

AVR-

Mikrocontroller-Kochbuch

Entwurf und Programmierung praktischer Anwendungen

Irmtraut Meister / Lukas Salzburger

AVR-Mikrocontroller-Kochbuch

Irmtraut Meister / Lukas Salzburger

AVR-

Mikrocontroller-Kochbuch

Entwurf und Programmierung praktischer Anwendungen

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte Daten sind im Internet über http://dnb.ddb.de abrufbar.

Hinweis: Alle Angaben in diesem Buch wurden von den Autoren mit größter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksamer Kontrollmaßnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschließen. Der Verlag und die Autoren sehen sich deshalb gezwungen, darauf hinzuweisen, dass sie weder eine Garantie noch die juristische Verantwortung oder irgendeine Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen, übernehmen können. Für die Mitteilung etwaiger Fehler sind Verlag und Autoren jederzeit dankbar. Internetadressen oder Versionsnummern stellen den bei Redaktionsschluss verfügbaren Informationsstand dar. Verlag und Autoren übernehmen keinerlei Verantwortung oder Haftung für Veränderungen, die sich aus nicht von ihnen zu vertretenden Umständen ergeben. Evtl. beigefügte oder zum Download angebotene Dateien und Informationen dienen ausschließlich der nicht gewerblichen Nutzung. Eine gewerbliche Nutzung ist nur mit Zustimmung des Lizenzinhabers möglich.

© 2013 Franzis Verlag GmbH, 85540 Haar bei München

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien. Das Erstellen und Verbreiten von Kopien auf Papier, auf Datenträgern oder im Internet, insbesondere als PDF, ist nur mit ausdrücklicher Genehmigung des Verlags gestattet und wird widrigenfalls strafrechtlich verfolgt.

Die meisten Produktbezeichnungen von Hard- und Software sowie Firmennamen und Firmenlogos, die in diesem Werk genannt werden, sind in der Regel gleichzeitig auch eingetragene Warenzeichen und sollten als solche betrachtet werden. Der Verlag folgt bei den Produktbezeichnungen im Wesentlichen den Schreibweisen der Hersteller.

Satz: DTP-Satz A. Kugge, München art & design: www.ideehoch2.de Druck: C.H. Beck, Nördlingen Printed in Germany

Vorwort und »Gebrauchsanweisung«

Ein gutes Kochbuch erkennt man an zwei Dingen: Zum einen verfügt es über einen allgemeinen Teil, der nützliche grundlegende Tipps und Anweisungen rund ums Kochen enthält, ohne deren Kenntnis das tollste Rezept nicht gelingt. Darunter fallen beispielsweise die korrekte Zubereitung der verschiedenen Fleischsorten, die Lagerung von Gemüse oder einige einfache Saucen. Zum anderen sollen die Rezepte selbst von einer Qualität sein, die es erlaubt, aus möglichst einfachen Zutaten ohne großen Aufwand ein möglichst schmackhaftes Ergebnis zu zaubern. Idealerweise gefolgt von möglichen Variationen, falls eine Zutat gerade nicht zur Hand ist.

Die Grundlagen sind zwar vielleicht für erfahrene Hobbyköche eher uninteressant. Aber wenn sie nicht vorhanden sind – und der eine oder andere Hinweis ist mit an Sicherheit grenzender Wahrscheinlichkeit für jemanden neu – so können neue Versuche an Kleinigkeiten scheitern und rasch macht sich Frustration breit.

Nach dieser Logik haben wir den ersten Teil des Buches gestaltet. Die Grundlagen sollen eine gemeinsame Basis schaffen und Einsteigern Konzepte vermitteln, auf denen alles Weitere aufbaut. Auf diese folgen einfache Anwendungen, in welchen die Umsetzung der theoretischen Konzepte an einfachen praktischen Beispielen demonstriert wird.

Den Einstieg bilden also Mikrocontroller-Grundlegenden (Kapitel 1), gefolgt von Allgemeinem zur Programmierung und Implementierung (Kapitel 2), von Bitoperationen bis zu einfachen Codegerüsten, die den Brückenschlag zwischen den theoretischen Grundlagen und der realen Umsetzung bilden sollen. Letzteres geht auf Erste Schritte (Kapitel 2.5) mit einem Mikrocontroller ein, den Allgemeinen Programmaufbau (Kapitel 2.6) sowie detailliert auf die allgemeine Implementierung der einzelnen Peripherieeinheiten und Grundbausteine (Kapitel 2.7).

