

ffi rs.indd 05/05/2016 Page i

PROFESSIONAL CLOJURE

INTRODUCTION . xv

CHAPTER 1 Have a Beginner’s Mind . 1

CHAPTER 2 Rapid Feedback Cycles with Clojure . 31

CHAPTER 3 Web Services . 53

CHAPTER 4 Testing . 99

CHAPTER 5 Reactive Web Pages in ClojureScript . 129

CHAPTER 6 The Datomic Database . 169

CHAPTER 7 Performance . 217

INDEX . 235

ffi rs.indd 05/05/2016 Page iii

PROFESSIONAL

Clojure

Jeremy Anderson
Michael Gaare
Justin Holguín

Nick Bailey
Timothy Pratley

ffi rs.indd 05/05/2016 Page iv

Professional Clojure

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-26727-0
ISBN: 978-1-119-26728-7 (ebk)
ISBN: 978-1-119-26729-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016934964

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 05/05/2016 Page v

ABOUT THE AUTHORS

JEREMY ANDERSON is a developer at Code Adept, a West Michigan–based software
consultancy focused on delivering high-quality software through providing software
development, agile coaching, and training services. He is a Clojure enthusiast and
contributor to a few different Clojure libraries. He is very passionate about teaching
others how to program and volunteers to help teach computer science to area
high-school and middle-school students.

MICHAEL GAARE is the platform technical lead at Nextangles, a fi nancial technology
startup. He’s been using Clojure professionally since 2012 to build web services,
data processing systems, and various libraries—not frameworks! In his spare time,
he enjoys spending time with his wife and two daughters, and his hobby is opera
singing.

JUSTIN HOLGUÍN is a software engineer at Puppet Labs, where he specializes in
Clojure back-end services. Justin has a passion for functional programming and a spe-
cial interest in technologies that improve software reliability, such as advanced type
systems and property-based testing.

NICK BAILEY is a Clojure enthusiast and the maintainer of the Clojure java.jmx
library. He is a software architect at DataStax, where he uses Clojure to build
enterprise-level software for managing distributed databases. He was introduced to
Clojure in 2010 and has been a fan ever since.

TIMOTHY PRATLEY is a Clojure contributor and advocate. Clojure has been his language
of choice since 2008. He develops solutions in Clojure, ClojureScript, and Clojure-
Android at his current role at Outpace Systems, Inc. He has 15 years of professional
software development experience during which he has used many languages, frame-
works, and databases. He loves Clojure, Datomic, pair programming, and thinking.

ffi rs.indd 05/05/2016 Page vi

ABOUT THE TECHNICAL EDITORS

JUSTIN SMITH is a full-time Clojure developer who is active in the online Clojure community. His
day job is 100% Clojure development.

ZUBAIR QURAISHI is a UX/Design and marketing hacker based in Denmark who has sold 2 startups
and invested in over 30 startups over the last 20 years. He has been using Clojure and ClojureScript
for the last 5 years. He has worked in many startups and Fortune 500 companies based in the
United States, Europe, and Asia. You can fi nd his blog is at www.zubairquraishi.com.

ALEX OTT is a software architect in Intel Security (formerly McAfee), based in Paderborn, Germany.
He works in the area of information security and has been using Clojure since release 1.0 (2009) to
build prototypes, internal services, and open source projects, like Incanter.

DOUG KNIGHT has been programming computers professionally for 18 years, using Microsoft tech-
nologies for most of that time. He switched to Ruby on Rails in 2014 when he joined LivingSocial,
and in 2015 he added Clojure as part of his work for the company.

http://www.zubairquraishi.com

ffi rs.indd 05/05/2016 Page vii

PROJECT EDITOR
Charlotte Kughen

TECHNICAL EDITOR
Justin Smith
Zubair Quraishi
Alex Ott
Doug Knight

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
Troy Mott

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

PRODUCTION MANAGER
Kathleen Wisor

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
©d8nn/Shutterstock

CREDITS

ffi rs.indd 05/05/2016 Page ix

ACKNOWLEDGMENTS

JEREMY WOULD LIKE TO THANK God, fi rst and foremost, for granting him the gifts that he has in
order to do the things that he loves. Secondly, Jeremy thanks his family for being so supportive and
understanding of him locking himself in his offi ce to frantically write on evenings and weekends.
Next, thanks to Christina Rudloff and Troy Mott for all the hard work they’ve done to put this
project together and for inviting him onto this writing team, and thanks also to all the authors who
helped make this project a reality. Finally, thanks to all the technical reviewers for taking the time to
read and provide valuable feedback in the early stages of this book.

