
Michael Kircher,
Siemens AG Corporate Technology, Munich, Germany

Prashant Jain,
IBM Research Labs, Delhi, India

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

P a t t e r n s f o r
R e s o u r c e M a n a g e m e n t

V o l u m e 3

POSA3.book Page iii Monday, March 22, 2004 6:21 PM

Innodata
047002089X.jpg

POSA3.book Page vi Monday, March 22, 2004 6:21 PM

Resource Acquisition Patterns

The Lookup (21) pattern describes how to find and access resources,
whether local or distributed, by using a lookup service as a mediating
instance.

The Lazy Acquisition (38) pattern defers resource acquisitions to the
latest possible time during system execution in order to optimize
resource use.

The Eager Acquisition (53) pattern describes how run-time acquisition
of resources can be made predictable and fast by eagerly acquiring
and initializing resources before their actual use.

The Partial Acquisition (66) pattern describes how to optimize
resource management by breaking up acquisition of a resource into
multiple stages. Each stage acquires part of the resource, dependent
upon system constraints such as available memory and the
availability of other resources.

Resource Lifecycle Patterns

The Caching (83) pattern describes how to avoid expensive re-
acquisition of resources by not releasing the resources immediately
after their use. The resources retain their identity, are kept in some
fast-access storage, and are re-used to avoid having to acquire them
again.

The Pooling (97) pattern describes how expensive acquisition and
release of resources can be avoided by recycling resources that are no
longer needed. Once the resources are recycled and pooled, they lose
their identity and state.

The Coordinator (111) pattern describes how to maintain system
consistency by coordinating the completion of tasks involving
multiple participants, each of which can include a resource, a
resource user and a resource provider. The pattern presents a
solution such that in a task involving multiple participants, either the
work done by all of the participants is completed or none are. This
ensures that the system always stays in a consistent state.

The Resource Lifecycle Manager (128) pattern decouples the
management of the lifecycle of resources from their use by
introducing a separate Resource Lifecycle Manager, whose sole

POSA3.book Page 1 Monday, March 22, 2004 6:21 PM

responsibility is to manage and maintain the resources of an
application.

Resource Release Patterns

The Leasing (149) pattern simplifies resource release by associating
time-based leases with resources when they are acquired. The
resources are automatically released when the leases expire and are
not renewed.

The Evictor (168) pattern describes how and when to release
resources to optimize resource management. The pattern allows
different strategies to be configured to determine automatically which
resources should be released, as well as when those resources should
be released.

POSA3.book Page 2 Monday, March 22, 2004 6:21 PM

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

POSA3.book Page i Monday, March 22, 2004 6:21 PM

Monday, 22. March 2004 16:08 Halftitle.fm <version 1.0>

Wiley Series in Software Design Patterns

The WILEY SERIES IN SOFTWARE DESIGN PATTERNS is designed to meet the needs of today’s
software architects, developers, programmers and managers interested in design patterns. Frank
Buschmann, the Series Editor, as well as authors, shepherds and reviewers will work collaboratively
within the patterns community to strive for high-quality, highly researched, thoroughly validated,
classic works which document accepted and acknowledged design experience. Priority will be given to
those titles that catalog software patterns and pattern languages with a practical, applied approach
in domains such as:

• Distributed systems
• Real time systems
• Databases
• Business information systems
• Telecommunications
• Organizations
• Concurrency
• Networking

Books in the series will also cover conceptual areas of how to apply patterns, pattern language
developments and architectural/component-based approaches to pattern-led software development.

TITLES PUBLISHED

• PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 1
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal
0 471 95869 7 476pp 1996 Hardback

• PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 2
Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann
0 471 60695 2 636pp 2000 Hardback

• A PATTERN APPROACH TO INTERACTION DESIGN
Jan Borchers
0 471 49828 9 250pp 2001 Hardback

• SERVER COMPONENT PATTERNS
Markus Völter, Alexander Shmid, Eberhard Wolff
0 471 84319 5 462pp 2002 Hardback

• ARCHITECTING ENTERPRISE SOLUTIONS
Paul Dyson, Andy Longshaw
0 470 85612 2 384pp 2004 Hardback

• PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 3
Michael Kircher, Prashant Jain
0 470 84525 2 312pp 2004 Hardback

