ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Frederik Vits

Tribologie beim Schleifen von polykristallinem Diamant

Tribologie beim Schleifen von polykristallinem Diamant

Tribology in Grinding of Polycrystalline Diamond

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Jan Frederik Vits

Berichter:

Univ.-Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke Univ.-Prof. Dr.-Ing. Thomas Bergs

Tag der mündlichen Prüfung: 20. Dezember 2019

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Frederik Vits

Tribologie beim Schleifen von polykristallinem Diamant

Herausgeber: Prof. Dr.-Ing. T. Bergs Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 5/2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Frederik Vits:

Tribologie beim Schleifen von polykristallinem Diamant

1. Auflage, 2020

Apprimus Verlag, Aachen, 2020 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-856-3

D 82 (Diss. RWTH Aachen University, 2019)

Vorwort und Danksagung

Preamble and Acknowledgement

Die vorliegende Arbeit entstand während meiner Anstellung als wissenschaftlicher Mitarbeiter am Werkzeugmaschinenlabor (WZL) der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen.

Ich danke Herrn Professor Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Dr. h.c. Fritz Klocke herzlich für die wissenschaftliche Förderung, die Unterstützung meiner Tätigkeit am Institut und seine motivierende und wohlwollende Führung.

Bei Herrn Professor Dr.-Ing. Thomas Bergs, Leiter des Lehrstuhls für Technologie der Fertigungsverfahen am Werkzeugmaschinenlabor (WZL) der RWTH Aachen bedanke ich mich herzlich für die Durchsicht des Manuskripts sowie für die Übernahme des Koreferats. Ferner gilt mein Dank Herrn Professor Dr.-Ing. Peter Jeschke für die Übernahme des Prüfungsvorsitzes und Herrn Professor Dr.-Ing. Bernd Markert für den Beisitz in der Prüfungskommision.

Für die Förderung der Forschungsprojekte KL 500/140-1 "Analyse der Zerspanungsund Abtragsmechanismen beim Schleifen hochharter Schneidstoffe am Beispiel von polykristallinem Diamant" und KL500/193-1 "Analyse der Verschleißmechanismen beim PKD-Schleifen mit keramisch gebundenen Diamantschleifscheiben auf Basis eines Reibungsmodells", die die Grundlage für diese Dissertation bilden, richtet sich mein Dank an die Deutsche Forschungsgemeinschaft (DFG).

Weiterer Dank gilt Frau Jana Haas-Wittmüß (Element Six) und Dr.-Ing. Markus Weiß (Tyrolit) für die Diskussion meiner Forschungsergebnisse und die Bereitstellung von Versuchsmaterialen.

Meinen Kollegen am Werkzeugmaschinenlabor WZL danke ich für die gemeinsamen Jahre, auf die ich mit Freude zurückblicke. Insbesondere danke ich meinen Bürokollegen Dr.-Ing. Matthias Rasim, Daniel Müller, Moritz Jochums, Dr.-Ing. Sebastian Müller und Jannik Röttger sowie meinen lieben Kollegen Maximilian Lachenmaier, Dr.-Ing. Johannes Müller, Dr.-Ing. Christian Wirtz, Dr.-Ing. Patrick Mattfeld, Dr.-Ing. Daniel Trauth, Dr.-Ing. Florestan Schindler, Dr.-Ing. Janis Thiermann, Dr.-Ing. Michael Duscha, Dr.-Ing. Jens Stauder, Dr.-Ing. Sebastian Barth, Alexander Dehmer, Sebastian Prinz, Tobias Kaufmann, Christian Wrobel, Jan Rey, Timm Grünebaum, Alexander Beckers, Sebastian Apelt, Lennard Hermann, Marc Bredthauer, Marius Ohlert, Ulrich Müller, Peter Ritzerfeld, Guido Kochs-Theisen, Tanja Tebeck, Andreas Thönnessen, Silke Maier, Dr.-Ing. Anton Shirobokov, Robby Mannens, Rafael Hild, Thomas Kokott, Matthias Nick, Herman Voigts, Ingo Felix Weiser, Henric Breuer, Dr.-Ing. Andreas Feuerhack, Dr. rer. nat. Mario Kittel, Johanna Figgener und Thomas Pullen. Zudem danke ich meinen studentischen Mitarbeitern Eduard Unruh, Ali Gür und Jon Elguezabal Blanco für ihre Unterstützung bei der Versuchsdurchführung und Auswertung. Besonderer Dank gilt David Braun für seinen unermüdlichen Einsatz bei der Versuchsdurchführung und für die Diskussion der Versuchsergebnisse.

