovcrvrrnennes s 130
THE PiZZA SEIVICE ..cveererecrerreserree s s s sss e e s e srs e senssssnsenens 130

What Is Entity Framework COre?.........ccvveriennnsesssesssesesssessssssseses e ssssesssssssssssesessessssenens 135
Using the Code First ApProachcccveveininenn s e sss e s sne s 136
Preparing Your Project for Code First Migrationsccocvveervsnnssssesnnnsse e 140
Creating Your First Code First Migration..........c.ccovverrinninnnnssnsse s ssssessnnes 144
Generating the DAtabaSsecccucerererrnesenese s 146

Enhancing the Pizza MICIOSEIVICEcucvvererinierseneresessese s sesse s ssssessessessssessessessesssssssesaens 149

Testing Your Microservice USing POSIMANcccccvevvvrienensnensene s seesesessessessssessessees 151
INSEAllNG POSIMANccciviieiriere e s e s sa s e nae e 151
Making REST Calls With POSIMAN........c.ccocevvinierirnrirsene s sss e s ssesssssssessesnes 152

£ 1134 7R 159

Chapter 6: Communication with MiCroServicescccccrrmmsssssssssmsmmmsssssssssssssssnnns 161

Using the HIPCIENt Class........ccovrerenernsmnenesesssesessesesesessese s sessssssssssssssssssssssssssssssssssssssenns 161
Examining the Server ProjecCtc.ccovvevneneresersse s sesse s s sessssessssesenses 161
Why Use @ Shared ProjECt?cucerenersnmrnsesnesessse s sessssesssse s sessssesssssssssesesssssssenens 163
Looking at the Client Project ..o 164

TABLE OF CONTENTS

Understanding the HEPCIIENt CIASScccvvererrrrerieriersssrsese s sessessessessssessessesssssssessessessssessenaens 168
The HttpClientJsonEXtensions Methodscoovvvirrerevnrensenseneses e ssesesessesnes 168
Retrieving Data from the SEIVEN ... e e 173
STOrNG CRANQES....c.i i e e 177
Updating the Database with Orders.........cccccvvrininnnnini s 178
Building the Order MiCrOSEIVICEccucereririnienere st sre e 183
Talking to the Order MiCrOSEIVICEcccccvvrirennsincne s 184

£ 1117 T 186
Chapter 7: Single Page Applications and Routingccccusseemmmnssssnnnmssssssnssssssnnnnss 187
What Is a Single Page AppliCation?............ccoverrnnrnsennnesensse s ssssesessessssenens 187
Using Layout COMPONENLEScccvceriererernerreresiesersessessessssessessesessessessesssssssessessessssessessesssssssessens 188
Blazor Layout COMPONENTS.......ccccvererreriererirsirese s sessessesaesessessessessssessesaessssessessesasssssessesnes 188
Selecting a @layout COMPONENTcceveriririerrrr e sae s naesnens 190
_ViewlmportS.CSNEMLL.......ccoie e e 191
NESTEU LAYOULS.....ccererierreririr s s e r e e s r e s r e s ae e nn e s ne s nenan e 192
Understanding ROULINGccceveirierierenirserere s sessesse s s ssessessesessessessessssessessesssssssessessesssssssesaens 194
INSEAllNG the ROULETcveeeerere et a e s e s snesp e e nne e 194
The NavMenu COMPONENTccvcvierennrirere s e sse s s e s e ssesaesesessesaesasssssesaesas 195
The NavLInK COMPONENT........coovvririereriesersere e sessesse s ssesessessessessssessessessessssessessesssssssessesaes 197
Setting the Route TEMPIALE........ccvcevereririererr e sa e e saennen 197
Using Route Parameters........cccvviininninnc s sse e ssessss s s sse s s saesnsseas 198
Filter URIS with Route CONStraints.........ccovrrninsnenennnsssssessssssssssese s sessssssssesens 199
Adding a Catchall Route TEMPIALE.........cccveerierererrerrerere s s e s e ssesessessesnes 200
Redirecting to Other PAges ..ot 200
Navigating Using @an ANCROK ... s 200
Navigating Using the NavLink COMPONENTccccvrvrerreriernrenserseressssesessessssessessesssssssessesaes 200
Navigating With COAEcceverrerierererririereresserese s s ssesaesas e ssesse s s e ssesaessesessesaesasssssessesas 200
Understanding the Base Tag........cccvververreeneriirierree s sieren e esses s sesesseessessessesssesnessessens 202
Sharing State Between COMPONENTS ... s 203
£ 0T T 212