NICK WOULD LIKE TO THANK EVERYONE involved in making this book a reality: Troy and Christina
for organizing, his fellow authors for writing and reviewing, and the technical reviewers for
great feedback. He would also like to thank DataStax for giving him a chance to write Clojure
professionally.

MICHAEL WOULD LIKE TO THANK LARA, Charlotte, and Juliette for their love, support, and under-
standing; Keith for his valuable assistance; Christina and Troy for their patience and the oppor-
tunity to write about a terrifi c subject; and Rich for creating something so interesting to write
about—not to mention work with.

JUSTIN WOULD LIKE TO THANK HIS FAMILY for bootstrapping him and, among countless other things,
encouraging his love of books and computers. He would also like to thank his many brilliant friends
and colleagues at Puppet Labs, where he has been inspired and challenged to master Clojure bit by
bit, day by day.

TIMOTHY WOULD LIKE TO THANK SHIN Nee for being the ultimate collaborator. He would like to
thank you, the reader, for exploring how programming can be better; the Clojure community
for providing a friendly, helpful, and pleasant ecosystem to exist in; and his parents for the many
 opportunities they crafted into his life.

ffi rs.indd 05/05/2016 Page x

ftoc.indd 05/04/2016 Page xi

CONTENTS

INTRODUCTION xv

CHAPTER 1: HAVE A BEGINNER’S MIND 1

Functional Thinking 2
Value Oriented 2
Thinking Recursively 5
Higher Order Functions 8
Embracing Laziness 11
When You Really Do Need to Mutate 12
Nil Punning 15
The Functional Web 16

Doing Object-Oriented Better 16
Polymorphic Dispatch with defmulti 18
Defi ning Types with deftype and defrecord 20
Protocols 21
Reify 22

Persistent Data Structures 23
Shaping the Language 27
Summary 29

CHAPTER 2: RAPID FEEDBACK CYCLES
WITH CLOJURE 31

REPL-Driven Development 32
Basic REPL Usage with Leiningen 32
Remote REPLs with nREPL 34
REPL Usage with a Real Application 35
Connecting Your Editor to a REPL 39

Reloading Code 40
Reloading Code from the REPL 40
Automatically Reloading Code 43
Writing Reloadable Code 49

Summary 51

CHAPTER 3: WEB SERVICES 53

Project Overview 53
Namespace Layout 54

xii

CONTENTS

ftoc.indd 05/04/2016 Page xii

Elements of a Web Service 55
Libraries, Not Frameworks 55
HTTP 55
Routing 64
JSON Endpoints 70

Example Service 74
Create the Project 75
Additional Namespaces 75
Default Middleware 77
The Storage Protocol 78
Handlers 83
Middleware 88
Routes 89

Deployment 94
Using Leiningen 94
Compiling an Uberjar or Uberwar 95
Hosting 96

Summary 97

CHAPTER 4: TESTING 99

Testing Basics with clojure.test 100
with-test 101
deftest 101
are 102
Using Fixtures 103

Testing Strategies 104
Tests Against DB 104
Testing Ring Handlers 106
Mocking/Stubbing Using with-redefs 108
Redefi ning Dynamic Vars 110
Record/Replay with VCR 111

Measuring Code Quality 112
Code Coverage with Cloverage 112
Static Analysis with kibit and bikeshed 114
Keeping Dependencies Under Control 116

Testing Framework Alternatives 119
Expectations 119
Speclj 119
Cucumber 120
Kerodon 126

