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 INTRODUCTION

WHAT IS CLOJURE? 

Clojure is a dynamic, general-purpose programming language, combining the 
approachability and interactive development of a scripting language with an 
effi cient and robust infrastructure for multithreaded programming. Clojure is a 
compiled language, yet remains completely dynamic—every feature supported 
by Clojure is supported at runtime. Clojure provides easy access to the Java 
frameworks, with optional type hints and type inference, to ensure that calls to 
Java can avoid refl ection.

Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and 
a powerful macro system. Clojure is predominantly a functional programming 
language, and features a rich set of immutable, persistent data structures. When 
mutable state is needed, Clojure offers a software transactional memory system 
and reactive Agent system that ensure clean, correct, multithreaded designs.

—Rich Hickey, author of Clojure

This quote from Rich Hickey, the creator of Clojure, captures what Clojure is. Many people equate 
Clojure with functional programming, but much like Lisp, its predecessor, it’s a general-purpose 
language that will support you no matter what paradigm you decide to program in. 

Clojure is, however, very opinionated and offers great support for programming in a functional 
manner, with its focus on immutable values and persistent data structures. You may be surprised 
to know that Clojure also offers the ability to do object-oriented programming, which we cover in 
this book.

WHO IS THIS BOOK FOR?

This book was written with the professional programmer in mind. This means you should have 
experience programming in a language, and you should know the basic syntax and concepts in 
Clojure, and be ready to take Clojure programming to the next level. Our goal is to take you from 
a Clojure beginner to being able to think like a Clojure developer. Learning Clojure is much more 
than just learning a new syntax. You must use tools and constructs much differentely than anything 
you may be familiar with.
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DEMO APPLICATION SOURCE CODE

You can access the source code from the Wiley website at www.wiley.com/go/ 
professionalclojure or at our demo application via Github at https://github
.com/backstopmedia/clojurebook.

A powerful programming language is more than just a means for instructing 
a computer to perform tasks. The language also serves as a framework within 
which we organize our ideas about processes. 

—Structure and Interpretation of Computer Programs

This book assumes some prior knowledge of Clojure and programming in general, but does not 
assume profi ciency in Clojure. It will cover a broad scope of topics from changing the way you think 
and approach programming to how you integrate the REPL into your normal development routine 
to how you build real world applications using Ring and ClojureScript. 

WHAT WILL YOU LEARN?

Our goal is to provide you with some real world examples of how to apply your Clojure knowledge 
to your day-to-day programming, not just theory and academia. 

Chapter 1
In Chapter 1, you will learn about Clojure’s unique view on designing programs. You’ll discover 
some of the things that set Clojure apart from other languages, for example, how immutability is the 
default, and how Clojure qualifi es as object-oriented programming.

Chapter 2
In Chapter 2, you will learn how to become profi cient with the REPL and various tips and tech-
niques for interacting with your actual application through the REPL. You’ll learn how to run your 
code and tests from the REPL as well as how to write code that is easily reloaded from the REPL 
without having to restart it.

Chapter 3
In Chapter 3, you learn about building web services with Compojure, and the various concepts 
involved such as routes, handlers, and middleware. You will build a complete web service, and then 
learn various techniques for deploying your new application.

http://www.wiley.com/go
https://github
https://github.com/backstopmedia/clojurebook
http://www.wiley.com/go/professionalclojure
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Chapter 4
Chapter 4 covers testing in Clojure, focusing primarily on the clojure.test testing library. You’ll 
learn various techniques for many common testing scenarios, along with tools to help measure the 
quality of your code.

Chapter 5
In Chapter 5, you will learn how to build a task management web application similar to the popular 
Trello application in ClojureScript. You’ll also learn the techniques for sharing functions between 
both your server-side and client-side applications.

Chapter 6
Chapter 6 takes a look at Datomic and how it applies the concept of immutability to databases. 
You’ll learn the basics of how to model data in a Datomic database and how to extract that infor-
mation. Then you’ll apply this knowledge to building a database to support the task management 
application from Chapter 5.

Chapter 7
In Chapter 7, you’ll take a look at performance and how to make your Clojure code execute faster. 
You’ll discover how with a little work you can tweak your Clojure code to be as fast as Java code. 

TOOLS YOU WILL NEED

Just as in any good adventure or journey, having the right tools makes things go much smoother. 
Fortunately, to work through the examples in this book, you only need three things: Java, 
Leiningen, and a good text editor.

Java
Most computers these days come with Java pre-installed, but in order to run the examples contained 
in this book you need to make sure you have installed a recent version. The code examples in this 
book were written with and confi rmed to work with JDK 1.8.0_25. For instructions on how to 
download and install the proper JDK for your platform, see the documentation at Oracle’s JDK 
download page: (http://www.oracle.com/technetwork/java/javase/downloads/index.html).