Schließlich kommen wir zu den eigentlichen »Rezepten« (Kapitel 3 bis 12), anhand derer wir unsere Mikrocontroller-»Süppchen« nach Lust und Laune kochen können. Hier finden sich Beispiele zum Schalten von LEDs und anderen Lasten, zur Messung verschiedener Größen (Strom, Spannung, Kapazität, Temperatur, Frequenz, ...), zum Erzeugen von Signalen oder zur Kommunikation über diverse Schnittstellen – um einige zu nennen.

Wir haben versucht, eventuell auftretende Unklarheiten an Ort und Stelle etwa durch angeführte Beispiele im Text zu beseitigen. Für den Fall, dass trotzdem welche auftreten, bildet ein Anhang mit verschiedenen Hinweisen und Tabellen den Abschluss (*Kapitel 13*).

Die Autoren möchten sich bei all jenen bedanken, die bei der Entstehung dieses Buches mitgewirkt und es dadurch erst ermöglicht haben.

Abschließend bleibt uns nur noch, dem Leser viel Freude und Erfolg auf dem spannenden Gebiet der Mikrocontrollerprogrammierung zu wünschen, und wir hoffen, mit diesem Buch dazu beizutragen.

Sicherheitshinweis:

Unfälle mit Strom können schmerzhaft oder sogar tödlich sein, daher ist besondere Vorsicht geboten. Bestehende Normen und Sicherheitsrichtlinien zum Umgang mit dem elektrischen Strom sind unbedingt zu konsultieren und zu beachten, folgende Hinweise gelten nur als Richtlinie.

Niedrige Spannungen unter 25 V Wechselspannung beziehungsweise 60 V Gleichspannung gelten als ungefährlich. Unter außerordentlichen Bedingungen kann aber auch eine geringe Wechselspannung unter Anderem den Herzrhythmus stören. Vor allem Mischspannungen (Gleichstrom mit Wechselstromanteil) sind gefährlich.

Zudem gelten viele in der Elektronik eingesetzte Chemikalien als gesundheitsschädigend, insbesondere Blei und Kadmium in Lötzinn. Daher sind diesbezüglich ebenfalls Vorsichtsmaßnahmen zu treffen.

Atmel[®], Atmel logo and combinations thereof, AVR[®], PicoPower[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.

Einführung

Mikrocontroller können als kleine Computer verstanden werden, die im Gegensatz zu ihren großen Verwandten gezielt für spezielle, mehr oder weniger komplexe Aufgaben eingesetzt werden. Sie bilden den Kern von vielen Eingebetteten Systemen (Embedded Systems), welche für die Funktion der meisten modernen elektronischen und mechatronischen Systeme verantwortlich sind, die inzwischen so selbstverständlich zum alltäglichen Leben gehören.

Die möglichen Einsatzszenarien sind so vielseitig, dass es womöglich einfacher wäre, jene modernen technischen Geräte herauszupicken, in denen ausnahmsweise *kein* Mikrocontroller steckt.¹ Von MP3-Playern und Handys über Haushaltsgeräte und Kraftfahrzeugkomponenten bis hin zu Kraftwerken und Industrie-Großanlagen – Mikrocontroller übernehmen eine kaum überschaubare Vielzahl unterschiedlichster Aufgaben. Allein in einem modernen Personenkraftwagen können über 100 Mikrocontroller verbaut sein.

Ein Mikrocontroller ist insofern mit einem *Personal Computer* vergleichbar, als er aus ähnlichen Komponenten aufgebaut ist: Ein Prozessor bildet sein Herzstück, es gibt einen Arbeits- und einen dauerhaften Programmspeicher sowie Zusatzperipherie wie beispielsweise Ein- und Ausgabeeinheiten. Man spricht allerdings erst von einem Mikrocontroller, wenn all diese Bausteine auf einem einzelnen Chip integriert sind. Im Laufe des folgenden Abschnitts *Grundlegende Konzepte* wird genauer auf die Bestandteile und Charakteristiken eingegangen, die für das Verständnis der Funktionsweise, der Möglichkeiten und Grenzen eines Mikrocontrollers essenziell sind.