vii

TABLE OF CONTENTS

Chapter 8: JavaScript Interoperabilitycccussemrrmsssnnnrsssssnnnmssssnnnsssssssssssssssnnns 213
Calling JavaScript from CH...........ccorircrcrrresire e e 213
Providing @ GIUE FUNCLION........ccviiricern sttt et e 213
Using JSRuntime to Call the Glue FUNCLION ... 214
Storing Data in the Browser With INtEropcccvvvrvririnnsrserie e sessessessesessessessens 214
Passing a Reference t0 JAVASCHIPL........ccvvvvvrrrerievnrerserere s s s s ssessessessssesessesassessessesaes 217
Calling .NET Methods from JavaScCripl.........cccomvrininnininnn s ssennes 219
Adding a Glue Function Taking a .NET InStancec.cccccvvniriennnninennnssessese s 220
Adding a JSInvokable Method 10 INVOKEccvcrcrinnininie e 220
Building a Blazor Chart Component LIDraryccoveeveenmrenernsesnsesese e sessesesse e sessesenns 222
Creating the Blazor CompoNnent LiDrary.........ccccoveeeerenernsesenenesesesesesesesesse s sseseseenes 223
Adding the Component Library to YOUr ProJECT.........ovoerrecrrienererereee e 224
Adding Chart.js to the Component Library...........ccccrrnninnnnninnsnsne s sesenees 226
Adding Chart.js Data and Options CIASSEScccvrerrernrinnnseniennsssese s ssssessessesees 230
Registering the JavaScript Glue FUNCHON ... e 233
Providing the JavaScript Interoperability SErvice.........ccccuvvnvnirennrnsnssn e 234
Implementing the LineChart COMponent.........ccccocvvnininnnnnnnnens s 236
Using the LineChart Component..........ccoo i ss e 238

£ 1117 T 240
INA@X...ciiiiinmnnmssssnnnnsssssnnnnsssssnnnsnssssnnnssssssnnnssssssnnnsnsssnnnnsnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 241

viil

About the Author

Peter Himschoot works as a lead trainer, architect, and
strategist at U2U Training. Peter has a wide interest in
software development, which includes applications for

the Web, Windows, and mobile devices. Peter has trained
thousands of developers, is a regular speaker at international
conferences, and has been involved in many web and mobile
development projects as a software architect. Peter is also a
Microsoft Regional Director, a group of trusted advisors to the

developer and IT professional audiences, and to Microsoft.

ix

About the Technical Reviewer

Gerald Versluis is a developer and Microsoft MVP from
Holland with years of experience working with Xamarin,
Azure, ASP.NET, and other .NET technologies. He has
been involved in numerous projects, in various roles. A
great number of his projects are Xamarin apps. Not only
does Gerald like to code, but he is keen on spreading his
knowledge as well as gaining some in the bargain. He

speaks, provides training sessions, and writes blogs and
articles in his spare time.

Acknowledgments

When Jonathan Gennick from Apress asked me if I would be interested in writing a book
on Blazor, I felt honored and of course I agreed that Blazor deserves a book. Writing a
book is a group effort, so I thank Jonathan Gennick and Jill Balzano for giving me tips
on styling and writing this book, and I thank Gerald Versluis for doing the technical
review and pointing out sections that needed a bit more explaining. I also thank Magda
Thielman and Lieven Iliano from U2U Training, my employer, for encouraging me to
write this book.