POSA3.book Page ii Monday, March 22, 2004 6:21 PM

Michael Kircher,
Siemens AG Corporate Technology, Munich, Germany

Prashant Jain,
IBM Research Labs, Delhi, India

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

P a t t e r n s f o r
R e s o u r c e M a n a g e m e n t

V o l u m e 3

POSA3.book Page iii Monday, March 22, 2004 6:21 PM

Monday, 22. March 2004 18:08 Title.fm 1.0

Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a computer system for exclusive
use by the purchase of the publication.Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

Other Wiley Editorial Offices
John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA
Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA
Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany
John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia
John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
ISBN 0-470-84525-2

Typeset in Bookman Light 10/13 point by WordMongers Ltd, Treen, Cornwall TR19 6LG, England
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn, England
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which
at least two trees are planted for each one used for paper production.

POSA3.book Page iv Monday, March 22, 2004 6:21 PM

http://www.wileyeurope.com
http://www.wiley.com

For Christa, my parents, and grandparents

Michael Kircher

For Ruchi, Aanya, and my parents

Prashant Jain

POSA3.book Page v Monday, March 22, 2004 6:21 PM

POSA3.book Page vi Monday, March 22, 2004 6:21 PM

Table of Contents

Foreword by Frank Buschmann xi

Foreword by Steve Vinoski xiii

About This Book . xvii

About The Authors . xxiii

1 Introduction . 1
1.1 Overview of Resource Management 4
1.2 Scope of Resource Management 6
1.3 Use of Patterns . 9
1.4 Patterns in Resource Management 10
1.5 Related Work . 13
1.6 Pattern Form . 16

2 Resource Acquisition . 19
Lookup . 21
Lazy Acquisition . 38
Eager Acquisition . 53
Partial Acquisition . 66

3 Resource Lifecycle . 81
Caching . 83
Pooling . 97
Coordinator . 111
Resource Lifecycle Manager 128

POSA3.book Page vii Monday, March 22, 2004 6:21 PM

viii Table of Contents

4 Resource Release . 147
Leasing . 149
Evictor . 168

5 Guidelines for Applying Resource Management 181

6 Case Study: Ad Hoc Networking 185
6.1 Overview . 186
6.2 Motivation . 188
6.3 Solution . 189

7 Case Study: Mobile Network 197
7.1 Overview . 198
7.2 Motivation . 202
7.3 Solution . 204

8 The Past, Present, and Future of Patterns . . . 225
8.1 The Past Four Years at a Glance 226
8.2 Where Patterns are Now 231
8.3 Where Will Patterns Go Tomorrow? 232
8.4 A Brief Note about the Future of Patterns 237

9 Concluding Remarks . 239

Referenced Patterns 243

Notations . 249

References . 255

Acknowledgements . 269

Index of Patterns . 271

Index . 275

POSA3.book Page viii Monday, March 22, 2004 6:21 PM

Table of Contents ix

Index of Names . 283

POSA3.book Page ix Monday, March 22, 2004 6:21 PM

POSA3.book Page x Monday, March 22, 2004 6:21 PM

Foreword by Frank Buschmann

I never thought this would happen: a new volume of the POSA series
is published and nobody from the original ‘Party of Five’ is on the
author list. Yet I am very proud that I was wrong! I am proud because
this book shows that a new generation of smart software engineers
has grown up and is actively contributing their experience to the
patterns community. I am proud because the book demonstrates that
the pattern idea is still thriving. And I am proud, of course, because
our original POSA vision from 1996 is still inspiring patterns authors
to build on our material and enhance, mature, and evolve it.

The topic chosen for this POSA volume is key for the success of almost
every software system: resource management. This may appear
obvious, but only a decade ago many developers thought resource
management was of concern only in the embedded systems domain.
In the desktop and enterprise spheres only a few developers paid
attention to the topic. Why care about resources like memory, for
example—if you run out of it, you can simply upgrade your machine.
I must admit that in the earlier days of my career I had a similar
perspective: resources were just ‘there’ and unlimited. How wrong I
was! Fortunately I shot myself in the foot and quickly learned my
lesson.

Today few developers ignore the importance of resource management.
With the advent of component-based systems, application servers,
and the growing complexity and size of the applications running on
our computers, it is realized that managing resources carefully can
make a significant difference to the quality of a software system.
Resources such as memory, CPU power, threads, connections, and so
on are limited even on the biggest servers. Yet these servers are
expected to provide a high quality of service to all their users, even if
they are accessed by zillions of users simultaneously. This conflict is
only resolvable if the server’s resources are managed explicitly and
with care. However, the term ‘resource’ is not limited to low-level

POSA3.book Page xi Monday, March 22, 2004 6:21 PM

xii Foreword by Frank Buschmann

things like memory or connections. In today’s networked computing
world, resources can also include components and services that are
used remotely by client applications. Multiple client applications
often compete for access to these components and services. Ensuring
that all clients are served sufficiently well is the subject of appropriate
resource management.