Summary 127

xiii

CONTENTS

ftoc.indd 05/04/2016 Page xiii

CHAPTER 5: REACTIVE WEB PAGES IN CLOJURESCRIPT 129

ClojureScript Is a Big Deal 129
A First Brush with ClojureScript 131

Starting a New ClojureScript Project 132
Getting Fast Feedback with Figwheel 132
Creating Components 134
Modeling the Data 135
Responding to Events and Handling State Change 136
Understanding Errors and Warnings 137
Namespace Layout 141
Styling 141
Form Inputs and Form Handling 142
Navigation and Routes 145
HTTP Calls: Talking to a Server 147
Drag and Drop 149
Publishing 150

Reagent in Depth 151
Form 1: A Function That Returns a Vector 151
Form 2: A Function That Returns a Component 152
Form 3: A Function That Returns a Class 153
Sequences and Keys 154
Custom Markup 155
Reactions 156
A Note on Style 158

Testing Components with Devcards 159
Interop with JavaScript 162
One Language, One Idiom, Many Platforms 164
Things to Know About the Closure Compiler and Library 164
Modeling State with DataScript 165
Go Routines in Your Browser with core.async 166
Summary 167

CHAPTER 6: THE DATOMIC DATABASE 169

Datomic Basics 170
Why Datomic? 170
The Datomic Data Model 172
Querying 175
Transactions 181

xiv

CONTENTS

ftoc.indd 05/04/2016 Page xiv

Indexes Really Tie Your Data Together 183
Datomic’s Unique Architecture 187

Modeling Application Data 188
Example Schema for Task Tracker App 188
Entity ids and Partitions 196

Datomic’s Clojure API 197
Basic Setup 197
Experimenting in the REPL 200

Building Applications with Datomic 206
User Functions 206
Account Functions 209
Task Functions 210
Deployment 213
The Limitations 214

Summary 215

CHAPTER 7: PERFORMANCE 217

What Is Performance? 219
Choosing the Right Data Structure Is a Prerequisite
for Performance 219
Benchmarking 221

Timing Slow Things 221
Use Criterium for Timing Fast Things 223
Use Test Selectors for Performance Tests 225

Parallelism 225
Memoization 226
Inlining 227

Persistent Data Structures 228
Safe Mutation with Transients 228
Profi ling 229
Avoiding Refl ection with Type Hinting 230
Java Flags 232
Math 232
Summary 232

INDEX 235

fl ast.indd 05/03/2016 Page xv

 INTRODUCTION

WHAT IS CLOJURE?

Clojure is a dynamic, general-purpose programming language, combining the
approachability and interactive development of a scripting language with an
effi cient and robust infrastructure for multithreaded programming. Clojure is a
compiled language, yet remains completely dynamic—every feature supported
by Clojure is supported at runtime. Clojure provides easy access to the Java
frameworks, with optional type hints and type inference, to ensure that calls to
Java can avoid refl ection.

Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and
a powerful macro system. Clojure is predominantly a functional programming
language, and features a rich set of immutable, persistent data structures. When
mutable state is needed, Clojure offers a software transactional memory system
and reactive Agent system that ensure clean, correct, multithreaded designs.

—Rich Hickey, author of Clojure

This quote from Rich Hickey, the creator of Clojure, captures what Clojure is. Many people equate
Clojure with functional programming, but much like Lisp, its predecessor, it’s a general-purpose
language that will support you no matter what paradigm you decide to program in.

Clojure is, however, very opinionated and offers great support for programming in a functional
manner, with its focus on immutable values and persistent data structures. You may be surprised
to know that Clojure also offers the ability to do object-oriented programming, which we cover in
this book.

WHO IS THIS BOOK FOR?

This book was written with the professional programmer in mind. This means you should have
experience programming in a language, and you should know the basic syntax and concepts in
Clojure, and be ready to take Clojure programming to the next level. Our goal is to take you from
a Clojure beginner to being able to think like a Clojure developer. Learning Clojure is much more
than just learning a new syntax. You must use tools and constructs much differentely than anything
you may be familiar with.

xvi

INTRODUCTION

fl ast.indd 05/03/2016 Page xvi

DEMO APPLICATION SOURCE CODE

You can access the source code from the Wiley website at www.wiley.com/go/
professionalclojure or at our demo application via Github at https://github
.com/backstopmedia/clojurebook.