I thoroughly enjoyed writing this book and I hope you will enjoy reading and
learning from it.

xiii

Introduction to WebAssembly
and Blazor

I was attending the Microsoft Most Valued Professional and Regional Directors Summit
when we were introduced to Blazor for the first time by Steve Sanderson and Daniel
Roth. And I must admit I was super excited about Blazor! Blazor is a framework that
allows you to build single-page applications (SPAs) using C# and allows you to run any
standard .NET library in the browser. Before Blazor, your options for building a SPA were
JavaScript or one of the other higher-level languages like TypeScript, which get compiled
into JavaScript anyway. In this introduction, I will look at how browsers are now capable
of running .NET assemblies in the browser using WebAssembly, Mono, and Blazor.

Blazor is, at the time of writing, an EXPERIMENTAL framework. | hope by the time
you are reading this book that it has been made official by Microsoft.

A Tale of Two Wars

Think about it. The browser is one of the primary applications on your computer. You
use it every day. Companies who build browsers know this very well and are bidding for
you to use their browser. In the beginning of mainstream Internet, everyone was using
Netscape. Microsoft wanted a share of the market, so in 1995 it built Internet Explorer 1.0,
released as part of Windows 95 Plus! pack. Newer versions were released rapidly, and
browsers started to add new features such as <blink> and <marquee> elements. This was
the beginning of the first browser war, giving people (especially designers) headaches
because some developers were building pages with blinking marque controls © . But
developers were also getting sore heads because of incompatibilities between browsers.
The first browser war was about having more HTML capabilities than the competition.

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

But all of this is now behind us with the introduction of HTML5 and modern
browsers like Google Chrome, Microsoft Edge, Firefox, and Opera. HTML5 not only
defines a series of standard HTML elements but also rules on how they should render,
making it a lot easier to build a web site that looks the same in all modern browsers.

But let’s go back to 1995, when Brendan Eich wrote a little programming language
known as JavaScript (initially called LiveScript) in 10 days (What!?). It was called
JavaScript because its syntax was very similar to Java.

JavaScript and Java are not related. Java and JavaScript have as much in
common as ham and hamster (I don’t know who formulated this first, but | love
this phrasing).

Little did Mr. Eich know how this language would impact the modern Web and
even desktop application development. In 1995, Jesse James Garett wrote a white paper
called Ajax (Asynchronous JavaScript and XML), describing a set of technologies
where JavaScript is used to load data from the server and that data is used to update
the browser’s HTML, thus avoiding full page reloads and allowing for client-side web
applications (applications written in JavaScript that run completely in the browser).
One of the first companies to apply Ajax was Microsoft, when it built Outlook Web Access
(OWA). OWA is a web application almost identical to the Outlook desktop application
but providing the power of Ajax. Soon other Ajax applications started to appear, with
Google Maps stuck in my memory as one of the other keystone applications. Google
Maps would download maps asynchronously, and with some simple mouse interactions
allowed you to zoom and pan the map. Before Google Maps, the server would do
the map rendering and a browser would display the map like any other image by
downloading a bitmap from a server.

Building an Ajax web site was a major undertaking, which only big companies
like Microsoft and Google could afford. This soon changed with the introduction of
JavaScript libraries like jQuery and knockout.js. Today we can build rich web apps with
Angular, React, and Vue.js. All of them use JavaScript or higher-level languages like
TypeScript, which get complied into JavaScript. Which brings us back to JavaScript and
the second browser war. JavaScript performance is paramount in modern browsers.
Chrome, Edge, Firefox, and Safari are all competing with one another, trying to
convince users that their browser is the fastest, with cool sounding names for their
JavaScript engine like V8 and Chakra. These engines use the latest optimization tricks

XVi

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

like Just-in-Time (JIT) compilation where JavaScript gets converted into native code, as
illustrated by Figure 1.

Browser

/ JavaScript Engine \

.js
Parser HTML
- 4 Local storage
Compiler
JIT Compiler

. ~/

Figure 1. The JavaScript execution process

This process takes a lot of effort because JavaScript needs to be downloaded into the
browser, where it gets parsed, then compiled into bytecode, and then JIT converted into
native code. So how can we make this process even faster?

The second browser war is all about JavaScript performance.