However, acknowledging the importance of resource management
and doing it well are two different things. Effective resource
management is both difficult and challenging. If you do it well, your
applications will be efficient, stable, scalable, predictable, and
accessible. If you do it badly, your applications will at best provide
very limited operational quality. At worst they will just fail—it is as
simple as that. Allowing a container to do resource management is
not always a solution, because many software systems cannot afford
such infrastructures. Even if using a container is a feasible option,
you need to understand how its resource management works to be
able to build high quality systems. Many applications using
containers fail simply because of lack of understanding.

How can you acquire this understanding? What sources can you
mine for the challenges in resource management, the solutions to
master these challenges, and the do’s and don’t associated with the
solutions? One such source is the book you are holding, the third
volume of the POSA series. It presents experiences and solutions in
resource management gained over many years. All such experiences
and solutions have proved their quality in active duty in countless
well-known applications and middleware. Capturing these
experiences and solutions as patterns makes them accessible to every
software developer. Novices can learn about the fundamental
concerns and solutions in resource management, while experts can
cross-check and evaluate alternative solutions and read about details
of a particular solution. I am unaware of any other literature on
resource management that is equally comprehensive.

As said at the beginning: I am proud of this book. If you read it, you
will know why.

Frank Buschmann
Siemens AG, Corporate Technology

POSA3.book Page xii Monday, March 22, 2004 6:21 PM

Foreword by Steve Vinoski

If you’ve been a software developer for any appreciable length of time,
you have almost certainly experienced what I call the ‘stroll down
computer memory lane’. This event occurs regularly when developers
get together in a social setting, such as having lunch together. It
starts out innocently enough, with one of the developers describing a
recent run-in with an especially difficult problem. Not to be outdone,
another developer chimes in with a story detailing the conquest of an
even worse problem. From there, each new story attempts to outdo
the last, until only the old-timers are left speaking about primitive
machines that had to be programmed with punch cards or toggle
switches and had only a few bytes of RAM. I am waiting for the day
that during a stroll down computer memory lane, someone tries to
convince me that back when he or she started programming, there
were only zeros to program with, and no ones!

Developers are able to compare stories in the manner described above
because programming inherently requires many trade-offs.
Applications have to share computing resources with other
applications. Memory space and disk storage are not infinite. CPUs
can process only a certain number of instructions per second. Disk
and device I/O can take a relatively long time. Establishing database
connections and network connections can be expensive in terms of
time and resources. Throughout the history of electronic computing,
tremendous advances have been made in hardware, operating
systems, middleware, and applications. Unfortunately, despite these
advances, programming remains very much an art of choosing the
right trade-offs to maximize the effectiveness of the overall computing
solution.

All applications manage resources of some kind, such as memory,
connections to networks or databases, or threads. However, there is
a marked difference between applications that are written and tuned
to manage resources well and those that aren’t. Ignoring resource

POSA3.book Page xiii Monday, March 22, 2004 6:21 PM

xiv Foreword by Steve Vinoski

management is not a problem for simple applications that run only
occasionally for brief periods of time, such as basic command-line
utilities or configuration GUIs. However, a lack of focus on resource
management is a recipe for failure when developing long-running
applications that must be robust, high performance, and scalable,
such as Web servers, application servers, and notification systems.

The patterns in this book are about resource management. Generally,
resources can be acquired, managed, and released, and the patterns
presented here specifically target those three areas. These are the
primary areas that can have a profound influence on the overall
performance, size, scalability, and durability of a running
application. For example, many applications acquire memory from
the heap. For an application like a Web or application server, every
individual heap memory allocation made in the request-handling
code path decreases the server’s performance and scalability, due to
the cost of invoking the heap manager and the cost of acquiring and
releasing mutexes needed to protect the heap for concurrent access.
Such an application might instead apply a pattern such as Partial
Acquisition to eagerly acquire as many resources as possible before
entering the request code path, and apply the Caching or Pooling
patterns to keep the resources around for the next request, rather
than releasing them and later reacquiring them. Even experienced
developers can be pleasantly surprised by the degree to which
applying the right combination of resource management patterns can
positively impact the performance and scalability of an application.

