Modern X86 :
Assembly Language
Programming

Covers x86 64-bit, AVX,
AVX2, and AVX-512

Second Edition

Daniel Kusswurm

Apress’

Modern X86 Assembly
Language Programming

Daniel Kusswurm

Apress’

Modern X86 Assembly Language Programming: Covers x86 64-bit, AVX, AVX2, and AVX-512

Daniel Kusswurm
Geneva, IL, USA

ISBN-13 (pbk): 978-1-4842-4062-5 ISBN-13 (electronic): 978-1-4842-4063-2
https://doi.org/10.1007/978-1-4842-4063-2

Library of Congress Control Number: 2018964262
Copyright © 2018 by Daniel Kusswurm

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio
rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484240625. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4063-2
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
www.apress.com/9781484240625
http://www.apress.com/source-code

This book is dedicated to those individuals who suffer the ravages of
Alzheimer’s disease and their unsung compassionate caregivers.

Contents

ADOUT the AUTNOL ...eceeeiiireeeeiirrseseirrsesssssnssnssssrssnsssrssnnssssssnnssssnsnnnsssssnnnssssnnnnnnnsnnnns Xiii

About the Technical REVIEWETccurrrrrremmmmssssssssmssssnsnsssssssssssssssnnsssssssssssssnnnnnsssssnnns XV

AcknowledgmeEnts.......cccueermssssssnmsnnnmmmsssssssssssssnsssesssssssssssnnnnsessssssssssnnnnnsssssssssssnnnnns XVii
INtroduction ... —————————————————— Xix
Chapter 1: X86-64 Core ArchiteCturecccuusssemmenmmmmssssssssssssssnssssssssssssssssssssssssssnns 1
HiSTOMICAl OVEIVIBWcvecercierc e s 1
D L B] LT 3
Fundamental Data TYPESccceceveereririere e s se s a e p e p e nr e p e n e ne e nnan 3
Numerical Data TYPESovvrmrmririnisisisisissi s 4

SIMD DA TYPES .. evueurusresessssssesessssssssessssssss s e bbb bbb 5
Miscellaneous Data TYPEScovvrrrmsmsinmnmnisiins s 6
Internal ArChItECIUNE. ..o 6
General-PurpoSe REJISTEIS........cccoiuruieeririecciri e e e 7
RFLAGS REJISTNc.ceeeeeeecirieeeris e e s e e s et e e n s 9
INSTIUCHION POINTEN ... s 10
INSTIUCLION OPEIANGSeeeceieeecrerte ettt e s p e e p s 10
MEMOTY AQUIESSING......ceeiierieirierir et se s e e e b e s bt ae e e e e e e e ae e e ne st e aenananas 1
Differences Between x86-64 and x86-32 Programming.........cccueevrerrersersersersessessessensens 13
INValId INSTFUCHIONS ...t ———— 15
Deprecated INSLIUCLIONS ... ———— 15
INSTrUCTION St OVEIVIEW ...t 15
1141 1P SRS 18

vi

CONTENTS

Chapter 2: X86-64 Core Programming — Part 1........ccccinnnnemmmmnssssnnnmnsssssnsssssssnnns 21
Simple Integer ArithmetiC..........ccovviecnicns 21
Addition and SUDIIACTIONcouiuiiereiceer e 22
LOGICAl OPEIALIONS......ccceeererrecrie e se e e b s b e e sen e r e e n e e ae e enenennnnnnanas 24
T T TR0 0 TeT 2 LA [0] SR 27
Advanced Integer ArithmetiC........coceeeeerececerece e 30
Multiplication and DiVISIONccereerererreieserriseseser e s e s nnes 31
Calculations USiNg MiXEd TYPEScoeueerererreerererrsesesesseseesessssesesessssssssessssssssessssssssssssssssssssssssssssssessaes 35
Memory Addressing and Condition COUES..........cuevrrrerrerreriensenserserses s e e e e 40
Memory AdAreSSiNg MOUEScceveererererrererererererereressessesessesessesessessesessesessessssessssessssessesessenssassansens 40
CONAITION COUBS.... e e 44
SUMMEAIY ...ttt e e e e ae e s a e e e Re e eae e s Renn e e nne e nanan 49
Chapter 3: X86-64 Core Programming — Part 2.........cccccusssemmmmmsssssnnmnssssssnssssssnnns 51
4 1RSSR 51
ONE-DIMENSIONAI AITAYSceveerreeeresesesseesse s sesesseses e sss e sse e sese s e ss s e sss e sbe e sae s ssesrsseese e sseneenenennsssnnens 51
TWO-DIMENSIONAI AITAYScceveeererrrerreerre s e s ss e se s se e se s e s e s e e ae e se e s aenr e e er e e p e e nennnnis 58
B3 1T 0] TSRS 68
£33 1110 4
LT T T 032 T T R 4l
ST 00T =T - (0 o 74
COMPATING AITAYS ...eveeeeererereesersesersesessesssessesessessssessssessssessesessessssessssessesessessssessssessssessssessesssssssssesansens 79
D g VA T 7 | SO SSS 82
SUMMEAIY ...ttt a e se e e R e ea e e Re e eae e s ae e e e nne e nanan 86
Chapter 4: Advanced Vector EXtenSionsS......uceeeessmsssns 87
AVX OVEIVIBWcoveeeecescesesesesse e s e ses e sse e s sss e ssesas e sse st s sss e ssesss e ssessssesssssnssassssnssssenns 87
SIMD Programming CONCEPLSccceveererrerreriersinser s sesses s e e s e sns e s s s s ssssnssnssnnnes 88
Wraparound vs. Saturated ArithmetiC ... e 90
AVX Execution ENVIFONMENT ..o sne e e snssnesnesnesn s s nns 91
REGISIEE SBL ... p R R R e R nnnae s 91

CONTENTS

D L 1 0TSSR 92
INSTFUCTION SYNTAX......ccteieeeeree st s ra e e e a e e s s e s s s e e sa e e sae e eaesesaesaesesaenesaenenaeananns 93
AVX Scalar Floating-Point............cccoeeeeeienesesese e sss s s snesnesnessssnsssssnssssnnns 94
Floating-Point Programming CONCEPLS.........ccoeurueerererieenerereeesesesiss e ses 94
Scalar Floating-Point REGISTEr SEi.........coeirririerrreererrre e 97
CoNtrol-Status REGISTENcccoueeciereeecrirte e 97
INSTrUCTION SEE OVEIVIBW ... 98
AVX Packed Floating-Point............cccouveeenmrennsenessnese s s sessesse s sssesnes 100
INSTIUCHION SET OVEIVIBW ... 101
DAV D Qo et o I (=T T S 103
INSTrUCEION SEt OVEIVIBW ...t 104
Differences Between x86-AVX and X86-SSE...........ccocvviinnninnnsnnsssssee e 105
E3 1111 P2 7SS 107
Chapter 5: AVX Programming — Scalar Floating-Pointcccosveememnnnnnnssssnns 109
Scalar Floating-Point Arithmeticcccvvrvrrrinrrrr e 109
Single-Precision FIOating-PoiNt..........cccoeeorrreicrreescss e sssessssssenes 110
Double-Precision FI0ating-Point...........cccovriiinnnnesesreesess s ssssssssnens 112
Scalar Floating-Point Compares and CONVErSIONScccvvevrerrerressessessessessessessessenens 118
FI0ating-Point COMPAIESccceeiereerererereressersesersssessesessesassessssessssessesessessssessssessesessssssssssssessssessenenes 118
FI0ating-Point CONVEISIONS........cecvrerereerereresersesersesessesessesassessesessesessesessesassessssessesessenssssssssessssessenenns 128
Scalar Floating-Point Arrays and MatriCes..........ccccuvrerrrsrssssss s 135
FIOALING-POINT ATTAYS ...t a s se s s s e s b e e e ne e e e 135
FI0ating-Point MALICEScorurueererrreecriree e 138
Calling CONVENTION.........ccceuiereerrerrese s e e rs e snesn s ne e sne e e 143
BaSIC STACK FIAMES.......cccccccecccee e 144
Using Non-Volatile General-PurpoSe REGISLENSccovurererererereresesseesesessssssesessssssesessssssssessssssssnens 148
Using Non-Volatile XMM RegiSTIErScccerrrreiererrrrrsnerisinsesesessseesessssssssesesssssssssssssssssssssssssssssssssssnnns 153
Macros for Prologs and EPIlOGS.......coueerererresenesessssnesessssesesesesssesessnnns 159
31111 1P 7R 166