Introducing WebAssembly

WebAssembly allows you to take the parsing and compiling to the server. With WebAssembly
you compile your code in a format called WASM (an abbreviation of WebASseMbly), which
gets downloaded by the browser where it gets JIT compiled into native code, as shown

in Figure 2. Open your browser and google “webassembly demo zen garden.” One of the
links is https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html
where you can see an impressive ray-trace demo of a Japanese Zen garden, shown in
Figure 3.

Xvii

https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

Browser
/ JavaScript Engine \
Js '
Is * Y

R Parser b

Code . J Local storage
— s . B

Compiler Compiler

. 1N
—'—\ p v N

.wasm + JIT Compiler

Figure 3. Japanese Zen Garden

xviii

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

From the official site, waw.webassembly.org:

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based
virtual machine. Wasm is designed as a portable target for compilation of high-level
languages like C/C++/Rust, enabling deployment on the web for client and server
applications.

So WebAssembly is a new binary format optimized for browser execution; it is NOT
JavaScript. There are compilers for languages like C++ and Rust that compile to WASM.

Which Browsers Support WebAssembly?

WebAssembly is supported by all major browsers: Chrome, Edge, Safari, and Firefox,
including their mobile versions. As WebAssembly becomes more and more important,
we will see other modern browsers follow suit, but don’t expect Internet Explorer to
support WASM.

WebAssembly and Mono

Mono is an open source implementation of the .NET CLI specification, meaning that
Mono is a platform for running .NET assemblies. Mono is used in Xamarin for building
mobile applications that run on the Windows, Android, and iOS mobile operating
systems. Mono also allows you to run .NET on Linux (its original purpose) and is

written in C++. This last part is important because you saw that you can compile C++ to
WebAssembly. So, what happened is that the Mono team decided to try to compile Mono
to WebAssembly, which they did successfully. There are two approaches. One is where
you take your .NET code and you compile it together with the Mono runtime into one
big WASM application. However, this approach takes a lot of time because you need to
take several steps to compile everything into WASM, which is not so practical for day-to-
day development. The other approach takes the Mono runtime, compiles it into WASM,
and this runs in the browser where it will execute .NET Intermediate Language just

like normal .NET does. The big advantage is that you can simply run .NET assemblies
without having to compile them first into WASM. This is the approach currently taken by
Blazor. But Blazor is not the only one taking this approach. For example, the Ooui project
allows you to run Xamarin.Forms applications in the browser. The disadvantage of this

is that it needs to download a lot of .NET assemblies. This can be solved by using Tree
Shaking algorithms, which remove all unused code from assemblies. These tools are not
yet available, but they are in the pipeline.

Xix

http://www.webassembly.org/

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

Interacting with the Browser with Blazor

WebAssembly with Mono allows you to run .NET code in the browser. Steve Sanderson
used this to build Blazor. Blazor uses the popular ASP.NET MVC approach for building
applications that run in the browser. With Blazor, you build Razor files (Blazor = Browser
+ Razor) that execute inside the browser to dynamically build a web page. With Blazor,
you don’t need JavaScript to build a web app, which is good news for thousands of .NET
developers who want to continue using C# (or F#).

How Does It Work?

Let’s start with a simple Razor file. See Listing 1, which you can find when you create a
new Blazor project.

Listing 1. The Counter Razor File

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">Click me</button>

@functions {
int currentCount = 0;

void IncrementCount()

{

currentCount++;

This file gets compiled into .NET code (you'll find out how later in this book), which
is then executed by the Blazor engine. The result of this execution is a tree-like structure
called the render tree. The render tree is then sent to JavaScript, which updates the
DOM to reflect the render tree (creating, updating, and removing HTML elements and
attributes). Listing 1 will resultin h1, p (with the value of currentCount) and button
HTML elements. When you interact with the page, for example when you click the

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

button, this will trigger the button’s click event, which will invoke the IncrementCount
method from Listing 1. The render tree is then regenerated, and any changes are sent
again to JavaScript, which will update the DOM. This process is illustrated in Figure 4.

This model is very flexible. It allows you to build progressive web apps, and also can
be embedded in Electron desktop applications, of which Visual Studio Code is a prime
example.