This book continues with the POSA tradition of emphasizing practical
solutions. I especially like the fact that each pattern in this book
includes a fairly detailed section describing implementation issues,
as well as a section that provides an extensive list of known
applications of the pattern. In addition, there are two chapters
describing detailed case studies that show not only how the patterns
might be applied to real-world applications, but also how the patterns
relate to each other within such applications. Patterns are, after all,
descriptions of approaches that have been proven to work in real
applications, and the fact that the authors have so effectively tied
them back to their sources and influences ensures that the patterns
maintain that important connection with the real world.

POSA3.book Page xiv Monday, March 22, 2004 6:21 PM

Foreword by Steve Vinoski xv

Software patterns generally help us decide what trade-offs to make in
our architectures and designs, and where to make them.
Programming is, after all, a human endeavor, and patterns raise the
levels of abstraction and communication that teams use to socialize
their architectures and designs. As a long-time middleware architect,
designer, and implementer, I have at one time or another successfully
applied each of the patterns that Prashant and Michael present here.
Unfortunately, I did so before the approaches were captured as
patterns, which means that my teammates and I spent many hours
devising our own variations, implementing them, measuring them to
determine their trade-offs, and refining and tuning them based on
our measurements. Now, because Michael and Prashant have clearly
and comprehensively documented these approaches as a pattern
language, you and your teammates can more easily discuss them and
understand what they’re good for, determine the best circumstances
under which to apply them, and understand the forces you need to
concern yourselves with when implementing them.

Armed with the knowledge of these resource management patterns
and good performance measurement tools, you’ll be pleasantly
surprised at how quickly and easily you can take an application with
only mediocre performance and scalability and turn it into something
that races along instead. With these kinds of skills, your stories at the
next stroll down computer memory lane will impress even the old-
timers.

Steve Vinoski
Chief Engineer, Product Innovation

IONA Technologies

POSA3.book Page xv Monday, March 22, 2004 6:21 PM

POSA3.book Page xvi Monday, March 22, 2004 6:21 PM

About This Book

This is a book about patterns for resource management in software
systems. The patterns provide solutions for problems that are
typically encountered by software architects and developers when
trying to provide an effective and efficient means of managing
resources in a software system. Efficient management of resources is
critical in the execution of any kind of software. From embedded
software in a mobile device to software in a large enterprise server, it
is important that resources, such as memory, threading, files, or
network connections, are managed efficiently to allow the systems to
function properly and effectively.

The first volume of the Pattern Oriented Software Architecture (POSA)
series [POSA1] introduced a broad-spectrum of general-purpose
patterns in software design and architecture. The second volume of
the series [POSA2] narrowed the focus to fundamental patterns for
building sophisticated concurrent and networked software systems
and applications. This volume uses patterns to present techniques for
implementing effective resource management in a system.

The patterns in this book are covered in detail and make use of
several examples. As with the previous POSA volumes, the book
provides directions to the readers on how to implement the patterns
presented. Additionally, the volume presents a thorough introduction
to resource management, and two case studies, in which the patterns
are applied to two different domains. The patterns presented are
independent of any implementation technique, such as .NET, Java or
C++, even though the examples are given in Java and C++. The
patterns are grouped by different areas of resource management, and
hence address the complete lifecycle of resources: resource
acquisition, resource lifecycle and resource release.

The patterns in the book provide an extensive coverage of the sphere
of resource management. We began documenting these patterns

POSA3.book Page xvii Monday, March 22, 2004 6:21 PM

xviii About This Book

several years ago based on our experiences of building many different
software systems. Most of the patterns have been presented or
workshopped at leading conferences. However, what we felt was
missing was an effort to pull the patterns together in the form of a
pattern language and present it in such a way that the pattern
language can be applied to multiple domains.

The scope of resource management is vast. The challenges that are
faced by system designers and developers dealing with the
management of resources are constantly changing as new
technologies emerge. We anticipate that additional patterns in
resource management will be discovered and documented with time.
The Concluding Remarks chapter of this book talks about what lies
ahead in the effort to evolve the resource management pattern
language.

Intended Audience

This book is for all software architects, designers, and developers.
They can use the patterns described in the book to solve the
challenges in resource management that every typical software
system faces.

The book will also be useful to students of computer science, as it can
provide them with a broad overview of the available best practices in
resource management.