vii

CONTENTS

Chapter 6: AVX Programming - Packed Floating-Point.............cccenssennnrnsssnnnnn 167
Packed Floating-Point Arithmetic...........cccverrrsrsrss s e 167
Packed Floating-Point COMPAreScccocvirrririersin s ses e s e ses s sssnnns 173
Packed Floating-Point CONVErSIONS...........cuevververrersersessessessessessessesssssessessesssssassssssssnns 179
Packed Floating-Point Arrayscccverrrsessensessessss s s s ses s sssssssssssssnssssssssssssssssnsnns 183
Packed Floating-Point SQUAre ROOLScccveeeierinenesne s sn s 184
Packed Floating-Point Array Min-IMaX........c.ccccorerrenmmnniesniesssese e sess e ssssessssesssssssssssssssssessssenns 188
Packed Floating-Point Least SQUArES.........cccuccevcrirre s sn e s s s 193
Packed Floating-Point MAtriCescccvcrrriersensenses s sn e e e snnnns 199
MatriX TrANSPOSITIONc.vveeeeererieeser e se s s e s ne e e e sennneas 199
MatriX MUBPHCALION........cvceeceereccee e 207
RS0 2 214
Chapter 7: AVX Programming — Packed INtegersuueemmmmmnrrsssssssssssnnnnsssssssnns 215
Packed Integer Addition and Subtraction...........cccvervrvrrrcrsr s 215
Packed Integer SRIftSccouciiriiennrrerr s 221
Packed Integer Multiplication...........c.ccocvcrsrinincerser e sn e 226
Packed Integer IMage ProCESSING.......ccvverrerrersersessersessessessessessessesssssessessssssssassssssssnns 232
Pixel Minimum-MaxXimum VAIUES ..o sese e sesessssssssssssssssssssssssaeas 232
e B T= Ty 1 O 240
PIXEl CONVEISIONSocueeercrccrceseeeseeneseeesesessesee e e e se s se s se e s se e s ss e s s s 246
g F= 1o TS (00 255
=10 I 1= 410 o T 262
B30 P2 T 274
Chapter 8: Advanced Vector EXtensions 2.......ccccouuesmmmsssssssssssssssssssssssssssssssssssns 277
AVX2 Execution EnVironment ... 277
AVX2 Packed FlIoating-Point...........ccoereeenenesrrerese e 278
AVX2 PaCKed INTEGETcceeirceerer e ss e s s s n e 279
X86 Instruction Set EXIENSIONS.........cccceernererssenrrse s sens 280
Half-Precision Floating-Point............ccoeoreinine e sn e 280

viii

CONTENTS

FUSEA-MUIIPIY-AGU (FIMA) c.c.cevvrrrrreeesssseesssmsssssssssssssssssssssssssssssssss 281
General-Purpose Register Instruction Set EXIENSIONSccccccvreveverererererenieressesse e sessesessesessessesenns 282
1111 112 SRS 283
Chapter 9: AVX2 Programming — Packed Floating-Point............ccocusnnnnnrnsssnnnnns 285
Packed Floating-Point Arithmetic........c..cccverercrcrss s 285
Packed Floating-Point Arraysc.ccvvrvrrernersensensesses s sessessessesssssessssssssssssssssssssnns 292
SIMPIE CAICUIALIONSceeeeeeeeeeeeeriee e s nn e r e ne e ae e s nnn s 292
COIUMN MEANS......veveeeerereesesesesssseesesssss e sssss e e s sss s e e sssse e e sssse e se e s s ese e e ssesa e nensssn e nensnse e s nansnnnnnnens 298
Correlation COBTTICIENT.........ccovreerererreeesirr e s senpsne e e ne e e e 305
Matrix Multiplication and TranSpOoSItionc.cccccvvmrirrnrr e 312
gD 17T 1o 320
Blend and Permute INStruCtioNS..........cccocvreicrnencrrescsessese e 333
Data Gather INStrUCLIONS..........ccoverercrrecrre e 339
1111 112 SRS 346
Chapter 10: AVX2 Programming — Packed INtegerscccrrssnmnnnnsssnnnnsssssnnnnns 347
Packed Integer Fundamentals.............ccvcrercrsrsnsis s 347
BaSiC AFTNMELIC ... e 347
PACK @NA UNPACK........coierrirrererirese s see e ssesaessessessessesaesaesaesaesaesassaesaesaesassaessessesssssensessensessensessensenes 352
P23 o (0] 1110 (0] OSSR 358
Packed Integer Image ProCESSING.........ccocvverenmrerenseresrssessssesesessessesssessssessesessessssssnes 363
PIXEI ClIPPING .e.veererreeenerereesesesessssesesesssse s s s e e e sss e e e s ss e e s se e e s sse e e sessese e sensssessssnsnsnsnnsssnsensnnnens 363
RGB PixXel Min=MaX VAIUES.......c.cerererrrreererersnesesessssssesessssssesessssssssessnens 369
RGB 10 GraySCale CONVEISIONccerrreerererreesesessssssesessssssesessssssesessssssssssssssssssssssssssssssssssssnsssssesssnens 376
31111 1P 7R 384
Chapter 11: AVX2 Programming — Extended Instructions.........cccussesssssasssssansns 385
FMA Programmingc.cceccevierreisensessessesssessesssssesssessessssssssssssssssssssssssesssssssssssssssssssnes 385
0] 10 o] 385
6T 1 Ll ST 388
PACKEA FIMA.......cveoveeeeesssssnssesssssssessmsssssssssssssssssssssssssssssssss 398

ix

CONTENTS

General-Purpose Register INStrucCtionsccoeeiernnerennsesssssess e 406
Flagless Multiplication and Shifts...........cccoreirrneiennrecsr e 406
Enhanced Bit Manipulation............ccoeeeerreiessreese e 412

Half-Precision Floating-Point CONVErSIONS.........cccvvrrerversersessessessesssssessessessessessasssssnnns 415

BT 111 12 SRS 419

Chapter 12: Advanced Vector Extensions 512.......ccccummmmmmssmmmmmmmmssssssssssssssssnnns 421

AVX-512 QVBIVIBW.....cvreereerrnesesessesesssss s sssssss s s ss s s s sas s sssss st sassss s ssssssnssassssass 41

AVX-512 Execution ENVIFONMENT..........ccccvieenieienrniesesssesss s ssssessssssssssssssnes 422
REGISTEN SBLS ...ttt se s ne e e p e n e 422
DALA TYPES ..uvveueererrereneresiese e s e s e e e s e e se e e e b e e e e R e Re e e s e Re e e R Re e e e Rennneas 423
INSTFUCLION SYNTAX......coeiereieicrerircrerirr e s s s s e e e sa e e e 424