Zur Erläuterung wurden $AVR^{\$}$ -Mikrocontroller von $Atmel^{\$}$ gewählt, da sie weit verbreitet und leicht erhältlich sind. Auch ist der Umgang mit ihnen einfach zu erlernen, da sie einen eleganten und vergleichsweise einfachen Aufbau haben. Die Codebeispiele wurden in der Programmiersprache C geschrieben, um dem Industriestandard gerecht zu werden. Die Grundlagen und Beispiele gelten aber auch für Mikrocontroller anderer Hersteller beziehungsweise sind, mit geringen Abweichungen, auf jene übertragbar. Gerade dieses erste Kapitel ist so ausgelegt, dass es den Leser befähigen soll, sich rasch

Neben Mikrocontrollern gibt es beispielsweise noch ASICs, FPGAs und DSPs, welche eine vergleichbare beziehungsweise spezialisiertere Rolle übernehmen können und je nach Anwendung vorzuziehen sind.

Hier gibt es auch Ausnahmen, etwa ältere oder besonders leistungsstarke Mikrocontroller, bei welchen der Speicher auch extern angeschlossen werden kann. Die genannte Definition ist auch nur eine der möglichen.

auch in »fremde« Mikrocontroller einzuarbeiten sowie deren Besonderheiten zu erkennen.

Falls der Leser bereits einen Blick in einschlägige Internetforen geworfen hat, werden ihm womöglich die beinahe religiös anmutenden Diskussionen rund um die Frage auffallen: »Welche Mikrocontroller sind die besten?« Generell kann man diesen Punkt – wie bei den meisten ähnlich lautenden Fragen – nur beantworten mit: »Es kommt darauf an«.

Mikrocontroller werden je nach Anwendung bezüglich Architektur, Speicher und Zusatzfunktionen sowie Kosten, Leistungsverbrauch und Verfügbarkeit ausgewählt (nach Abschluss des Grundlagenkapitels wird das verständlicher). Üblicherweise hat jeder große Hersteller eine Vielzahl vergleichbarer Lösungen parat, wodurch es letztendlich nicht selten auf persönliche Präferenzen hinausläuft, ob man nun einen Mikrocontroller von $Atmet^{\otimes}$, $Freescale^{\text{TM}}$, Microchip, NXP, Renesas, Texas Instruments oder einem anderen »Global Player« wählt.

Dieses Buch setzt Basiskenntnisse in der Programmiersprache C voraus. Zum Erlernen sei auf entsprechende Fachbücher und Online-Tutorials verwiesen. Die Grundlagen werden jedoch auch in einem eigenen Abschnitt kurz wiederholt und um mikrocontrollerspezifische Details erweitert.

Hinweis:

Wir haben viele generell für Mikrocontrolleranwendungen wichtige Maßnahmen an der Stelle beschrieben, an der sie das erste Mal auftauchen beziehungsweise von elementarer Bedeutung sind. Das bedeutet nicht, dass sie nicht auch für andere Anwendungen zu beachten sind – wir benutzen daher viele Querverweise und haben uns bemüht, ein möglichst umfangreiches Stichwortverzeichnis zu pflegen, damit jeder Hinweis und jede Erklärung auffindbar sind.

Inhaltsverzeichnis

1	Mikroc	controller-Grundlagen	15
	1.1	Was ist ein Mikrocontroller?	15
	1.2	Grundlegende Konzepte	18
	1.2.1	Die Prozessorarchitektur	18
	1.2.2	Gehäuse (Package)	20
	1.2.3	Datenblätter, Manuals und Errata	23
	1.2.4	Versorgungsspannung und Signalpegel	26
	1.2.5	Speicher	
	1.2.6	Takt und Taktgenerierung	33
	1.2.7	Interrupts	38
	1.2.8	Timer (Zähler)	40
	1.2.9	Register	42
2	_	mmierung und Implementierung	
	2.1	Allgemeines zur Programmierung	
	2.1.1	Eigenheiten der Mikrocontrollerprogrammierung	
	2.1.2	Schlüsselwörter	
	2.1.3	Portierbarkeit von Code	
	2.1.4	Codeoptimierung	
	2.1.5	Compilereinstellungen	
	2.2	Programmierung des Mikrocontrollers	
	2.2.1	Programmierumgebung	
	2.2.2	Programmieradapter	54
	2.2.3	ISP	
	2.2.4	Fuses	57
	2.2.5	Bootloader	59
	2.3	Debugging	60
	2.3.1	Printf-Debugging	
	2.3.2	Software-Emulator	
	2.3.3	JTAG und DebugWIRE	62
	2.3.4	Hardware-Debugging	64
	2.4	Bitoperationen	65
	2.4.1	Bitoperatoren	65
	2.4.2	Bits setzen, löschen und toggeln	68