™y
[CH } L JavaScript J L DOM
A

Render tree

Change DOM

Event

Ul differences

Change DOM

Figure 4. The Blazor DOM generation process

Server-Side Blazor

On August 7, 2018, Daniel Roth introduced a new execution model for Blazor called
server-side Blazor at the ASP.NET community standup. In this model, your Blazor site

runs on the server, resulting in a much smaller download for the browser.

The Server-Side Model

You just saw that client-side Blazor builds a render tree using the Mono runtime, which
then gets sent to JavaScript to update the DOM. With server-side Blazor, the render tree
gets built on the server and then gets serialized to the browser using SignalR. JavaScript
in the browser then deserializes the render tree to update the DOM, which is pretty
similar to the client-side Blazor model. When you interact with the site, events get

xxi

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

serialized back to the server, which then executes the .NET code, updating the render
tree, which then gets serialized back to the browser. You can see this process in

Figure 5. The big difference is that there is no need to send the Mono runtime and your
Blazor assemblies to the browser. And the programming model stays the same!

Server ; | Browser

] (=) =

Render tree

Change DOM

Event |

Ul differences

Change DOM

>
|
|
I
I

Figure 5. Server-side Blazor

Pros and Cons of the Server-Side Model

The server-side model has a couple of benefits, but also some drawbacks. Let’s discuss
them here so you can decide which model fits your application’s needs.

Smaller Downloads

With server-side Blazor, your application does not need to download mono.wasm nor all
your .NET assemblies. This means that the application will start a lot faster.

xxii

INTRODUCTION TO WEBASSEMBLY AND BLAZOR

Development Process

Blazor client-side has limited debugging capabilities, resulting in added logging. Because
your .NET code is running on the server, you can use the regular NET debugger. You
could start building your Blazor application using the server-side model and when it’s
finished switch to the client-side model by making a small change to your code.

.NET APIs

Because you are running your .NET code on the server you can use all the .NET APIs you
would use with regular MVC applications, for example accessing the database directly.
Note that doing this will stop you from being able to quickly convert it to a client-side
application.

Online Only

Running the Blazor application on the server does mean that your users will always

need access to the server. This will prevent the application from running in Electron; you
also can’t run it as a progressive web application (PWA). And if the connection drops
between the browser and server, your user could lose some work because the application
will stop functioning.

Server Scalability

All your .NET code runs on the server so if you have thousands of clients, your server(s)
will have to handle all the work. Also, Blazor uses a state-full model, which means you
must keep track of every user’s state on the server.

Summary

In this introduction, you looked at the history of the browser wars and how they resulted
in the creation of WebAssembly. Mono allows you to run .NET assemblies; because
Mono can run on WebAssembly, you can now run .NET assemblies in the browser! All of
this resulted in the creation of Blazor, where you can build Razor files containing .NET
code, which updates the browser’s DOM, giving you the ability to build single-page
applications in .NET.

xxiii

CHAPTER 1

Your First Blazor Project

Getting a hands-on experience is the best way to learn. In this chapter, you'll install the
prerequisites to developing with Blazor, which includes Visual Studio along with some
needed extensions. Then you'll create your first Blazor project in Visual Studio, run the
project to see it work, and inspect the different aspects of the project to get a “lay of the
land” view for how Blazor applications are developed.

Installing Blazor Prerequisites

Working with Blazor requires you to install some prerequisites, so let’s get to it.

.NET Core

Blazor runs on top of .NET Core, providing the web server for your project, which will
serve the client files that run in the browser and run any server-side APIs that your Blazor
project needs. .NET Core is Microsoft’s cross-platform solution for working with .NET on
Windows, Linux, and OSX.

You can find the installation files at www.microsoft.com/net/download. Look for
the latest version of the .NET Core SDK. Download the installer, run it, and accept the
defaults.

Verify the installation when the installer is done by opening a new command prompt
and typing the following command:

dotnet -version

Look for the following output to indicate that you have the correct version installed.
The version number should be at least 2.1.300.