Für die Durchsicht des Manuskripts danke ich herzlichst Professor Dr.-Ing. Rudolf Vits, Dr.-Ing. Sebastian Barth, Maximilian Lachenmaier, Silke Maier und Dr.-Ing. Daniel Trauth.

Mein größtmöglicher Dank richtet sich an meine Eltern Rudolf und Sigrid Vits für die bedingungslose und liebevolle Unterstützung auf meinem Werdegang und den Rückhalt während meiner Zeit an der RWTH Aachen.

Waiblingen, Februar 2020

Jan Frederik Vits

Kurzzusammenfassung

Zerspanwerkzeuge mit geometrisch bestimmter Schneide aus polykristallinem Diamant PKD ermöglichen hohe Zerspanraten und Werkzeugstandzeiten für eine Vielzahl von Zerspanaufgaben. Die Formgebung dieser Zerspanwerkzeuge erfolgt mit den Fertigungsverfahren Lasern. Erodieren und Schleifen. Hohe Anforderungen an die Kantenschartigkeit und die Oberflächengüte sowie eine geringe thermische Randzonenbeeinflussung der PKD-Schneide machen eine Schlichtbearbeitung mittels Schleifen notwendig. Das Schleifen von PKD ist jedoch durch geringe Zerspanraten und einen hohen Schleifscheibenverschleiß gekennzeichnet. Durch die Auslegung des Schleifprozesses können die Zerspanrate und der Schleifscheibenverschleiß beeinflusst werden. Die zuvor genannten Größen werden maßgeblich durch die thermischen und mechanischen Belastungen in der Kontaktzone beim Schleifen beeinflusst. Diese wiederum hängen von den tribologischen Eingangsgrößen Normalkraft und Relativgeschwindigkeit sowie von der PKD-Spezifikation ab. Die Auslegung eines effizienten Schleifprozesses erfordert demzufolge eine Vorhersage der thermischen und mechanischen Belastungen in Abhängigkeit von den tribologischen Eingangsgrößen und der PKD-Spezifikation sowie der resultierenden Schleifscheibenverschleiß- und Zerspanungsmechanismen.

Das Ziel dieser Arbeit ist es, einen mathematischen Zusammenhang zwischen den tribologischen Eingangsgrößen und den thermischen und mechanischen Belastungen beim Schleifen unterschiedlicher PKD-Spezifikationen herzuleiten und die bei den vorhergesagten thermischen und mechanischen Belastungen vorliegenden PKD-Zerspanungsmechanismen und Schleifscheibenverschleißmechanismen zu erklären. Hierzu wird der Schleifprozess zunächst in Form von Einkornreibtests abstrahiert und empirisch-analytische Modelle zur Vorhersage der thermischen und mechanischen Belastungen für einen Einkornkontakt abgeleitet. Diese Modelle werden in einem weiteren Schritt auf Basis von Schleifversuchen auf den Schleifprozess übertragen. Finite-Elemente-Simulationen, die auf diesen Modellen aufbauen, ermöglichen die Simulation der Temperaturen beim PKD-Schleifen für einzelne Kontaktflächen. Ferner werden die theoretischen Kontaktdrücke am Einzelkorn bestimmt. Des Weiteren werden die verschleißbedingte Veränderung der Schleifprozess untersucht und anhand der thermischen und mechanischen Belastungen in der Kontaktzone erklärt.