INSErUCEION St OVEIVIBWc.cvreecereeceree e 427
L\ 427
AVUXST2CDcocccerereresesesesesesesesesesesesesesesesesesese e esese s e s sesesesesesesesesesesssesesssesssesssensssssenssesesesenenssenes 430
LGN 1 1 430
AVUXST2DQ......ccceerereresssssssssssssssesesesessssesssesesssssssssssesssssssssssesesesesenssenes 431
OPMASK REUISTEIS ...veuereerereererereerersesersesessessssessssessssessssessessssessssessesessessssessssessssessesessenssssssssessssessenens 431

BT 111 112 SRS 432

Chapter 13: AVX-512 Programming - Floating-Point...........ccucccmmmnssnnnnnnsssnnnns 433

Scalar FIoating-Point..........oco oo 433
MEIGE IMASKING ... v eueeereeeecseri et s e e se e e b e e e ae e e b s ae e e e s ne e e e s ne e s nas 433
Z8I0 MASKING......eovieerieerteirre et b e s e b e e e A e e R e e e Re e e e R e e R e e e Re e e Renenaeas 437
Instruction-Level ROUNAING........ccccoiecierrcr s e n e 440

Packed FIOating-Point ..o 444
Packed Floating-Point AfithmetiCcccovrueceeereceec e 445
Packed Floating-Point COMPAIEScccorurrrienerirreesesiriseese s se s sssnens 452
Packed Floating-Point COlUMN MEANS...........ccceerirreereririreereres e nens 457

LT (0 g 0 TST o o 0o 1T £ 466

CONTENTS

Matrix-Vector MURIPIICALIONcc.eoeiecece e 476
CONVOIULIONS ...ttt e e e b bt e bRt e b e ae e e b b e e e e pe e e e 485
1111 112 SRS 489
Chapter 14: AVX-512 Programming — Packed Integers......c.ccusmmmrmsssnnnnsssssnnnnss 491
BasiC AFtRMETICcccvcererr e e 491
IMAQE PrOCESSING....cueiuireereirrererserrerseraessessessessessessessesasssesassaesassaesassaesassassassassassassnsnsnns 497
PIXEI CONVEISIONSeceerrereesesssseesessssesssessssssssssesssssssssssssssessssssassssssssassnssssssssnsssssssesssssssssssnsnsssessnsnsns 497
IMAQGE THIESNOIAING ...c.cveveeeererrrreesi e e s e s se s s nenanne e e nennnens 504
IMAQGE STALISTICSveveueerrrrereererrre e r e s se s s e e ne e e e nennn e 510
RGB 10 GraySCale CONVEISIONcoceurreerererresesesessssssesessssssesessssasesessssssssssssssssssssssssssssssssssssnsssssssssnsns 520
31111 1P 7 527
Chapter 15: Optimization Strategies and Techniques........cccccussemrrnssssnnsssssssnnns 529
Processor MiCroarChit@CtUIEcveeererrersessessessessessessessessesses e s sessnssnssnssnssnssnssnsssnnnnns 529
Processor ArChiteCUrE OVEIVIEWcccecvrrrierersnrnsse s sssss e ses s e sssssss e sessssssssssssssssnsnnns 530
Microarchitecture Pipeline FUNCHONAIITYcccocevereninirccrr e 531
TR WL T T T S SSSS 532
Optimizing Assembly Language Codecceeeeeerereresessessessesssssssssssesssssssssssssssssnns 534
BaSiC TECHNIQUEScveereeirerir sttt e bbb e e e b e e e s 534
Floating-Point AFNMETIC.........cou i 536
Program BranCRES..........c.ccoceireieiciriececres st e e e e ne e n e 536
Data AlIGNMENT ...t e e s s e bbb e en e me e e e 538
SIMD TECHNIGUESveuereeteerie ettt b et st b et b e e ne s e e s e et s b e e e ae e e aenaeae s 539
SUMMEAY ...ttt r s n e e s sae e s e re e s e an e ene e e e nnnnnnnnns 540
Chapter 16: Advanced Programmingoocceeessssmssssssssssssssssssssssssssssssnssssssssssns 541
CPUID INSTIUCTIONveeeeereeriereersesse e saessesaessessessssssssssaesassaesassasssesassaesassassnssassassssssnnsnns 541
Non-Temporal MemOry STOFEScccccvreerseressessnsesesessesss e s sse s sss e ssssessesssnesnes 957
Data PrefetCh........ccociciercerircer s n 562
L L= I 4 =T 570
SUMMEAIY ...t a e e e ae e e re e s e a e e e ae e s e ne e nanas 584

xi

CONTENTS

APPENAiX A coovvirnnnnnnnnnnsnssnsnnnnssssn s —————————————————————s 3 QD

Software Utilities for X86 ProCESSOrS ... 585
LT LS (1 o P 585
Running a Source Code EXAMPIE.........cccerurueienerirreesesirineeseses s s s se e ss e s s e e sssssssnsnens 586
Creating a Visual STUdi0 C++ PrOJECTccvveceeerereeereririseeseses e 586

3T (=] (][594
X86 Programming Reference ManUAIS...........ccceeeerrrererereereresereseseressesaesessesessesessesassessssessssessesassens 594
X86 Programming and Microarchitecture REfEreNCeS.........ccvevvrerercereerererere s s s seesesaesenaens 595
ANCIlIArY RESOUICEScveereerereerererseseraeserseressesssersesessessssessssersssessesssssssssessssessssssssssssessssessssessensssenssaes 596
AlGOrthmM REEIENCESeeveereereeerte e rere e res s ae s s e s sae e se e aesesaesa s e sae e sae e s aenesaenaesesaenenaenenann 597
Ct+ REFBIBINCES ...evriccss s bbb 598
INA@X.uerierisrinn s ———————_————————_=—————_ 599

xii

About the Author

4|I\.'| i

,:- :_"Iu
/77 AU e
e | I|] (A
I "|I L
' || I‘n i !H”'u
(AN AN
AN | RN

Daniel Kusswurm has over 30 years of professional experience as a
software developer and computer scientist. During his career, he has
developed innovative software for medical devices, scientific instruments,
and image processing applications. On many of these projects, he
successfully employed x86 assembly language to significantly improve
the performance of computationally-intense algorithms and solve unique
programming challenges. His educational background includes a BS in
electrical engineering technology from Northern Illinois University along
with an MS and PhD in computer science from DePaul University.

xiii

About the Technical Reviewer

Paul Cohen joined Intel Corporation during the very early days of the x86
architecture, starting with the 8086, and retired from Intel after 26 years

in sales/marketing/management. He is currently partnered with Douglas
Technology Group, focusing on the creation of technology books on behalf
of Intel and other corporations. Paul also teaches a class that transforms
middle and high school students into real, confident entrepreneurs, in
conjunction with the Young Entrepreneurs Academy (YEA). He is also a
Traffic Commissioner for the City of Beaverton, Oregon and on the Board
of Directors of multiple non-profit organizations.

XV

Acknowledgments

The production of a motion picture and the publication of a book are somewhat analogous. Movie trailers
extol the performances of the lead actors. The front cover of a book trumpets the authors’ names. Actors and
authors ultimately receive public acclamation for their efforts. It is, however, impossible to produce a movie
or publish a book without the dedication, expertise, and creativity of a professional behind-the-scenes team.
This book is no exception.