Leiningen
Leiningen, according to their website (http://leiningen.org), is the most contributed-to Clojure 
project. For those of you coming from a background in Java, Leiningen fi lls a similar role that 

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://leiningen.org
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Maven does for the Java world, only without all of the XML, and you can avoid wanting to pull 
your hair out. It helps you manage the dependencies for your project and declaratively describe your 
project and confi guration, and provides access to a wealth of plugins for everything from code 
analysis to automation, and more. Leiningen makes your Clojure experience much more enjoyable.

Fortunately, getting Leiningen up and running is a fairly simple task. You’ll want to install the latest 
version available, which at the time of this writing is 2.5.3. Please refer to the Leiningen website for 
instructions particular to your programming environment.

Editors
Once you have Leiningen installed, the only thing left to do is to make sure you have a good text 
editor to effi ciently edit your Clojure code. If you have a favorite editor, just use what you’re already 
comfortable with. However, if your editor doesn’t support basic things like parentheses balancing, 
integration with the REPL, syntax highlighting, or properly indenting Clojure code, you may want 
to consider one of the editors below.

Emacs
Emacs is the favored editor of many grizzled veterans. It has a long history with Lisp. Even though 
it has a steep learning curve, it is considered by many to be very powerful, and no other editor is as 
extensible. There are many custom Emacs confi gurations designed to help ease the learning curve, 
such as Emacs Prelude (https://github.com/bbatsov/prelude), which also contains a sensible 
default confi guration for developing in many languages, including Clojure.

LightTable
LightTable (http://lighttable.com) began life as a Kickstarter project with a unique new 
vision of how to integrate the code editor, REPL, and documentation browser for Clojure. It has 
delivered on those promises and then some and has gained popularity among many in the Clojure 
community. 

Cursive (IntelliJ)
If you’re already comfortable with using any of the various JetBrains IDEs, you’ll be happy to know 
that there is a plugin for IntelliJ called Cursive (https://cursive-ide.com). Besides having good 
integration with nREPL, it also stays true to its reputation and contains excellent refactoring sup-
port, as well as debugging and Java interop.

Counterclockwise (Eclipse)
For those who are familiar with Eclipse, there is Counterclockwise (http://doc.ccw-ide.org), 
which can be installed as either an Eclipse plugin or a standalone product. Counterclockwise boasts 
many of the same features as the previous editors, integration with the REPL, and ability to evaluate 
code inline.

https://github.com/bbatsov/prelude
http://lighttable.com
https://cursive-ide.com
http://doc.ccw-ide.org
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CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of 
conventions throughout the book.

NOTE Notes indicates notes, tips, hints, tricks, and/or asides to the current 
discussion.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show code within the text like so: persistence.properties. 

 ➤ We show all code snippets in the book using this style:

        FileSystem fs = FileSystem.get(URI.create(uri), conf);
        InputStream in = null;
        try {

 ➤ URLs in text appear like this: http://<Slave Hostname>:50075.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All of the source code used in this 
book is available for download at www.wiley.com. Specifi cally for this book, the code download is 
on the Download Code tab at:

www.wiley.com/go/professionalclojure

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 9781119267171 
to fi nd the code. And a complete list of code downloads for all current Wrox books is available at 
www.wiley.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may fi nd it easiest to search 
by ISBN; this book’s ISBN is 978-1-119-26727-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, 
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

http://www.wiley.com
http://www.wiley.com/go/professionalclojure
http://www.wrox.com
http://www.wiley.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download
http://www.wrox.com/dynamic/books/download.aspx
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ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one 
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake 
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may 
save another reader hours of frustration, and at the same time, you will be helping us provide even 
higher quality information. 

To fi nd the errata page for this book, go to www.wiley.com/go/ and click the Errata link. On 
this page you can view all errata that has been submitted for this book and posted by Wrox 
editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent 
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a 
web-based system for you to post messages relating to Wrox books and related technologies and 
interact with other readers and technology users. The forums offer a subscription feature to e-mail 
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as 
you read this book, but also as you develop your own applications. To join the forums, just follow 
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to 
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to 
post your own messages, you must join.

http://www.wiley.com/go
http://www.wrox.com/contact/techsupport
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml
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 Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the web. If you would like to have new messages from a particular forum 
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works, as well as many common questions specifi c to P2P 
and Wrox books. To read the FAQs, click the FAQ link on any P2P page. 
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Have a Beginner’s Mind 
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the differences between imperative and functional 
programming

 ➤ Learning how to think more functionally

 ➤ Discovering Clojure’s unique perspective on object-oriented 
programming

If your mind is empty, it is always ready for anything, it is open to 
everything. In the beginner’s mind there are many possibilities, but in the 
expert’s mind there are few.

—Shunryu Suzuki

Over the past thirty years many popular programming languages have more in common with 
each other than they have differences. In fact, you could argue that once you have learned one 
language, it’s not diffi cult to learn another. You merely have to master the subtle differences 
in syntax, and maybe understand a new feature that isn’t present in the language that you’re 
familiar with. It’s not diffi cult to call yourself a polyglot programmer when many of the top 
languages in use today are all so similar. 