Diese Dissertation liefert somit einen Beitrag zum Verständnis der Ursache-Wirkungszusammenhänge zwischen den thermischen und mechanischen Belastungen in der Kontaktzone und den Schleifscheibenverschleiß- und Zerspanungsmechanismen in Abhängigkeit von den tribologischen Eingangsgrößen und der PKD-Spezifikation.

Abstract

Chipping tools with geometrically defined cutting edges made of polycrystalline diamond PCD enable high material removal rates and tool life for a large number of chipping tasks. The shaping of these chipping tools is carried out with the manufacturing processes laser cutting, eroding and grinding. High demands on the cutting edge and surface quality as well as a low thermal influence on the PCD-external-zone make finishing by grinding necessary. However, grinding PCD is characterized by low material removal rates and a high grinding wheel wear. The material removal rate and the grinding wheel wear can be influenced by the design of the grinding process. The aforementioned parameters are significantly influenced by the thermal and mechanical loads in the contact zone during grinding. These, in turn, depend on the tribological input variables normal force and relative velocity as well as the PCD-specification. The design of an efficient grinding process therefore requires a prediction of the thermal and mechanical loads as a function of the tribological input variables and the PCDspecification as well as the resulting grinding wheel wear and material removal mechanisms.

The aim of this thesis is to derive a mathematical relationship between the tribological input variables and the thermal and mechanical loads during grinding of different PCD-specifications and to explain the material removal and grinding wheel wear mechanisms present at the aforementioned thermal and mechanical loads. For this purpose, the grinding process is abstracted in the form of single grain friction tests and empirical-analytical models are derived to predict the thermal and mechanical loads for a single grain contact. In a further step, these models are transferred to the grinding process on the basis of grinding tests. Finite element simulations based on these models allow the simulation of temperatures during PCD-grinding for individual contact areas. Furthermore, the theoretical contact pressures for single grain contacts are determined. In addition, the wear-related change of the grinding wheel topography and the influence of the grinding process on the PCD-external-zone are investigated and explained on the basis of the thermal and mechanical loads in the contact zone.

This dissertation thus contributes to the understanding of the cause-effect relationships between the thermal and mechanical loads in the contact zone and the grinding wheel wear and material removal mechanisms as a function of the tribological input variables and the PCD-specification.