I'would like to thank the talented editorial team at Apress for their efforts especially Steve Anglin, Mark
Powers, and Matthew Moodie. Paul Cohen deserves kudos for his meticulous technical review and practical
suggestions. Proofreader Ed Kusswurm merits applause and recognition for his hard work and constructive
feedback. I accept full responsibility for any remaining imperfections.

I'would also like to thank Nirmal Selvaraj, Dulcy Nirmala, Kezia Endsley, Dhaneesh Kumar and the
entire production staff at Apress for their contributions, and my professional colleagues for their support and
encouragement. Finally, I would like to recognize parental nodes Armin (RIP) and Mary along with sibling
nodes Mary, Tom, Ed, and John for their inspiration during the writing of this book.

xvii

Introduction

Since the invention of the personal computer, software developers have used x86 assembly language
to create innovative solutions for a wide variety of algorithmic challenges. During the early days of the
PC era, it was common practice to code large portions of a program or complete applications using x86
assembly language. Given the 21st Century prevalence of high-level languages such as C++, C#, Java, and
Python, it may be surprising to learn that many software developers still employ assembly language to code
performance-critical sections of their programs. And while compilers have improved remarkably over the
years in terms of generating machine code that is both spatially and temporally efficient, situations still exist
where it makes sense for a software developer to exploit the benefits of assembly language programming.
The single-instruction multiple-data (SIMD) architectures of modern x86 processors provide another
explanation for the continued interest in assembly language programming. A SIMD-capable processor
contains computational resources that facilitate simultaneous calculations using multiple data values, which
can significantly improve the performance of applications that must deliver real-time responsiveness. SIMD
architectures are also well-suited for computationally-intense problem domains, such as image processing,
audio and video encoding, computer-aided design, computer graphics, and data mining. Unfortunately,
many high-level languages and development tools are still unable to fully or even partially exploit the
SIMD capabilities of a modern x86 processor. Assembly language, on the other hand, enables the software
developer to take full advantage of a processor’s SIMD resources.

Modern X86 Assembly Language Programming

Modern X86 Assembly Language Programming, Second Edition is an edifying text about x86 64-bit (x86-64)
assembly language programming. The book’s content and organization are designed to help you quickly
understand x86-64 assembly language programming and the computational resources of Advanced Vector
Extensions (AVX). It also contains an abundance of source code that is structured to accelerate learning and
comprehension of essential x86-64 assembly language constructs and SIMD programming concepts. After
reading and using this book, you'll be able to code performance-enhancing functions and algorithms using
x86-64 assembly language and the AVX, AVX2, and AVX-512 instruction sets.

Before proceeding I should explicitly mention that this book does not cover x86-32 assembly language
programming. It also doesn’t discuss legacy x86 technologies such as the x87 floating-point unit, MMX,
and Streaming SIMD Extensions. The first edition remains relevant if you're interested in learning about
these topics. This book does not explain x86 architectural features or privileged instructions that are used
in operating systems. However, you will need to thoroughly understand the material that’s presented in this
book to develop x86 assembly language code for use in an operating system.

While it is still theoretically possible to write an entire application program using assembly language,
the demanding requirements of contemporary software development make such an approach impractical
and ill advised. Instead, this book concentrates on coding x86-64 assembly language functions that are
callable from C++. Each source code example was created using Microsoft Visual Studio C++ and Microsoft
Macro Assembler (MASM).

Xix

INTRODUCTION

Target Audience

The target audience for this book is software developers, including:

e Software developers who are creating application programs for Windows-based
platforms and want to learn how to write performance-enhancing algorithms and
functions using x86-64 assembly language

e Software developers who are creating application programs for non-Windows
environments and want to learn x86-64 assembly language programming

e Software developers who want to learn how to create SIMD calculating functions
using the AVX, AVX2, and AVX-512 instruction sets

e Software developers and computer science students who want or need to gain a
better understanding of the x86-64 platform and its SIMD architecture

The principal audience for Modern X86 Assembly Language Programming, Second Edition is Windows
software developers, since the source code examples were developed using Visual Studio C++ and MASM.
Software developers who are targeting non-Windows platforms can also benefit from this book since most
of the informative content is organized and communicated independent of any specific operating system. It
is assumed that readers of this book will have previous high-level language programming experience and a
basic understanding of C++. Familiarity with Visual Studio or Windows programming is not necessary.

Content Overview

The primary objective of this book is to help you learn x86 64-bit assembly language programming along
with AVX, AVX2, and AVX-512. The book’s chapters and content are structured to achieve this goal. Here’s a
brief overview of what you can expect to learn.

Chapter 1 covers the core architecture of the x86-64 platform. It includes a discussion of the
platform’s fundamental data types, internal architecture, register sets, instruction operands, and memory
addressing modes. This chapter also describes the core x86-64 instruction set. Chapters 2 and 3 explain
the fundamentals of x86-64 assembly language programming using the core instruction set and common
programming constructs, including arrays and structures. The source code examples presented in these
(and subsequent) chapters are packaged as working programs, which means that you can run, modify, or
otherwise experiment with the code to enhance your learning experience.

Chapter 4 focuses on the architectural resources of AVX including its register sets, data types, and
instruction set. Chapter 5 explains how to use the AVX instruction set to perform scalar floating-point
arithmetic using both single-precision and double-precision values. Chapters 6 and 7 illustrate AVX SIMD
programming using packed floating-point and packed integer operands.

Chapter 8 introduces AVX2 and explores its enhanced capabilities including data broadcasts, gathers,
and permutes. It also explains fused-multiply-add (FMA) operations. Chapters 9 and 10 contain source code
examples that exemplify a variety of computational algorithms using AVX2 with packed floating-point and
packed integer operands. Chapter 11 includes source code examples that demonstrate FMA programming.
This chapter also covers examples that explicate recent x86 platform extensions using the general-purpose
registers.

Chapter 12 delves into the architectural details of AVX-512. This chapter describes AVX-512’s register
sets and data types. It also elucidates pivotal AVX-512 enhancements including conditional execution and
merging, embedded broadcast operations, and instruction-level rounding. Chapters 13 and 14 contain
numerous source code examples that demonstrate how to exploit these advanced features.

XX

INTRODUCTION

Chapter 15 presents an overview of a modern x86 multi-core processor and its underlying
microarchitecture. This chapter also outlines specific coding strategies and techniques that can be used to
boost the performance of x86 assembly language code. Chapter 16 reviews several source code examples
that illustrate advanced x86 assembly language programming techniques including processor feature
detection, accelerated memory accesses, and multithreaded computations.

Appendix A describes how to execute the source code examples using Visual Studio and MASM. It also
includes a list of references and resources that you can consult for more information about x86 assembly
language programming.

Source Code

Source code download information for this book is available on the Apress website at https://www.apress.
com/us/book/9781484240625. For each chapter, there is a ZIP file that contains the C++ and assembly
language source code files along with the Visual Studio project files. There is no setup or install program to
run. You can simply extract the contents of a chapter ZIP file into a folder of your own choosing.

Caution The sole purpose of the source code is to elucidate programming examples that are directly
related to the topics discussed in this book. Minimal attention is given to essential software engineering
concerns such as robust error handling, security risks, numerical stability, rounding errors, or ill-conditioned
functions. You are responsible for addressing these issues should you decide to use any of the source code in
your own programs.

The source code examples were created using Visual Studio Professional 2017 (version 15.7.1) on a
PC running Windows 10 Pro 64-bit. The Visual Studio website (https://visualstudio.microsoft.com)
contains more information about this and the other editions of Visual Studio. Technical details regarding
Visual Studio installation, configuration, and application program development are available at https://
docs.microsoft.com/en-us/visualstudio/?view=vs-2017.