A powerful programming language is more than just a means for instructing
a computer to perform tasks. The language also serves as a framework within
which we organize our ideas about processes.

—Structure and Interpretation of Computer Programs

This book assumes some prior knowledge of Clojure and programming in general, but does not
assume profi ciency in Clojure. It will cover a broad scope of topics from changing the way you think
and approach programming to how you integrate the REPL into your normal development routine
to how you build real world applications using Ring and ClojureScript.

WHAT WILL YOU LEARN?

Our goal is to provide you with some real world examples of how to apply your Clojure knowledge
to your day-to-day programming, not just theory and academia.

Chapter 1
In Chapter 1, you will learn about Clojure’s unique view on designing programs. You’ll discover
some of the things that set Clojure apart from other languages, for example, how immutability is the
default, and how Clojure qualifi es as object-oriented programming.

Chapter 2
In Chapter 2, you will learn how to become profi cient with the REPL and various tips and tech-
niques for interacting with your actual application through the REPL. You’ll learn how to run your
code and tests from the REPL as well as how to write code that is easily reloaded from the REPL
without having to restart it.

Chapter 3
In Chapter 3, you learn about building web services with Compojure, and the various concepts
involved such as routes, handlers, and middleware. You will build a complete web service, and then
learn various techniques for deploying your new application.

http://www.wiley.com/go
https://github
https://github.com/backstopmedia/clojurebook
http://www.wiley.com/go/professionalclojure

xvii

INTRODUCTION

fl ast.indd 05/03/2016 Page xvii

Chapter 4
Chapter 4 covers testing in Clojure, focusing primarily on the clojure.test testing library. You’ll
learn various techniques for many common testing scenarios, along with tools to help measure the
quality of your code.

Chapter 5
In Chapter 5, you will learn how to build a task management web application similar to the popular
Trello application in ClojureScript. You’ll also learn the techniques for sharing functions between
both your server-side and client-side applications.

Chapter 6
Chapter 6 takes a look at Datomic and how it applies the concept of immutability to databases.
You’ll learn the basics of how to model data in a Datomic database and how to extract that infor-
mation. Then you’ll apply this knowledge to building a database to support the task management
application from Chapter 5.

Chapter 7
In Chapter 7, you’ll take a look at performance and how to make your Clojure code execute faster.
You’ll discover how with a little work you can tweak your Clojure code to be as fast as Java code.

TOOLS YOU WILL NEED

Just as in any good adventure or journey, having the right tools makes things go much smoother.
Fortunately, to work through the examples in this book, you only need three things: Java,
Leiningen, and a good text editor.

Java
Most computers these days come with Java pre-installed, but in order to run the examples contained
in this book you need to make sure you have installed a recent version. The code examples in this
book were written with and confi rmed to work with JDK 1.8.0_25. For instructions on how to
download and install the proper JDK for your platform, see the documentation at Oracle’s JDK
download page: (http://www.oracle.com/technetwork/java/javase/downloads/index.html).

Leiningen
Leiningen, according to their website (http://leiningen.org), is the most contributed-to Clojure
project. For those of you coming from a background in Java, Leiningen fi lls a similar role that

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://leiningen.org

xviii

INTRODUCTION

fl ast.indd 05/03/2016 Page xviii

Maven does for the Java world, only without all of the XML, and you can avoid wanting to pull
your hair out. It helps you manage the dependencies for your project and declaratively describe your
project and confi guration, and provides access to a wealth of plugins for everything from code
analysis to automation, and more. Leiningen makes your Clojure experience much more enjoyable.

Fortunately, getting Leiningen up and running is a fairly simple task. You’ll want to install the latest
version available, which at the time of this writing is 2.5.3. Please refer to the Leiningen website for
instructions particular to your programming environment.

Editors
Once you have Leiningen installed, the only thing left to do is to make sure you have a good text
editor to effi ciently edit your Clojure code. If you have a favorite editor, just use what you’re already
comfortable with. However, if your editor doesn’t support basic things like parentheses balancing,
integration with the REPL, syntax highlighting, or properly indenting Clojure code, you may want
to consider one of the editors below.