Inhaltsverzeichnis

Со	Content				
1	Einleitung1				
2	Stan	nd der Erkenntnisse9			
2.1 Grundlagen eines tribologischen Systems					
	2.2	Kohlen	stoff und seine Eigenschaften	12	
	2.3	Werkst	offphysik von Graphit und Diamant	14	
		2.3.1	Aufbau von Graphit	14	
		2.3.2	Eigenschaften von Graphit	15	
		2.3.3	Aufbau von Diamant	15	
		2.3.4	Eigenschaften von Diamant	16	
		2.3.5	Polykristalliner Diamant	18	
		2.3.6	Zwischenfazit	23	
	2.4	Schleife	en von polykristallinem Diamant	23	
		2.4.1	Prozessgrößen beim PKD-Schleifen	26	
		2.4.2	Prozesssignatur beim PKD-Schleifen	29	
		2.4.3	Schleifscheibenverschleißmechanismen beim PKD-Schleifen	31	
		2.4.4	Zerspanungsmechanismen beim PKD-Schleifen	33	
		2.4.5	Zwischenfazit	37	
	2.5	Wirtsch	aftliche und wissenschaftliche Problemstellung	38	
3	Ziels	setzung	und Forschungsmethodik	41	
3 4	Ziels Anal	setzung lyse der	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis	41 von	
3 4	Ziels Anal Eink	setzung lyse der cornreib	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis untersuchungen	41 von 45	
3 4	Ziels Anal Eink 4.1	setzung lyse der cornreib Entwick	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis untersuchungen	41 von 45 45	
3 4	Ziels Anal Eink 4.1 4.2	setzung lyse der cornreib Entwick Versuc	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis untersuchungen dung eines Analogieprüfstandes	von 45 45 47	
3 4	Ziels Anal Eink 4.1 4.2 4.3	setzung lyse der cornreib Entwick Versuc Tribolo	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis untersuchungen	von 45 45 45 47 50	
3 4	Ziels Anal Eink 4.1 4.2 4.3 4.4	setzung lyse der cornreib Entwick Versuc Tribolog Modellh	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis untersuchungen dung eines Analogieprüfstandes hsmethodik der Einkornreibtests gische Verhältnisse für den Einkornkontakt hafte Beschreibung der tribologischen Verhältnisse für einen	41 von 45 45 47 50	
3 4	Ziels Anal Eink 4.1 4.2 4.3 4.4	setzung lyse der cornreib Entwick Versuc Tribolog Modellt Einkorr	und Forschungsmethodik tribologischen Verhältnisse beim PKD-Schleifen auf Basis untersuchungen	41 von 45 45 47 50	
3 4	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5	setzung lyse der cornreib Entwick Versuc Tribolog Modellf Einkorr Fazit zu	und Forschungsmethodik	41 von 45 47 50 54	
3 4	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5	setzung lyse der cornreib Entwick Versuc Tribolog Modelli Einkorr Fazit zu Einkorr	und Forschungsmethodik	41 von 45 45 50 54 58	
3 4 5	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 Anal	setzung lyse der cornreib Entwick Versuc Tribolog Modellł Einkorr Fazit zu Einkorr	und Forschungsmethodik	41 von 45 45 50 54 58 61	
3 4 5	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 Anal	setzung lyse der cornreib Entwick Versuc Tribolog Modellł Einkorr Fazit zu Einkorr lyse der	und Forschungsmethodik	41 von 45 45 50 54 58 61	
3 4 5	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 Anal 5.1	setzung lyse der cornreib Entwick Versuc Tribolog Modelli Einkorr Fazit zu Einkorr Iyse der	und Forschungsmethodik	41 von 45 45 50 54 58 61	
3 4 5	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 Anal 5.1	setzung lyse der cornreib Entwick Versuc Tribolog Modellf Einkorr Fazit zu Einkorr lyse der Versuc Schleifu	und Forschungsmethodik	41 von 45 47 50 54 58 61	
3 4 5	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 Anal 5.1 5.2	setzung lyse der cornreib Entwick Versuc Tribolog Modelli Einkorr Fazit zu Einkorr Versuc Schleift Tribolog	und Forschungsmethodik	41 von 45 45 50 54 54 61 61 66 70	
3 4 5	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 Anal 5.1 5.2 5.3	setzung lyse der cornreib Entwick Versuc Tribolog Modelli Einkorr Fazit zu Einkorr Versuc Schleift Tribolog Fazit zu	und Forschungsmethodik	41 von 45 47 50 54 61 61 66 79	
3 4 5 6	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 4.5 4.5 5.1 5.1 5.2 5.3 Finit	setzung lyse der cornreib Entwick Versuc Tribolog Modellf Einkorr Fazit zu Einkorr Versuc Schleift Tribolog Fazit zu	und Forschungsmethodik	41 von 45 50 54 58 61 61 66 79	
3 4 5 6	Ziels Anal Eink 4.1 4.2 4.3 4.4 4.5 4.5 4.5 5.1 5.2 5.3 Finit Bela	setzung lyse der cornreib Entwick Versuc Tribolog Modellh Einkorr Fazit zu Einkorr Versuc Schleift Tribolog Fazit zu te-Elemo	und Forschungsmethodik	41 von 45 47 50 54 58 61 61 61 61 79 83	