The recommended hardware platform for running the source code examples is an x86-based PC
with Windows 10 64-bit and a processor that supports AVX. An AVX2 or AVX-512 compatible processor
is required to run the source code examples that employ these instruction sets. You can use one of freely
available utilities listed in Appendix A to determine which x86-AVX instruction set extensions your PC
supports.

Additional Resources

An extensive set of x86-related programming documentation is available from both AMD and Intel.
Appendix A lists several important resources that both aspiring and experienced x86 assembly language
programmers will find useful. Of all the resources listed Appendix A, the most valuable reference is Volume
2 of Intel 64 and IA-32 Architectures Software Developer’s Manual - Combined Volumes: 1, 2A, 2B, 2C, 2D, 34,
3B, 3C, 3D, and 4 (https://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html). This tome contains comprehensive programming information for every x86
processor instruction including detailed operational descriptions, lists of valid operands, affected status
flags, and potential exceptions. You are strongly encouraged to consult this indispensable resource when
developing your own x86 assembly language code to verify correct instruction usage.

xxi

https://www.apress.com/us/book/9781484240625
https://www.apress.com/us/book/9781484240625
https://visualstudio.microsoft.com/
https://docs.microsoft.com/en-us/visualstudio/?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/?view=vs-2017
https://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

CHAPTER 1

X86-64 Core Architecture

Chapter 1 examines the x86-64’s core architecture from the perspective of an application program. It opens
with a brief historical overview of the x86 platform in order to provide a frame of reference for subsequent
content. This is followed by a review of fundamental, numeric, and SIMD data types. X86-64 core
architecture is examined next, which includes explanations of processor register sets, status flags, instruction
operands, and memory addressing modes. The chapter concludes with an overview of the core x86-64
instruction set.

Unlike high-level languages such as C and C++, assembly language programming requires the software
developer to comprehend specific architectural features of the target processor before attempting to write
any code. The topics discussed in this chapter will fulfill this requirement and provide a foundation for
understanding the sample code that’s presented later in this book. This chapter also provides the base
material that’s necessary to understand the x86-64’s SIMD enhancements.

Historical Qverview

Before examining the technical details of the x86-64’s core architecture, it can be beneficial to understand
how the architecture has evolved over the years. The short review that follows focuses on noteworthy
processors and instruction set enhancements that have affected how software developers use x86 assembly
language. Readers who are interested in a more comprehensive chronicle of the x86'’s lineage should consult
the resources listed in Appendix A.

The x86-64 processor platform is an extension of the original x86-32 platform. The first silicon
embodiment of the x86-32 platform was the Intel 80386 microprocessor, which was introduced in 1985.

The 80386 extended the architecture of the 16-bit 80286 to include 32-bit wide registers and data types,
flat memory model options, a 4 GB logical address space, and paged virtual memory. The 80486 processor
improved the performance of the 80386 with the inclusion of on-chip memory caches and optimized
instructions. Unlike the 80386 with its separate 80387 floating-point unit (FPU), most versions of the 80486
CPU also included an integrated x87 FPU.

Expansion of the x86-32 platform continued with the introduction of the first Pentium brand processor
in 1993. Known as the P5 microarchitecture, performance enhancements included a dual-instruction
execution pipeline, 64-bit external data bus, and separate on-chip memory caches for both code and
data. Later versions (1997) of the P5 microarchitecture incorporated a new computational resource called
MMX technology, which supports single-instruction multiple-data (SIMD) operations on packed integers
using 64-bit wide registers. A packed integer is a collection of multiple integer values that are processed
simultaneously.

The P6 microarchitecture, first used on the Pentium Pro (1995) and later on the Pentium II (1997),
extended the x86-32 platform using a three-way superscalar design. This means that that the processor is
able (on average) to decode, dispatch, and execute three distinct instructions during each clock cycle. Other
P6 augmentations included out-of-order instruction executions, improved branch prediction algorithms,

© Daniel Kusswurm 2018 1
D. Kusswurm, Modern X86 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-4063-2_1

CHAPTER 1 © X86-64 CORE ARCHITECTURE

and speculative executions. The Pentium III, also based on the P6 microarchitecture, was launched in 1999
and included a new SIMD technology called Streaming SIMD extensions (SSE). SSE adds eight 128-bit
wide registers to the x86-32 platform and instructions that perform packed single-precision floating-point
arithmetic.

In 2000 Intel introduced a new microarchitecture called Netburst that included SSE2, which extended
the floating-point capabilities of SSE to cover packed double-precision values. SSE2 also incorporated
additional instructions that enabled the 128-bit SSE registers to be used for packed integer calculations and
scalar floating-point operations. Processors based on the Netburst architecture included several variations
of the Pentium 4. In 2004 the Netburst microarchitecture was upgraded to include SSE3 and hyper-threading
technology. SSE3 adds new packed integer and packed floating-point instructions to the x86 platform, while
hyper-threading technology parallelizes the processor’s front-end instruction pipelines in order to improve
performance. SSE3 capable processors include 90 nm (and smaller) versions of the Pentium 4 and Xeon
product lines.

In 2006 Intel launched a new microarchitecture called Core. The Core microarchitecture included
redesigns of many Netburst front-end pipelines and execution units in order to improve performance and
reduce power consumption. It also incorporated a number of SIMD enhancements including SSSE3 and
SSE4.1. These extensions added new packed integer and packed floating-point instructions to the platform
but no new registers or data types. Processors based on the Core microarchitecture include CPUs from the
Core 2 Duo and Core 2 Quad series and Xeon 3000/5000 series.

A microarchitecture called Nehalem followed Core in late 2008. This microarchitecture re-introduced
hyper-threading to the x86 platform, which had been excluded from the Core microarchitecture. The
Nehalem microarchitecture also incorporates SSE4.2. This final x86-SSE enhancement adds several
application-specific accelerator instructions to the x86-SSE instruction set. SSE4.2 also includes new
instructions that facilitate text string processing using the 128-bit wide x86-SSE registers. Processors based
on the Nehalem microarchitecture include first generation Core i3, i5, and i7 CPUs. It also includes CPUs
from the Xeon 3000, 5000, and 7000 series.

In 2011 Intel launched a new microarchitecture called Sandy Bridge. The Sandy Bridge
microarchitecture introduced a new x86 SIMD technology called Advanced Vector Extensions (AVX).

AVX adds packed floating-point operations (both single-precision and double-precision) using 256-bit wide
registers. AVX also supports a new three-operand instruction syntax, which improves code efficiency by
reducing the number of register-to-register data transfers that a software function must perform. Processors
based on the Sandy Bridge microarchitecture include second and third generation Core i3, i5, and i7 CPUs
along with Xeon V2 series CPUs.

In 2013 Intel unveiled its Haswell microarchitecture. Haswell includes AVX2, which extends AVX to
support packed-integer operations using 256-bit wide registers. AVX2 also supports enhanced data transfer
capabilities with its broadcast, gather, and permute instructions. (Broadcast instructions replicate a single
value to multiple locations; data gather instructions load multiple elements from non-contiguous memory
locations; permute instructions rearrange the elements of a packed operand.) Another feature of the Haswell
microarchitecture is its inclusion of fused-multiply-add (FMA) operations. FMA enables software algorithms
to perform product-sum (or dot product) calculations using a single floating-point rounding operation,
which can improve both performance and accuracy. The Haswell microarchitecture also encompasses
several new general-purpose register instructions. Processors based on the Haswell microarchitecture
include fourth generation Core i3, i5, and i7 CPUs. AVX2 is also included later generations of Core family
CPUs, and in Xeon V3, V4, and V5 series CPUs.