Emacs
Emacs is the favored editor of many grizzled veterans. It has a long history with Lisp. Even though
it has a steep learning curve, it is considered by many to be very powerful, and no other editor is as
extensible. There are many custom Emacs confi gurations designed to help ease the learning curve,
such as Emacs Prelude (https://github.com/bbatsov/prelude), which also contains a sensible
default confi guration for developing in many languages, including Clojure.

LightTable
LightTable (http://lighttable.com) began life as a Kickstarter project with a unique new
vision of how to integrate the code editor, REPL, and documentation browser for Clojure. It has
delivered on those promises and then some and has gained popularity among many in the Clojure
community.

Cursive (IntelliJ)
If you’re already comfortable with using any of the various JetBrains IDEs, you’ll be happy to know
that there is a plugin for IntelliJ called Cursive (https://cursive-ide.com). Besides having good
integration with nREPL, it also stays true to its reputation and contains excellent refactoring sup-
port, as well as debugging and Java interop.

Counterclockwise (Eclipse)
For those who are familiar with Eclipse, there is Counterclockwise (http://doc.ccw-ide.org),
which can be installed as either an Eclipse plugin or a standalone product. Counterclockwise boasts
many of the same features as the previous editors, integration with the REPL, and ability to evaluate
code inline.

https://github.com/bbatsov/prelude
http://lighttable.com
https://cursive-ide.com
http://doc.ccw-ide.org

xix

INTRODUCTION

fl ast.indd 05/03/2016 Page xix

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicates notes, tips, hints, tricks, and/or asides to the current
discussion.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show code within the text like so: persistence.properties.

 ➤ We show all code snippets in the book using this style:

 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 InputStream in = null;
 try {

 ➤ URLs in text appear like this: http://<Slave Hostname>:50075.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All of the source code used in this
book is available for download at www.wiley.com. Specifi cally for this book, the code download is
on the Download Code tab at:

www.wiley.com/go/professionalclojure

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 9781119267171
to fi nd the code. And a complete list of code downloads for all current Wrox books is available at
www.wiley.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-119-26727-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

http://www.wiley.com
http://www.wiley.com/go/professionalclojure
http://www.wrox.com
http://www.wiley.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download
http://www.wrox.com/dynamic/books/download.aspx

xx

INTRODUCTION

fl ast.indd 05/03/2016 Page xx

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wiley.com/go/ and click the Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox
editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

http://www.wiley.com/go
http://www.wrox.com/contact/techsupport
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

xxi

INTRODUCTION

fl ast.indd 05/03/2016 Page xxi

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

c01.indd 04/23/2016 Page 1

Have a Beginner’s Mind
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the differences between imperative and functional
programming

 ➤ Learning how to think more functionally

 ➤ Discovering Clojure’s unique perspective on object-oriented
programming

If your mind is empty, it is always ready for anything, it is open to
everything. In the beginner’s mind there are many possibilities, but in the
expert’s mind there are few.

—Shunryu Suzuki

Over the past thirty years many popular programming languages have more in common with
each other than they have differences. In fact, you could argue that once you have learned one
language, it’s not diffi cult to learn another. You merely have to master the subtle differences
in syntax, and maybe understand a new feature that isn’t present in the language that you’re
familiar with. It’s not diffi cult to call yourself a polyglot programmer when many of the top
languages in use today are all so similar.

Clojure, on the other hand, comes from a completely different lineage than most of the popu-
lar languages in use today. Clojure belongs to the Lisp family of programming languages,
which has a very different syntax and programming style than the C-based languages you are
probably familiar with. You must leave all of your programming preconceptions behind in
order to gain the most from learning Clojure, or any Lisp language in general.

1

2 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 2

Forget everything you know, or think you know about programming, and instead approach it as if
you were learning your very fi rst programming language. Otherwise, you’ll just be learning a new
syntax, and your Clojure code will look more like Java/C/Ruby and less like Clojure is designed to
look. Learning Clojure/Lisp will even affect the way you write in other languages, especially with
Java 8 and Scala becoming more popular.