		6.1.1	Analyse der thermophysikalischen Eigenschaften von PKD und	05
		610	Analyse der thermenkysikelischen Eisenschaften des	.85
		6.1.Z	Analyse der thermophysikalischen Eigenschaften des	00
	~ ~	A	Scheinbelages	.00
	6.Z	Autoau	des Finite-Elemente-Modells	.90
	6.3	Simulat	Ionsergebnisse und Validierung des Finite-Elemente-Modells	.98 m
	0.4	PKD-So	chleifen	105
7	Schl	eifschei	ibenverschleiß beim PKD-Schleifen1	107
	7.1	Versuch	nsaufbau zur Analyse des Schleifscheibenverschleißes beim PKD	-
	72	Ergebni	isse der Schleifscheihenverschleißuntersuchungen	107
	7.3	Ergebrii Fazit zu	Ir Analyse des Schleifscheibenverschleißes beim PKD-Schleifen 1	114
•	1.0			
8	Ana	yse des	s Einflusses der tribologischen Verhältnisse auf die	
	wer	KSTUCKra	andzone	115
	8.1	Analyse	e der geschliffenen Werkstückoberfläche	115
	8.2	Analyse	e der geschliffenen Werkstückrandzone	120
		8.2.1	Vorbereitung der Proben mit dem Focused Ion Beam Verfahren.1	120
		8.2.2	Analyse der PKD-Randzone vor dem Schleifen	122
		8.2.3	Analyse der geschliffenen PKD-Randzone	124
	8.3	Analyse	e des Risswachstums im Diamanten	129
	8.4	Fazit zu	ir Analyse des Einflusses der tribologischen Verhältnisse auf die	100
		vverksti	JCKrandzone	132
9	Erkl	ärungsn	nodell für die Schleifscheibenverschleiß- und	
	Zers	panung	smechanismen beim PKD-Schleifen	135
	9.1 9.2	Erkläru Erkläru	ng der Zerspanungsmechanismen beim PKD-Schleifen ng der Schleifscheibenverschleißmechanismen beim PKD-	135
		Schleife	en1	137
	9.3	Fazit ur	nd Handlungsempfehlungen für das PKD-Schleifen1	140
10	Zusa	ammenf	assung und Ausblick1	143
11	Liter	aturver	zeichnis	151
12	Anh	ang	1	159

Formelzeichen und Abkürzungsverzeichnis

Formula Symbols and Abbreviations

Großbuchstaben

Α	mm ²	Wärmedurchflossene Fläche
		Heat permeated surface
Ai	μm²	Normalfläche von Korn i auf Nullniveau
		Normal area of grain i on zero level
A kontakt	μm²	Kontaktfläche eines Schleifkorns
		Contact area of an abrasive grain
Amittel,Korn	μm²	Mittlere Kontaktfläche eines Schleifkorns
		Average contact area of an abrasive grain
Areib	mm ²	Reibfläche
		Friction area
E	MPa	E-Modul
		Young's modulus
Eb	kJ·mol⁻¹	Bindungsenergie
		Bond energy
FA	Ν	Anpresskraft
		Contact pressing force
Fн	Ν	Haftreibungskraft
		Static friction force
Fn	Ν	Normalkraft
		Normal force
<i>F</i> _{n,s}	Ν	Schleifnormalkraft
		Normal grinding force
<i>F</i> "n	N·mm ⁻²	Flächenbezogene Normalkraft
		Normal force related to the contact area
F"n,grenz	N·mm ⁻²	Grenzwert der flächenbezogenen Normalkraft
		Limit normal force related to the contact area
Fs	Ν	Schleifkraft
		Grinding force

Ft	Ν	Tangentialkraft
		Tangential force
<i>F</i> _{t,s}	Ν	Schleiftangentialkraft
		Tangential grinding force
G	MPa	Schubmodul
		Shear modulus
G	-	Schleifverhältnis
		Grinding ratio
Нк	GPa	Härte nach KNOOP
		KNOOP hardness
Klc	MPa·m ^{0,5}	Risszähigkeit
		Fracture toughness
<i>P</i> "	W⋅mm ⁻²	Flächenbezogene Leistung
		Area related power
Pc	W	Schleifleistung
		Grinding power
Pk	-	Periode der Kornhöhenposition
		Period of grain heigth position
P _{Laser}	W	Laserleistung
		Laser power
P max,Laser	W	Maximale Laserleistung
		Maximum laser power
P mittel,Laser	W	Gemittelte Laserleistung
		Average laser power
Pr	W	Reibleistung
		Friction power
Ż	W	Wärmestrom
		Heat flux
Qw	mm ^{3.} s ⁻¹	Zeitspanungsvolumen
		Material removal rate
Q'w	mm ³ ·mm ⁻¹ ·s ⁻¹	bezogenes Zeitspanungsvolumen
		Related material removal rate