X86 platform extensions over the past several years have not been limited to SIMD enhancements. In
2003 AMD introduced its Opteron processor, which extended the x86’s execution platform from 32 bits to
64 bits. Intel followed suit in 2004 by adding essentially the same 64-bit extensions to its processors starting
with certain versions of the Pentium 4. All Intel processors based on the Core, Nehalem, Sandy Bridge,
Haswell, and Skylake microarchitectures support the x86-64 execution environment.

Processors from AMD have also evolved over the past few years. In 2003 AMD introduced a series of
processors based on its K8 microarchitecture. Original versions of the K8 included support for MMX, SSE,
and SSE2 while later versions added SSE3. In 2007 the K10 microarchitecture was launched and included a

2

CHAPTER 1 * X86-64 CORE ARCHITECTURE

SIMD enhancement called SSE4a. SSE4a contains several mask shift and streaming store instructions that
are not available on processors from Intel. Following the K10, AMD introduced a new microarchitecture
called Bulldozer in 2011. The Bulldozer microarchitecture includes SSSE3, SSE4.1, SSE4.2, SSE4a, and
AVX. It also includes FMA4, which is a four-operand version of fused-multiply-add. Like SSE4a, processors
marketed by Intel do not support FMA4 instructions. A 2012 update to the Bulldozer microarchitecture
called Piledriver includes support for both FMA4 and the three-operand version of FMA, which is called
FMA3 by some CPU feature-detection utilities and third-party documentation sources. The most recent
AMD microarchitecture, introduced during 2017, is called Zen. This microarchitecture includes the AVX2
instruction set enhancements and is used in the Ryzen series of processors.

High-end desktop and server-oriented processors based on Intel’s Skylake-X microarchitecture, also
first marketed during 2017, include a new SIMD extension called AVX-512. This architectural enhancement
supports packed integer and floating-point operations using 512-bit wide registers. AVX-512 also includes
architectural additions that facilitate instruction-level conditional data merging, floating-point rounding
control, and broadcast operations. Over the next few years, it is expected that both AMD and Intel will
incorporate AVX-512 into their mainstream processors for desktop and notebook PCs.

Data Types

Programs written using x86 assembly language can use a wide variety of data types. Most program data
types originate from a small set of fundamental data types that are intrinsic to the x86 platform. These
fundamental data types enable the processor to perform numerical and logical operations using signed
and unsigned integers, single-precision (32-bit) and double-precision (64-bit) floating-point values, text
strings, and SIMD values. In this section, you'll learn about the fundamental data types along with a few
miscellaneous data types supported by the x86.

Fundamental Data Types

A fundamental data type is an elementary unit of data that is manipulated by the processor during program
execution. The x86 platform supports fundamental data types ranging in size from 8 bits (1 byte) to 128 bits
(16 bytes). Table 1-1 shows these types along with typical use patterns.

Table 1-1. Fundamental Data Types

Data Type Size (Bits) Typical Use

Byte 8 Characters, small integers

Word 16 Characters, integers

Doubleword 32 Integers, single-precision floating-point
Quadword 64 Integers, double-precision floating-point
Double Quadword 128 Packed integers, packed floating-point

Unsurprisingly, the fundamental data types are sized using integer powers of two. The bits of a
fundamental data type are numbered from right to left with zero and size - 1 used to identify the least and
most significant bits, respectively. Fundamental data types larger than a single byte are stored in consecutive
memory locations starting with the least-significant byte at the lowest memory address. This type of in-
memory byte ordering is called little endian. Figure 1-1 illustrates the bit numbering and byte ordering
schemes that are used by the fundamental data types.

CHAPTER 1 © X86-64 CORE ARCHITECTURE

Bit Position
i 3] g @ ©
i
Byte
Word
Doubleword
Quadword
Double
. . Quadword
© i
— 0 =i NP
+ + + i + 1 +
=z = = = ZF &
Memory Address

Figure 1-1. Bit-numbering and byte-ordering for fundamental data types

A properly-aligned fundamental data type is one whose address is evenly divisible by its size in bytes.
For example, a doubleword is properly aligned when it’s stored at a memory location with an address that
is evenly divisible by four. Similarly, quadwords are properly aligned at addresses evenly divisible by eight.
Unless specifically enabled by the operating system, an x86 processor does not require proper alignment
of multi-byte fundamental data types in memory. However, it is standard practice to properly align all
multi-byte values whenever possible in order to avoid potential performance penalties that can occur if the
processor is required to access misaligned data in memory.

Numerical Data Types

A numerical data type is an elementary scalar value such as an integer or floating-point number. All
numerical data types recognized by the CPU are represented using one of the fundamental data types
discussed in the previous section. Table 1-2 contains a list of x86 numerical data types along with
corresponding C/C++ types. This table also includes the fixed-size types that are defined in the C++

header file <cstdint> (see http://www.cplusplus.com/reference/cstdint/ for more information

about this header file). The x86-64 instruction set intrinsically supports arithmetic and logical operations
using 8-, 16-, 32-, and 64-bit integers, both signed and unsigned. It also supports arithmetic calculations and
data manipulation operations using single-precision and double-precision floating-point values.

http://www.cplusplus.com/reference/cstdint/

CHAPTER 1 * X86-64 CORE ARCHITECTURE

Table 1-2. X86 Numerical Data Types

Type Size (Bits) C/C++ Type <cstdint>
Signed integers 8 char int8 t

16 short int16_t

32 int, long int32_t

64 long long int64_t
Unsigned integers 8 unsigned char uint8_t

16 unsigned short uint16_t

32 unsigned int, unsigned long uint32_t

64 unsigned long long uinté4_t
Floating-point 32 float Not applicable

64 double Not applicable

SIMD Data Types

A SIMD data type is contiguous collection of bytes that’s used by the processor to perform an operation

or calculation using multiple values. A SIMD data type can be regarded as a container object that holds
several instances of the same fundamental data type (e.g., bytes, words, double words, or quadwords). Like
fundamental data types, the bits of a SIMD data type are numbered from right to left with zero and size - 1
denoting the least and most significant bits, respectively. Little-endian ordering is also used when SIMD
values are stored in memory, as illustrated in Figure 1-2.

Bit Position

[1=]
un
~

511
128

xmmword

ymmword

zmmword

N+64
N+32
N+16 |

Memory Address

Figure 1-2. SIMD data types

Programmers can use SIMD (or packed) data types to perform simultaneous calculations using either
integers or floating-point values. For example, a 128-bit wide packed data type can be used to hold sixteen
8-bit integers, eight 16-bit integers, four 32-bit integers, or two 64-bit integers. A 256-bit wide packed data
type can hold a variety of data elements including eight single-precision floating-point values or four
double-precision floating-point values. Table 1-3 contains a complete list of the SIMD data types and the
maximum number of elements for various numerical data types.

CHAPTER 1 © X86-64 CORE ARCHITECTURE

Table 1-3. SIMD Data Types and Maximum Number of Data Elements

Numerical Type xmmword ymmword zmmword
8-bit integer 16 32 64

16-bit integer 8 16 32

32-bit integer 4 8 16

64-bit integer 2 4 8
Single-precision floating-point 4 8 16
Double-precision floating-point 2 4 8

As discussed earlier in this chapter, SIMD enhancements have been regularly added to the x86 platform
starting in 1997 with MMX technology and most recently with the addition of AVX-512. This presents some
challenges to the software developer who wants to exploit these technologies in that the packed data types
described in Table 1-3 and their associated instruction sets are not universally supported by all processors.
Fortunately, methods are available to determine at runtime the specific SIMD features and instruction sets
that a processor supports. You'll learn how to use some of these methods in Chapter 16.