FUNCTIONAL THINKING

C, C++, C#, Java, Python, Ruby, and even to some extent Perl, all have very similar syntax. They
make use of the same programming constructs and have an emphasis on an imperative style of pro-
gramming. This is a style of programming well suited to the von Neumann architecture of comput-
ing that they were designed to execute in. This is probably most apparent in the C language, where
you are responsible for allocating and de-allocating memory for variables, and dealing directly with
pointers to memory locations. Other imperative languages attempt to hide this complexity with
varying degrees of success.

In computer science, imperative programming is a programming paradigm that
uses statements that change a program’s state.

This C-style of programming has dominated the programming scene for a very long time, because
it fi ts well within the dominant hardware architectural paradigm. Programs are able to execute
very effi ciently, and also make effi cient use of memory, which up until recently had been a very real
constraint. This effi ciency comes at the cost of having more complex semantics and syntax, and it is
increasingly more diffi cult to reason about the execution, because it is so dependent upon the state
of the memory at the time of execution. This makes doing concurrency incredibly diffi cult and error
prone. In these days of cheap memory and an ever growing number of multiple core architectures, it
is starting to show its age.

Functional programming, however, is based on mathematical concepts, rather than any given com-
puting architecture. Clojure, in the spirit of Lisp, calls itself a general-purpose language; however, it
does provide a number of functional features and supports the functional style of programming very
well. Clojure as a language not only offers simpler semantics than its imperative predecessors, but it
also has arguably a much simpler syntax. If you are not familiar with Lisp, reading and understand-
ing Clojure code is going to take some practice. Because of its heavy focus on immutability, it makes
concurrency simple and much less error prone than having to manually manage locks on memory
and having to worry about multiple threads reading values simultaneously. Not only does Clojure
provide all of these functional features, but it also performs object-oriented programming better
than its Java counterpart.

Value Oriented
Clojure promotes a style of programming commonly called “value-oriented programming.”
Clojure’s creator, Rich Hickey, isn’t the fi rst person to use that phrase to describe functional

Functional Thinking ❘ 3

c01.indd 04/23/2016 Page 3

programming, but he does an excellent job explaining it in a talk titled The Value of Values that he
gave at Jax Conf in 2012 (https://www.youtube.com/watch?v=-6BsiVyC1kM).

By promoting this style of value-oriented programming, we are focused more on the values than
mutable objects, which are merely abstractions of places in memory and their current state.
Mutation belongs in comic books, and has no place in programming. This is extremely powerful,
because it allows you to not have to concern yourself with worrying about who is accessing your
data and when. Since you are not worried about what code is accessing your data, concurrency now
becomes much more trivial than it ever was in any of the imperative languages.

One common practice when programming in an imperative language is to defensively make a copy
of any object passed into a method to ensure that the data does not get altered while trying to use
it. Another side effect of focusing on values and immutability is that this practice is no longer nec-
essary. Imagine the amount of code you will no longer have to maintain because you’ll be using
Clojure.

In object-oriented programming, we are largely concerned with information hiding or restrict-
ing access to an object’s data through encapsulation. Clojure removes the need for encapsulation
because of its focus on dealing with values instead of mutable objects. The data becomes semanti-
cally transparent, removing the need for strict control over data. This level of transparency allows
you to reason about the code, because you can now simplify complex functions using the substitu-
tion model for procedure application as shown in the following canonical example. Here we simplify
a function called sum-of-squares through substituting the values:

(defn square [a] (* a a))
(defn sum-of-squares [a b] (+ (square a) (square b))

; evaluate the expression (sum-of-squares 4 5)

(sum-of-squares 4 5)
(+ (square 4) (square 5))
(+ (* 4 4) (* 5 5))
(+ 16 25)
41

By favoring functions that are referentially transparent, you can take advantage of a feature called
memorization. You can tell Clojure to cache the value of some potentially expensive computation,
resulting in faster execution. To illustrate this, we’ll use the Fibonacci sequence, adapted for Clojure,
as an example taken from the classic MIT text Structure and Interpretation of Computer Programs
(SICP).

(defn fib [n]
 (cond
 (= n 0) 0
 (= n 1) 1
 :else (+ (fib (- n 1))
 (fib (- n 2)))))

https://www.youtube.com/watch?v=-6BsiVyC1kM