Clojure, on the other hand, comes from a completely different lineage than most of the popu-
lar languages in use today. Clojure belongs to the Lisp family of programming languages, 
which has a very different syntax and programming style than the C-based languages you are 
probably familiar with. You must leave all of your programming preconceptions behind in 
order to gain the most from learning Clojure, or any Lisp language in general. 

1
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Forget everything you know, or think you know about programming, and instead approach it as if 
you were learning your very fi rst programming language. Otherwise, you’ll just be learning a new 
syntax, and your Clojure code will look more like Java/C/Ruby and less like Clojure is designed to 
look. Learning Clojure/Lisp will even affect the way you write in other languages, especially with 
Java 8 and Scala becoming more popular.

FUNCTIONAL THINKING

C, C++, C#, Java, Python, Ruby, and even to some extent Perl, all have very similar syntax. They 
make use of the same programming constructs and have an emphasis on an imperative style of pro-
gramming. This is a style of programming well suited to the von Neumann architecture of comput-
ing that they were designed to execute in. This is probably most apparent in the C language, where 
you are responsible for allocating and de-allocating memory for variables, and dealing directly with 
pointers to memory locations. Other imperative languages attempt to hide this complexity with 
varying degrees of success. 

In computer science, imperative programming is a programming paradigm that 
uses statements that change a program’s state.

This C-style of programming has dominated the programming scene for a very long time, because 
it fi ts well within the dominant hardware architectural paradigm. Programs are able to execute 
very effi ciently, and also make effi cient use of memory, which up until recently had been a very real 
constraint. This effi ciency comes at the cost of having more complex semantics and syntax, and it is 
increasingly more diffi cult to reason about the execution, because it is so dependent upon the state 
of the memory at the time of execution. This makes doing concurrency incredibly diffi cult and error 
prone. In these days of cheap memory and an ever growing number of multiple core architectures, it 
is starting to show its age. 

Functional programming, however, is based on mathematical concepts, rather than any given com-
puting architecture. Clojure, in the spirit of Lisp, calls itself a general-purpose language; however, it 
does provide a number of functional features and supports the functional style of programming very 
well. Clojure as a language not only offers simpler semantics than its imperative predecessors, but it 
also has arguably a much simpler syntax. If you are not familiar with Lisp, reading and understand-
ing Clojure code is going to take some practice. Because of its heavy focus on immutability, it makes 
concurrency simple and much less error prone than having to manually manage locks on memory 
and having to worry about multiple threads reading values simultaneously. Not only does Clojure 
provide all of these functional features, but it also performs object-oriented programming better 
than its Java counterpart. 

Value Oriented
Clojure promotes a style of programming commonly called “value-oriented programming.” 
Clojure’s creator, Rich Hickey, isn’t the fi rst person to use that phrase to describe functional 
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programming, but he does an excellent job explaining it in a talk titled The Value of Values  that he 
gave at Jax Conf in 2012 (https://www.youtube.com/watch?v=-6BsiVyC1kM). 

By promoting this style of value-oriented programming, we are focused more on the values than 
mutable objects, which are merely abstractions of places in memory and their current state. 
Mutation belongs in comic books, and has no place in programming. This is extremely powerful, 
because it allows you to not have to concern yourself with worrying about who is accessing your 
data and when. Since you are not worried about what code is accessing your data, concurrency now 
becomes much more trivial than it ever was in any of the imperative languages. 

One common practice when programming in an imperative language is to defensively make a copy 
of any object passed into a method to ensure that the data does not get altered while trying to use 
it. Another side effect of focusing on values and immutability is that this practice is no longer nec-
essary. Imagine the amount of code you will no longer have to maintain because you’ll be using 
Clojure.

In object-oriented programming, we are largely concerned with information hiding or restrict-
ing access to an object’s data through encapsulation. Clojure removes the need for encapsulation 
because of its focus on dealing with values instead of mutable objects. The data becomes semanti-
cally transparent, removing the need for strict control over data. This level of transparency allows 
you to reason about the code, because you can now simplify complex functions using the substitu-
tion model for procedure application as shown in the following canonical example. Here we simplify 
a function called sum-of-squares through substituting the values: 

(defn square [a] (* a a))
(defn sum-of-squares [a b] (+ (square a) (square b))

; evaluate the expression (sum-of-squares 4 5)

(sum-of-squares 4 5)
(+ (square 4) (square 5))
(+ (* 4 4) (* 5 5))
(+ 16 25)
41

By favoring functions that are referentially transparent, you can take advantage of a feature called 
memorization. You can tell Clojure to cache the value of some potentially expensive computation, 
resulting in faster execution. To illustrate this, we’ll use the Fibonacci sequence, adapted for Clojure, 
as an example taken from the classic MIT text Structure and Interpretation of Computer Programs 
(SICP).

(defn fib [n]
  (cond
    (= n 0) 0
    (= n 1) 1
    :else (+ (fib (- n 1))
             (fib (- n 2)))))

https://www.youtube.com/watch?v=-6BsiVyC1kM