Miscellaneous Data Types

The x86 platform also supports a number of miscellaneous data types including strings, bit fields, and bit
strings. An x86 string is contiguous block of bytes, words, doublewords, or quadwords. X86 strings are used
to support text-based data types and processing operations. For example, the C/C++ data types char and
wchar_t are usually implemented using an x86 byte or word, respectively. X86 strings can also be employed
to perform processing operations on arrays, bitmaps, and similar contiguous-block data structures. The
x86 instruction set includes instructions that can carry out compare, load, move, scan, and store operations
using strings.

Other miscellaneous data types include bit fields and bit strings. A bit field is a contiguous sequence of
bits and is used as a mask value by some instructions. A bit field can start at any bit position within a byte
and contain up to 32 bits. A bit string is a contiguous sequence of bits containing up to 2% - 1 bits. The x86
instruction set includes instructions that can clear, set, scan, and test individual bits within a bit string.

Internal Architecture

From the perspective of an executing program, the internal architecture of an x86-64 processor can be
logically partitioned into several distinct units. These include the general-purpose registers, status and
control flags (RFLAGS register), instruction pointer (RIP register), XMM registers, and floating-point control
and status (MXCSR). By definition, an executing program uses the general-purpose registers, the RFLAGS
register, and the RIP register. Program utilization of the XMM, YMM, ZMM, or MXCSR registers is optional.
Figure 1-3 illustrates the internal architecture of an x86-64 processor.

CHAPTER 1 * X86-64 CORE ARCHITECTURE

| rracs | RAX XMMO YMMO/XMMO
Program Status RBX ¥MM1 :
And Control . S
| RIP | RDX XMM3 ;
Instruction Pointer RSI XMM4 YMM15/XMM15
RDI XMM5 AVX/AVX2 Registers
[wmxcr | RBP XMM6
Floating-Point RSP XMM7 ZMMO/YMMO/XMMO
Control and Status RS XMMS
R9 XMM9
R10 XMM10
R11 XMM11 ZMM31/YMM31/XMM31
R12 XMM12 AVX-512 Registers
R13 XMM13
R14 XMM14
R15 XMM15 KO = K7
General-Purpose SSE2 Registers AVX-512 Opmask Registers
Registers

Figure 1-3. X86-64 processor internal architecture

All x86-64 compatible processors support SSE2 and include 16 128-bit XMM registers that programmers
can use to perform scalar floating-point computations. These registers can also be employed to carry out
SIMD operations using packed integers or packed floating-point values (both single precision and double
precision). You'll learn how to use the XMM registers, the MXCSR register, and the AVX instruction set to
perform floating-point calculations in Chapter 4 and 5. This chapter also discusses the YMM register set and
other AVX architectural concepts in greater detail. You'll learn about AVX2 and AVX-512 in Chapters 8 and 12,
respectively.

General-Purpose Registers

The x86-64 execution unit contains 16 64-bit general-purpose registers, which are used to perform
arithmetic, logical, compare, data transfer, and address calculation operations. They also can be used as
temporary storage locations for constant values, intermediate results, and pointers to data values stored in
memory. Figure 1-4 shows the complete set of x86-64 general-purpose registers along with their instruction
operand names.

CHAPTER 1 © X86-64 CORE ARCHITECTURE

63

w
fuiry
o
[ary
w
~J
L=

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

RS

R10

R11

R12

R13

R14

R15

64-Bit and 32-Bit Registers 16-Eitand -0k
Registers

Figure 1-4. X86-64 general-purpose registers

The low-order doubleword, word, and byte of each 64-bit register are independently accessible and can
be used to manipulate 32-bit, 16-bit, and 8-bit wide operands. For example, a function can use registers EAX,
EBX, ECX, and EDX to perform 32-bit calculations in the low-order doublewords of registers RAX, RBX, RCX,
and RDX, respectively. Similarly, registers AL, BL, CL, and DL can be used to carry out 8-bit calculations in
the low-order bytes. It should be noted that a discrepancy exists regarding the names of some byte registers.
The Microsoft 64-bit assembler uses the names shown in Figure 1-4, while the Intel documentation uses the
names R8L - R15L. This book uses the Microsoft register names in order to maintain consistency between the
text and the sample code. Not shown in Figure 1-4 are the legacy byte registers AH, BH, CH, and DH. These
registers are aliased to the high-order bytes of registers AX, BX, CX, and DX, respectively. The legacy byte
registers can be used in x86-64 programs, albeit with some restrictions, as described later in this chapter.

Despite their designation as general-purpose registers, the x86-64 instruction set imposes some notable
restrictions on how they can be used. Some instructions either require or implicitly use specific registers
as operands. This is a legacy design pattern that dates back to the 8086 ostensibly to improve code density.
For example, some variations of the imul (Signed Integer Multiplication) instruction save the calculated
integer product to RDX:RAX, EDX:EAX, DX:AX, or AX (the colon notation signifies that the final product
is contained in two registers, with the first register holding the high-order bits). The idiv (Signed Integer
Division) instruction requires the integer dividend to be loaded in RDX:RAX, EDX:EAX, DX:AX, or AX.

The x86 string instructions require that the addresses of the source and destination operands be placed in

CHAPTER 1 * X86-64 CORE ARCHITECTURE

registers RSI and RDI, respectively. String instructions that include a repeat prefix must use RCX as the count
register, while variable-bit shift and rotate instructions must load the count value into register CL.

The processor uses register RSP to support stack-related operations such as function calls and
returns. The stack itself is simply a contiguous block of memory that is assigned to a process or thread by
the operating system. Application programs can also use the stack to pass function arguments and store
temporary data. The RSP register always points to the stack's top most item. Stack push and pop operations
are performed using 64-bit wide operands. This means that the location of the stack in memory is usually
aligned to an 8-byte boundary. Some runtime environments (e.g., 64-bit Visual C++ programs running on
Windows) align stack memory and RSP to a 16-byte boundary in order to avoid improperly-aligned memory
transfers between the XMM registers and 128-bit wide operands stored on the stack.

While it is technically possible to use the RSP register as a general-purpose register, such use is
impractical and strongly discouraged. Register RBP is typically used as a base pointer to access data items
that are stored on the stack. RSP can also be used as a base pointer to access data items on the stack. When
not employed as a base pointer, programs can use RBP as a general-purpose register.

RFLAGS Register

The RFLAGS register contains a series of status bits (or flags) that the processor uses to signify the results of
an arithmetic, logical, or compare operation. It also contains a number of control bits that are primarily used
by operating systems. Table 1-4 shows the organization of the bits in the RFLAGS register.