Structure of the Book

The book is divided into two parts. The first part provides an
introduction to the topic of resource management and the patterns in
resource management. The patterns presented in the first part have
been grouped into three chapters, Resource Acquisition, Resource
Lifecycle, and Resource Release, to correspond with the typical
lifecycle of resources. The second part of the book applies the
patterns to two case studies.

While the first part of the book looks at resource management from a
problem domain perspective, the second part of the book does so from
an application domain perspective. The patterns in this book are not
isolated. In fact, throughout our coverage of resource management

POSA3.book Page xviii Monday, March 22, 2004 6:21 PM

About This Book xix

patterns, we make extensive references to other related and relevant
patterns. For each such pattern, we have included thumbnail
descriptions in the Referenced Patterns chapter.

The book contains many examples of the use of the patterns. While
the patterns use individual examples, each case study chapter uses
a single example in a particular domain to tie all the patterns
together. This acts as a running example by presenting problems in
that particular domain and uses the individual patterns together to
address the problems presented. This approach allows us to prove the
broad applicability of the patterns while still showing how they
connect together.

The first chapter, Introduction, formally introduces the topic of
resource management in software systems and defines its scope. The
chapter describes why managing resources in software systems
effectively and efficiently is challenging. It also introduces patterns
and shows how they can be used to address the challenges of
resource management.

Chapter 2, Resource Acquisition, describes patterns that address the
forces affecting the acquisition of resources. Resources must be
acquired before they can be used. However, acquisition of resources
should not degrade system performance, nor should it produce any
bottlenecks. For large resources or resources that become available
only in parts, the adaptation of the resource acquisition strategy is
essential.

Chapter 3, Resource Lifecycle, describes patterns that resolve forces
affecting the lifecycle of resources. Resources can have very different
lifecycles. For example, some resources are both heavily and
frequently used, while others may only be used once. When a
resource is no longer needed, it can be released. However,
determining when to release a resource is not trivial. Explicit control
of the lifecycle of a resource can be tedious and error-prone. To
address this problem, automated resource management techniques
are needed. In addition, in certain architectures such as distributed
systems, multiple resources have to work together to achieve a higher
common goal. As every resource can potentially be managed by its
own thread of control, the collaboration and integration of multiple
resources needs to be coordinated.

POSA3.book Page xix Monday, March 22, 2004 6:21 PM

xx About This Book

Chapter 4, Resource Release, describes patterns that deal with the
efficient and effective release of resources. Resources no longer
needed should be returned to the resource environment to optimize
system performance and allow other users to acquire them. However,
if a released resource needs to be used again by the same resource
user, the resource must be re-acquired, impacting performance. The
challenge is to find the right balance and to determine when to release
resources. Furthermore, explicit invocation of resource management
operations, such as the release of a resource, is tedious. How can the
management effort be kept at a minimum while ensuring high
efficiency and scalability?

In Chapter 5, Guidelines for Applying Resource Management, we
present guidelines for applying resource management, which
describe a recipe for applying the resource management pattern
language to a particular domain effectively.

Chapter 6, Case Study: Ad Hoc Networking, shows how an ad hoc
networking application can be built and its resource management
requirements addressed using the patterns we describe.

Chapter 7, Case Study: Mobile Network, ties all the patterns into a
pattern language, and uses that pattern language to address the
requirements of a case study in the telecommunications domain.

In Chapter 8, The Past, Present, and Future of Patterns, Frank
Buschmann continues the tradition of looking back at the forecasts
about ‘where patterns are going’ made in the earlier POSA volume. He
further analyzes where patterns are now, and makes predictions
about the future of patterns.

Chapter 9, Concluding Remarks, completes the main content of the
book. This chapter includes an analysis of what future work in the
area of resource management might include.

Referenced Patterns documents all the patterns we reference as
thumbnails, and Notations contains a key to all the notations that we
use in this book.

For supplementary material, we encourage you to visit our Web site
at http://www.posa3.org. The site contains all the source code that we
present in the patterns, together with updates to the patterns
themselves. The site also contains any additions to the resource
management pattern language that have been made over time.

POSA3.book Page xx Monday, March 22, 2004 6:21 PM

About This Book xxi

If you have any comments, constructive criticism, or suggestions for
improvement, please send them to us via e-mail to authors@posa3.org.