R^2	-	Bestimmtheitsmaß
		Coefficient of determination
Ra	μm	Arithmetischer Mittenrauwert
		Arithmetical mean roughness
Rp	μm	Glättungstiefe
		Smoothing depth
Rz	μm	Gemittelte Rautiefe
		Average surface roughness
Rzк	μm	Kantenschartigkeit
		Cutting edge roughness
Т	°C	Temperatur
		Temperature
<i>T</i> ₀	°C	Referenztemperatur
		Reference temperature
Tmax,Probe	°C	Maximale Oberflächentemperatur der Probe
		Maximum surface temperature of the sample
Tp	°C	Prozesstemperatur
		Process temperature
T _{PKD,max}	°C	Maximale PKD-Oberflächentemperatur
		Maximum PCD-surface-temperature
Ts	°C	Schmelztemperatur
		Melting temperature
T _{SB,max}	°C	Maximale Schleifbelagtemperatur
		Maximum grinding layer temperature
T _{SB,min}	°C	Minimale Schleifbelagtemperatur
		Minimum grinding layer temperature
T_{μ}	μm	Schnitteinsatztiefe
		Chipping depth of cut
Tu	°C	Umwandlungstemperatur
		Conversion temperature
T _{U,D}	°C	Umwandlungstemperatur eines Diamantschleifkorns
		Conversion temperature of a diamond abrasive grain

$T_{\rm U,PKD}$	°C	Umwandlungstemperatur von PKD
		Conversion temperature of PCD
V	-	Vergrößerungsfaktor des Laserscanningmikroskops
		Magnification factor of the laserscanning microscope
VBindung	mm ³	Bindungsvolumen der Schleifscheibe
		Volume of the grinding wheel bonding
VE	mm ³	Volumen einer Elementarzelle
		Volume of an elementary cell
Vmp	ml⋅m-²	Spitzenmaterialvolumen
		Peak material volume
Völ	mg∙h ⁻¹	Ölvolumenstrom der Minimalmengenschmierung
		Oil volume flow rate of minimum quantity lubrication
VPore	mm ³	Porenvolumen der Schleifscheibe
		Pore volume of the grinding wheel
VPKD	mm ³	PKD-Zerspanungsvolumen
		Chipped PCD-material-volume
Vκ	mm ³	Volumen eines Schleifkorns
		Volume of an abrasive grain
VKorn	mm ³	Kornvolumen der Schleifscheibe
		Grain volume of the grinding wheel
Vs	mm ³	Verschlissenes Schleifscheibenvolumen
		Worn grinding wheel volume
Vw	mm ³	Zerspanungsvolumen
		Chipped material volume

Kleinbuchstaben

а	10 ⁻⁶ ·m ² ·s ⁻¹	Temperaturleitfähigkeit
		Thermal diffusivity
a 0	nm	Identitätsabstand
		Lenght of cell edge
асмх	10 ⁻⁶ ·m ² ·s ⁻¹	Temperaturleitfähigkeit von CMX850
		Thermal diffusivity of CMX850