Table 1-4. RFLAGS Register

Bit Position Name Symbol Use

0 Carry Flag CF Status

1 Reserved 1

2 Parity Flag PF Status

3 Reserved 0

4 Auxiliary Carry Flag AF Status

5 Reserved 0

6 Zero Flag ZF Status

7 Sign Flag SF Status

8 Trap Flag TF System

9 Interrupt Enable Flag IF System

10 Direction Flag DF Control

11 Overflow Flag OF Status

12 I/0 Privilege Level Bit 0 IOPL System

13 1/0 Privilege Level Bit 1 IOPL System

14 Nested Task NT System

15 Reserved 0
(continued)

CHAPTER 1 © X86-64 CORE ARCHITECTURE

Table 1-4. (continued)

Bit Position Name Symbol Use

16 Resume Flag RF System
17 Virtual 8086 Mode VM System
18 Alignment Check AC System
19 Virtual Interrupt Flag VIF System
20 Virtual Interrupt Pending VIP System
21 ID Flag ID System
22-63 Reserved 0

For application programs, the most important bits in the RFELAGS register are the following status
flags: carry flag (CF), overflow flag (OF), parity flag (PF) , sign flag (SF) , and zero flag (ZF). The carry flag
is set by the processor to signify an overflow condition when performing unsigned integer arithmetic. It is
also used by some register rotate and shift instructions. The overflow flag signals that the result of a signed
integer operation is too small or too large. The processor sets the parity flag to indicate whether the least-
significant byte of an arithmetic, compare, or logical operation contains an even number of 1 bits (parity bits
are used by some communication protocols to detect transmission errors). The sign and zero flags are set by
arithmetic and logical instructions to signify a negative, zero, or positive result.

The RFLAGS register contains control bit called the direction flag (DF). An application program can
set or reset the direction flag, which defines the auto increment direction (0 = low to high addresses, 1 =
high to low addresses) of the RDI and RSI registers during execution of string instructions. The remaining
bits in the RFLAGS register are used exclusively by the operating system to manage interrupts, restrict I/O
operations, support program debugging, and handle virtual operations. They should never be modified by
an application program. Reserved bits also should never be modified, and no assumptions should ever be
made regarding the state of any reserved bit.

Instruction Pointer

The instruction pointer register (RIP) contains the logical address of the next instruction to be executed. The
value in register RIP updates automatically during execution of each instruction. It is also implicitly altered
during execution of control-transfer instructions. For example, the call (Call Procedure) instruction pushes
the contents of the RIP register onto the stack and transfers program control to the address designated by the
specified operand. The ret (Return from Procedure) instruction transfers program control by popping the
top-most eight bytes off the stack and loading them into the RIP register.

The jmp (Jump) and jcc (Jump if Condition is Met) instructions also transfer program control by
modifying the contents of the RIP register. Unlike the call and ret instructions, all x86-64 jump instructions
are executed independent of the stack. The RIP register is also used for displacement-based operand
memory addressing as explained in the next section. It is not possible for an executing task to directly access
the contents of the RIP register.

Instruction Operands

All x86-64 instructions use operands, which designate the specific values that an instruction will act upon.
Nearly all instructions require one or more source operands along with a single destination operand. Most
instructions also require the programmer to explicitly specify the source and destination operands. There
are, however, a number of instructions where the register operands are either implicitly specified or required
by an instruction, as discussed in the previous section.

10

CHAPTER 1 * X86-64 CORE ARCHITECTURE

There are three basic types of operands: immediate, register, and memory. An immediate operand
is a constant value that is encoded as part of the instruction. These are typically used to specify constant
values. Only source operands can specify an immediate value. Register operands are contained in a general-
purpose or SIMD register. A memory operand specifies a location in memory, which can contain any of
the data types described earlier in this chapter. An instruction can specify either the source or destination
operand as a memory operand but not both. Table 1-5 contains several examples of instructions that employ
the various operand types.

Table 1-5. Examples of Basic Operand Types

Type Example Analogous C/C++ Statement
Immediate mov rax,42 rax = 42
imul r12,-47 112 *= -47
shl r15,8 115 <<= 8
X0Y ecx,80000000h ecx "= 0x80000000
sub r9b,14 19b -= 14
Register mov rax,rbx rax = rbx
add rbx,r10 rbx += 110
mul rbx rdx:rax = rax * rbx
and 18w,0ffo0h 8w &= 0xff00
Memory mov rax,[r13] rax = *ri3
or rcX,[rbx+rsi*g] rex |= *(rbx+rsi*8)
sub qword ptr [r8],17 *(long long*)r8 -= 17
shl word ptr [r12],2 *(short*)r12 <<= 2

Themul rbx (Unsigned Multiply) instruction that is shown in Table 1-5 is an example of implicit
operand usage. In this example, implicit register RAX and explicit register RBX are used as the source
operands, and implicit register pair RDX:RAX is the destination operand. The multiplicative product’s high-
order and low-order quadwords are stored in RDX and RAX, respectively.

In Table 1-5’s penultimate example, the text qword ptr is an assembler operator that acts like a C/C++
cast operator. In this instance, the value 17 is subtracted from a 64-bit value whose memory location is
specified by the contents of register R8. Without the qword ptr operator, the assembly language statement
is ambiguous since the assembler can't ascertain the size of the operand pointed to by R8. In this example,
the destination could also an 8-bit, 16-bit, or 32-bit sized operand. The final example in Table 1-5 uses the
word ptr operator in a similar manner. You'll learn more about assembler operators and directives in the
programming chapters of this book.

Memory Addressing

An x86-64 instruction requires up to four separate components in order to specify the location of an operand
in memory. The four components include a constant displacement value, a base register, an index register,
and a scale factor. Using these components, the processor calculates an effective address for a memory
operand as follows:

EffectiveAddress = BaseReg + IndexReg * ScaleFactor + Disp

11

CHAPTER 1 © X86-64 CORE ARCHITECTURE

The base register (BaseReg) can be any general-purpose register. The index register (IndexReg) can be
any general-purpose register except RSP. Valid scale factors (ScaleFactor) include 2, 4, and 8. Finally, the
displacement (Disp) is a constant 8-bit, 16-bit, or 32-bit signed offset that's encoded within the instruction.
Table 1-6 illustrates x86-64 memory addressing using different forms of the mov (Move) instruction. In these
examples, register RAX (the destination operand) is loaded with the quadword value that’s specified by the
source operand. Note that it is not necessary for an instruction to explicitly specify all of the components
required for an effective address. For example, a default value of zero is used for the displacement if an
explicit value is not specified. The final size of an effective address calculation is always 64 bits.

Table 1-6. Memory Operand Addressing

Addressing Form Example

RIP + Disp mov rax,[Val]

BaseReg mov rax, [rbx]

BaseReg + Disp mov rax,[rbx+16]
IndexReg * SF + Disp mov rax,[r15%8+48]
BaseReg + IndexReg mov rax,[rbx+ri5]
BaseReg + IndexReg + Disp mov rax,[rbx+r15+32]
BaseReg + IndexReg * SF mov rax, [rbx+r15*8]
BaseReg + IndexReg * SF + Disp mov rax, [rbx+r15%*8+64]

The memory addressing forms shown in Table 1-6 are used to directly reference program variables and
data structures. For example, the simple displacement form is often used to access a simple global or static
variable. The base register form is analogous to a C/C++ pointer and is used to indirectly reference a single
value. Individual fields within a data structure can be retrieved using a base register and a displacement. The
index register forms are useful for accessing individual elements within an array. Scale factors can reduce
the amount code needed to access the elements of an array that contains integer or floating-point values.
Elements in more elaborate data structures can be referenced by using a base register together with an index
register, scale factor, and displacement.

Themov rax,[Val] instruction that's shown in the first row of Table 1-6 is an example of RIP-relative (or
instruction pointer relative) addressing. With RIP-relative addressing, the processor calculates an effective
address using the contents of the RIP register and a signed 32-bit displacement value that's encoded within
the instruction. Figure 1-5 illustrates this calculation in greater detail. Note the little endian ordering
of the displacement value that’s embedded in the mov rax, [Val] instruction. RIP-relative addressing
allows the processor to reference global or static operands using a 32-bit displacement instead of a 64-bit
displacement, which reduces required code space. It also facilitates position-independent code.

12