Should the command’s output show an older version (for example 2.1.200), you must
download and install a more recent version of .NET Core SDK.

© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_1

http://www.microsoft.com/net/download

CHAPTER 1 YOUR FIRST BLAZOR PROJECT

Visual Studio 2017

Visual Studio 2017 (from now on I will refer to Visual Studio as VS) is one of the
integrated development environments (IDEs) you will use throughout this book. The
other IDE is Visual Studio Code. With either one you can edit your code, compile it, and
run it all from the same application. The code samples are also the same. However, VS
only runs on Windows, so if you're using another OS, please continue to the section on
Visual Studio Code.

Download the latest version of Visual Studio 2017 from www.visualstudio.com/
downloads/.

Run the installer and make sure that you install the ASP.NET and web development
role, as shown in Figure 1-1.

| Workloads Individual components Language packs Installation locations

Web & Cloud (7)

@ ASPNET and web development /' Azure development
Build web applications using ASP.NET, ASP.NET Core, Azure SDKs, tools, and projects for developing cloud apps,

HTML/JavaScript. and Containers including Docker support. creating resources, and building Containers including...

Node.js development
Build scalable network applications using Node js, an

F Python development

Editing, debugging, interactive development and source

control for Python asynchronous event-driven JavaScript runtime
@ Data storage and processing lull Data science and analytical applications
Connect, develop, and test data solutions with SQL Server, é Languages and tooling for creating data science

Azure Data Lake, or Hadoop. applications, including Python, R and F#.

g Office/SharePoint development
Create Office and SharePoint add-ins, SharePoint solutions
and VSTO add-ins using C#, VB, and JavaScript.

Figure 1-1. The Visual Studio Installer Workload:s selection

After installation, run Visual Studio from the Start menu. Then open the Help menu
and select About Microsoft Visual Studio. The About Microsoft Visual Studio dialog
window should specify at least version 15.7.3, as illustrated in Figure 1-2.

http://www.visualstudio.com/downloads/
http://www.visualstudio.com/downloads/

CHAPTER 1 YOUR FIRST BLAZOR PROJECT

About Microsoft Visual Studio ? X
. . License status
V|Sua| StUdIO License terms
Microsoft Visual Studio Enterprise 2017 Microsoft .MET Framework
Version 15.7.3 Version 4.7.02556
© 2017 Microsoft Corporation. © 2017 Microsoft Corporation.
All rights reserved. All rights reserved.

Figure 1-2. About Microsoft Visual Studio

ASP.NET Core Blazor Language Services

The Blazor Language Services plugin for Visual Studio will aid you when typing Blazor
files and will install the Blazor VS project templates. Installation of the plugin is done
directly from Visual Studio. Open Tools » Extensions and Updates. Click the Online tab
and enter Blazor in the search box. You should see the ASP.NET Core Blazor Language
Services listed as shown in Figure 1-3. Select it and click the Download button to install.

Extensions and Updates ? *
b Installed Sort by: | Relevance - Blazor % |-
2lonine ?@ ASP.NET Core Blazor Language Services O Created by: ASPNET
. _— Provides Visual Studio support for ASP.NET Core Blazor Version: 15.7.10274
4 Visual Studio Marketplace ersion: 15.7.
Search Results Downloads: 18778
b Controls Rating: (16 Votes)
b Templates Mare Information
Report Extension ta Microsoft
b Tools
I Updates

b Roaming Extension Manager

Figure 1-3. Installing Blazor Language Services from the Extensions and Updates
menu

Visual Studio Code

Visual Studio Code is a free, modern, cross-platform development environment with
integrated editor, git source control, and debugger. The environment has a huge range
of extensions available, allowing you to use all kinds of languages and tools directly from
Code. So, if you don’t have access to Visual Studio 2017 (because you're running a non-
Windows operating system or you don’t want to use it), use Code.

CHAPTER 1 YOUR FIRST BLAZOR PROJECT

Download the installer from www.visualstudio.com/. Run it and choose the
defaults.

After installation I do advise you install a couple of extensions for Code, especially
the C# extensions. Start Code, and on the left side, select the Extensions tab, as shown
in Figure 1-4.