а ств	10 ⁻⁶ ·m ² ·s ⁻¹	Temperaturleitfähigkeit von CTB010
		Thermal diffusivity of CTB010
а стм	10 ⁻⁶ ·m ² ·s ⁻¹	Temperaturleitfähigkeit von CTM302
		Thermal diffusivity of CTM302
a e	μm	Zustellung pro Schleifhub
		Depth of cut per grinding stroke
a ed	μm	Zustellung pro Abrichthub
		Dressing depth of cut per stroke
a Laser	mm	Kantenlänge des Laserfokus
		Edge length of the laser focus
∆ a s	μm	Schleifscheibenaxialverschleiß
		Axial grinding wheel wear
a sb	10 ⁻⁶ ·m ² ·s ⁻¹	Temperaturleitfähigkeit des Schleifbelages
		Thermal diffusivity of the grinding layer
b	nm	Gitterparameter
		Lattice parameter
b lam	nm	Breite der FIB-Lamelle
		Width of the FIB Lamella
b ркd	mm	Kantenlänge der PKD-Schneide
		Length of the PCD-cutting-edge
bs	mm	Schleifbelagbreite
		Width of grinding layer
bsв	mm	Breites des Schleifbelagsegmentes
		Width of the grinding layer segment
b s,eff	mm	Eingriffsbreite
		Engagement width
Cp	J·kg ⁻¹ ·K ⁻¹	Spezifische Wärmekapazität
		Specific heat capacity
С р,СМХ	J·kg ⁻¹ ·K ⁻¹	Spezifische Wärmekapazität von CMX850
		Specific heat capacity of CMX850
С р,СТВ	J·kg ⁻¹ ·K ⁻¹	Spezifische Wärmekapazität von CTB010
		Specific heat capacity of CTB010

С р,СТМ	J·kg⁻¹·K⁻¹	Spezifische Wärmekapazität von CTM302
		Specific heat capacity of CTM302
С р,SB	J·kg ⁻¹ ·K ⁻¹	Spezifische Wärmekapazität des Schleifbelages
		Specific heat capacity of the grinding layer
d	mm	Abstand zwischen zwei Thermoelementen
		Distance between two thermocouples
d Bohrung	μm	Durchmesser der Bohrung für Pyrometerfaser
		Diameter of bore for pyrometer fiber
d g	nm	Gitterabstand
		Lattice distance
d _{ges}	mm	Gesamtdicke des Analogiewerkstückes
		Total thickness of the analog workpiece
dнм	mm	Dicke des Hartmetallsubstrates
		Thickness of the cemented carbide substrate
d к	μm	Größe der Diamantkörner im PKD
		Size of the diamond grains of PCD
d lam	nm	Dicke der FIB-Lamelle
		Thickness of the FIB Lamella
d ркD	mm	Dicke der PKD-Schicht
		Thickness of the PCD-layer
d Pyro	mm	Durchmesser der Pyrometerfaser
		Diameter of the pyrometer fiber
d Ronde	mm	Durchmesser einer PKD-Ronde
		Diameter of a PCD-blank
d sk,max	μm	Maximale Eingriffsbreite eines Diamantschleifkorns
		Maximum engagement width of a diamond abrasive grain
d sls	mm	Schleifscheibendurchmesser
		Grinding wheel diameter
d tem	nm	Auflösevermögen des Transmissionselektronenmik- roskops
		Resolution of the transelectron microscope

е	J	Energie
		Energy
ec	J/mm ³	Spezifische Schleifenergie
		Specific grinding energy
e kin	J/mm ³	Spezifische kinetische Energie der Späne
		Specific kinetic energy of the chips
er	J/mm ³	Spezifische Reibenergie
		Specific friction energy
esp	J/mm ³	Spezifische Schleifenergie zur Spanbildung
		Specific grinding energy for chip formation
ev	J/mm ³	Spezifische Verformungsenergie
		Specific deformation energy
h	mm	Höhe des Analogiewerkstückes
		Height of the analog workpiece
<i>h</i> cu	μm	Spanungsdicke
		Chip thickness
<i>h</i> cu,krit	μm	Kritische Spanungsdicke
		Critical chip thickness
h ü	mm	Auskraglänge
		Projection length
İE	-	Elementarzellennummer
		Elementary cell number
k	-	Konstante im Einkorn-Reibmodell
		Constant in single grain friction model
<i>k</i> kss	-	Kühlschmierstofffaktor
		Cooling lubricant factor
Ks	-	Schleiffaktor
		Grinding factor
<i>k</i> w	-	Werkstofffaktor
		Material factor
1	-	Konstante im Einkorn-Reibmodell
		Constant in single grain friction model