Guide to the Reader

This book is constructed so that you can read it from cover to cover.
If you know what you want to achieve, however, you may want to
choose your own route through the book. In this case, the following
hints can help you decide which topics to focus on and the order in
which to read them:

• To see how individual patterns can be used in practice and how
they work together, start with the problem and solution sections of
the patterns, then continue with the case studies in Chapters 6
and 7.

• To get a feeling for the broad applicability of the pattern language,
look for the abstracts and known uses of each pattern in Chapters
2 to 4.

• To see how the resource management pattern language fits into
existing patterns work, especially those that touch on the area of
resource management, refer to Section 1.5, Related Work.

We summarize the pattern language inside the front and back covers.
Inside the front cover, we present a quick overview of the pattern
language by listing the abstracts of all patterns. Inside the back cover,
we present a pattern map illustrating the relationships between the
patterns.

Acknowledgements

It is a pleasure for us to thank the many people who supported us in
writing this book. Foremost, we would like to thank our shepherd,
Charles Weir, and the reviewers of this book: Cor Baars, Frank
Buschmann, Fabio Kon, Karl Pröse, Christa Schwanninger, Michael
Stal, Christoph Stückjuergen, Bill Willis, and Egon Wuchner. Special
thanks to the Silicon Valley Patterns Group, with outstanding
contributions from Trace Bialik, Jeffrey Miller, Russ Rufer, and
Wayne Vucenic. Collaborating on the Internet using Wiki to obtain

POSA3.book Page xxi Monday, March 22, 2004 6:21 PM

xxii About This Book

feedback from the Silicon Valley Patterns Group proved to be very
effective.

We wish to thank our EuroPLoP and PLoP shepherds who have
extensively reviewed individual patterns: Pascal Costanza, Ed
Fernandez, Alejandra Garrido, Bob Hanmer, Kevlin Henney, Irfan
Pyarali, Terry Terunobu, John Vlissides, and Uwe Zdun. We also wish
to thank the reviewers of individual chapters: Roland Grimminger,
Kevlin Henney, Michael Klug, Douglas C. Schmidt, Peter Sommerlad,
and Markus Völter. Kevlin also supported us by providing many of the
chapter citations, reviewing the correct usage of UML in our
diagrams, and giving recommendations on the use of white space.

We also wish to thank Kirthika Parameswaran, with whom we worked
on the idea of implementing JinACE [KiJa04], a Jini-like [Sun04c]
framework implemented using C++. Our work inspired us to dig
deeper into the concept of ad hoc networking and ultimately discover
the patterns behind it. We want to thank her for the brainstorming
sessions via long e-mail exchanges.

We are grateful to Douglas C. Schmidt, who encouraged us to view our
research on JinACE from a pattern language perspective. The
patterns that subsequently emerged motivated us to start working on
the resource management pattern language.

Further, we wish to thank the pattern team at Siemens AG, Corporate
Technology: Martin Botzler, Frank Buschmann, Michael Stal, Karl
Pröse, Christa Schwanninger, Dietmar Schütz, and Egon Wuchner.

For the wonderful support on this book, we would like to thank our
contacts at John Wiley & Sons: Gaynor Redvers-Mutton, Juliet
Booker and Jonathan Shipley. Steve Rickaby, our copy editor, did a
great job in helping us polish the book. It was a pleasure working with
him.

Finally, we wish to express our special thanks to Frank Buschmann.
He not only served as a reviewer of the book, and contributor of the
chapter on The Past, Present, and Future of Patterns, but also gave us
inspiration and encouragement to help us complete the book.

POSA3.book Page xxii Monday, March 22, 2004 6:21 PM

About The Authors

Michael Kircher

Michael Kircher is currently working as Senior Software Engineer at
Siemens AG Corporate Technology in Munich, Germany. His main
fields of interest include distributed object computing, software
architecture, patterns, eXtreme Programming, and management of
knowledge workers in innovative environments. He has been involved
as a consultant and developer in many projects, within various
Siemens business areas, building software for distributed systems.
Among those were the development of software for UMTS base
stations, postal automation systems, and operation and maintenance
software for industry and telecommunication systems.

During his studies he was a member of the research group lead by
Douglas C. Schmidt, where he was involved in the development of the
Real-Time CORBA implementation TAO (The ACE ORB). That was
when he discovered the world of patterns. In the course of
implementing an efficient multi-threaded dispatching mechanism for
TAO, he co-authored his first pattern with Irfan Pyarali, Leader/
Followers.