Figure 1-4. Visual Studio Code Extensions tab

You can search for extensions, so start with C#, which is the first extension from
Figure 1-4. This extension will give you IntelliSense for the C# programming language
and .NET assemblies. You will probably get a newer version listed so take the latest.

Click Install.

Another extension you want to search for is Razor+, as shown in Figure 1-5. This
extension will give you nice syntax coloring for the kind of Razor files you will use in
Blazor.

Razor+
Austin Cummings | & 2427 % %k Kk kK | Repository License
Improved Razor support for VS Code with a mind towards Blazor

| Disable v | Uninstall

Figure 1-5. Razor+ for Visual Studio Code

Installing the Blazor Templates for VS/Code

Throughout this book you will create several different Blazor projects. Not all of them
can be created from Visual Studio or Code, meaning you’ll need to install the templates
for Blazor projects. This section’s example shows how to install those templates from the

http://www.visualstudio.com/

CHAPTER 1 YOUR FIRST BLAZOR PROJECT

.NET Core command-line interface, also known as the .NET Core CLI. You should have
this command-line interface as part of your .NET Core installation.

Open a command line on your OS, and type the following to install the templates
from NuGet:

dotnet new -i Microsoft.AspNetCore.Blazor.Templates

These templates will allow you to quickly generate projects and items. Verify the
installation by typing the following command:

dotnet new --help

This command will list all the templates that have been installed by the command-
line interface. You will see four columns. The first shows the template’s description, the
second column displays the name, the third lists the languages for which the template
is available, and the last shows the tags, a kind of group name for the template. Among
those listed are the following:

Blazor (hosted in ASP.NET server) blazorhosted
Blazor Library blazorlib

Blazor (Server-side in ASP.NET Core) blazorserverside
Blazor (standalone) blazor

Generating Your Project with Visual Studio

With Blazor projects you have a couple of choices. You can create a stand-alone Blazor
project (using the blazor template) that has no need for server-side code. This kind of
project has the advantage that you can simply deploy it to any web server, which will
function as a file server, allowing browsers to download your site just like any other site.
Or you can create a hosted project (using the blazorhosted template) with client, server,
and shared code. This kind of project will require you to host it where there is .NET core
2.1 support because you will execute code on the server as well. The third option is to
run all Blazor code on the server (using the blazorserverside template). In this case,
the browser will use a SignalR connection to receive Ul updates from the server and

to send user interaction back to the server for processing. In this book, you will use

the second option, but the concepts you will learn in this book are the same for all
three options.

CHAPTER 1 YOUR FIRST BLAZOR PROJECT

Creating a Project with Visual Studio

For your first project, start Visual Studio and select File » New » Project. On the left
side of the New Project dialog, select C# » Web, and then select ASP.NET Core Web
Application, as illustrated by Figure 1-6.

New Project ? X
b Recent < Sont by: |Default '] Ca Search (Ctrl+E) P -
4 1! s Vi
i ASP.NET Core Web Application Visual C# Type: Visual C#
4 Visual C# Project templates for creating ASP.NET
1 ASP.NET Web Application (NET F... Visual C# Core applications for Windows, Linux and
Ge:l Stared @ macOS using .NET Core or NET
Windows Desktop Framework. Create Razor Pages, MVC,
4 Web Web API, and Single Page (SPA)
Previous Versions Applications.
.NET Core
.NET Standard —
Not finding what you are looking for?
Open Visual Studio Installer
Name: MyFirstBlazor
Location: C\Users\Peter\Documents\Blazor Reveiled\BlazorRevealed\ '] | Browse..
Solution name: MyFirstBlazor Create directory for solution
D Create new Git repository
lL’ | Cancel

Figure 1-6. Visual Studio New Project dialog

Name your project MyFirstBlazor, leave the rest to the preset defaults, and click OK.
On the next screen, you can select what kind of ASP.NET Core project you want to
generate. From the top drop-downs, select .NET Core and ASP.NET Core 2.1 (or higher),
as shown in Figure 1-7. Then select Blazor (ASP.NET hosted) and click OK.