In recent years he has published at numerous conferences on topics
such as patterns, software architecture for distributed systems, and
eXtreme Programming. Together with Prashant, he organized several
workshops on the topics covered by this book at conferences such as
OOPSLA and EuroPLoP.

In his spare time Michael likes to combine family life with enjoying
nature on foot and by bike. The best place for him to relax is in his
custom-made hide, while watching wildlife accompanied by his
hunting dog Ella.

POSA3.book Page xxiii Monday, March 22, 2004 6:21 PM

xxiv About The Authors

Prashant Jain

Prashant Jain is currently working as a Technical Staff Member at
IBM Research Labs in Delhi, India. His main fields of interest include
distributed systems, e-commerce, software architecture, patterns
and eXtreme programming. At IBM he has been doing research on
emerging technologies in the area of e-commerce.

Prashant obtained his Masters degree in Computer Science from
Washington University in St. Louis, U.S.A. It was there that he
developed a keen interest in design patterns, and in 1996 co-
authored his first pattern with his advisor, Douglas C. Schmidt. Since
then he has been actively involved in the pattern community by
means of authoring pattern submissions and organizing pattern
workshops at conferences such as OOPSLA and EuroPLoP.

His passion for travel has seen Prashant living and working in
countries that include India, Japan, the USA, and Germany. His
professional experience includes working for companies such as
Siemens AG, Fujitsu Network Communications Inc., and Kodak
Health Imaging Systems Inc. He has also been actively involved in the
Centre for Distributed Object Computing at Washington University.

In his spare time, Prashant enjoys travelling, dining out, watching
movies and swimming. But his most cherished activity is engaging in
logical conversations with his four-year old daughter Aanya, which
often leave him speechless.

POSA3.book Page xxiv Monday, March 22, 2004 6:21 PM

1 Introduction

“A common mistake that people make
when trying to design something completely foolproof

is to underestimate the ingenuity of complete fools.”

Douglas Adams

A resource is an entity that is available in limited supply such that
there exists a requestor, the resource user, that needs the entity to
perform a function, and there exists a mechanism, the resource
provider, that provides the entity on request. In the context of
software systems, a resource can include, among other things,
memory, synchronization primitives, file handles, network
connections, security tokens, database sessions, and local as well as
distributed services. A resource can be anything from a heavyweight
object such as an application server component [VSW02] to a fine-
grained lightweight object such as a file handle.

Determining what is a resource can sometimes be challenging. For
example, in programming environments an image, such as a JPEG or

POSA3.book Page 1 Monday, March 22, 2004 6:21 PM

2 Introduction

GIF file, is often referred to as a resource. In reality, however, there
are no acquisition and release semantics defined for an image—
instead, it is the data that makes up the image that constitutes a
resource. Therefore a more accurate representation would be to treat
the memory an image is using as a resource, which needs to be
acquired when the image is loaded and released when the image is no
longer needed.

There are numerous ways of categorizing resources. In the simplest,
resources can be viewed as either reusable or non-reusable. Reusable
resources typically are acquired from a resource provider, used and
then released. Once the resources have been released they can be
acquired and used again. An example of a reusable resource is
memory that is allocated by and released to the operating system.
Other examples of reusable resources include file handles and
threads. Reusable resources are the most important form of resource,
because the resource provider typically only has a limited number of
resources, and therefore reusing resources that are not consumed
makes logical sense. In contrast, non-reusable resources are
consumed, and therefore once acquired are either not released, or
their release is implicit. An example of a non-reusable resource is
processing time in a computing grid [Grid04]—once the processing
time is acquired and used, it is gone and cannot be returned.

A different method of categorizing resources is based on how the
resources are accessed or used. A resource, once acquired, can be
concurrently used either by multiple users or a single user. Examples
of resources that are concurrently accessible by multiple users
include services, queues, and databases. If a resource that can be
concurrently accessed by multiple users has changeable state, then
access to that resource needs to be synchronized. On the other hand,
if a resource that can be concurrently accessed by multiple users
does not have state, then no synchronization is needed. An example
of a resource that does not need synchronization is a stateless session
bean of a J2EE EJB [Sun04b] application server. On the other hand,
a network communication socket is an example of a resource that
needs synchronization. A resource that can be concurrently accessed
by multiple users need not be acquired explicitly by each user.
Instead, resource users can share references to the resource, such

POSA3.book Page 2 Monday, March 22, 2004 6:21 PM