	2.4.3	Bits prüfen	70
	2.5	Erste Schritte – ein einführendes Programm	72
	2.5.1	Schaltungsaufbau	72
	2.5.2	Programmcode	76
	2.5.3	Programmierung des Controllers	78
	2.6	Allgemeiner Programmaufbau	79
	2.6.1	Außerhalb der Hauptroutine	80
	2.6.2	Hauptroutine	83
	2.7	Grundbausteine – Funktionsweise und Implementierung	84
	2.7.1	Interrupts	84
	2.7.2	Timer	93
	2.7.3	Delay	98
	2.7.4	IO-Pins (GPIOs)	99
	2.7.5	AD-Wandler	100
	2.7.6	DA-Wandler	113
	2.7.7	Komparator	114
	2.7.8	PWM	117
	2.7.9	UART/USART	121
	2.7.10	SPI / Microwire	135
	2.7.11	I ² C / TWI / 2-Wire	141
	2.7.12	CAN	149
	2.7.13	USB	149
	2.7.14	Zustandsautomat (State Machine)	150
	2.7.15	Watchdog	154
	2.7.16	Brownout-Detektor	
	2.7.17	Low Power und Schlafzustände	159
	2.7.18	General Purpose I/O Register und Fehlerbehandlung	165
3	Digitale	Ein- und Ausgänge	167
	3.1	Pegelwandler	167
	3.2	Pinerweiterung mit I/O-Bausteinen	168
	3.2.1	SPI-Schieberegister: die 74xx595-Familie	169
	3.3	Schalten großer Lasten	172
	3.3.1	Schalten mit MOSFETs	174
	3.3.2	Schalten mit Bipolartransistoren	178
	3.3.3	Ausgangstreiber	180
	3.3.4	Relais	181
	3.3.5	Wechselspannungen schalten	182
	3.4	Schutzschaltungen	

4	Spann	ungsmessung	195
	4.1	Anpassung des Eingangsspannungsbereichs	195
	4.2	AD-Wandlungsergebnis berechnen	197
	4.3	Referenzspannung	198
	4.3.1	Interne Referenzspannungsquelle	
	4.3.2	Externe Referenzspannungsquelle	199
	4.4	Interner AD-Wandler	200
	4.4.1	Konfiguration	200
	4.5	Externer AD-Wandler	203
	4.5.1	ADC mit I ² C-Schnittstelle	
	4.5.2	ADC mit SPI-Schnittstelle	
	4.5.3	Parallel angeschlossene ADCs	206
	4.6	Verifizieren der Messung	
	4.6.1	Referenz- und Versorgungsspannung	
	4.6.2	Das Histogramm	
	4.6.3	Für Fortgeschrittene: Zufall und Korrelation	
	4.7	Messen von Wechselspannungen	210
	4.7.1	Parameter einer Wechselspannung	210
	4.7.2	Effektivwertmessung (RMS)	212
	4.7.3	Spitzenwertmessung	212
5	Spann	ungen ausgeben	215
	5.1	Interner DA-Wandler	
	5.2	Externer DA-Wandler	216
	5.3	Analogspannung mit PWM generieren	
	5.3.1	Analogspannung mit Fast-PWM	
	5.3.2	Für Fortgeschrittene: Filterauslegung	
	5.4	Software-PWM	
	5.4.1	Software-PWM mit Compare Match	
	5.4.2	Software-PWM mit Timer Overflow	223
6	Widers	standsmessung	227
	6.1	Spannungsteiler	227
	6.2	Messung mit Konstantstrom	228
	6.3	Ratiometrische Messung	230
7	Stromi	messung	233
	7.1	Messung mit Shuntwiderstand	
	7.1.1	Current Shunt Monitor	234
	7.2	Transimpedanzverstärker	235

12

	7.3	Hallsensor	237
	7.4	Stromwandler	237
	7.5	Strommessung mit einem Kondensator	237
8	Zeit- un	d Frequenzmessung	
	8.1	Periodendauermessung	239
	8.1.1	Beispiel Messung der Periodendauer mit Timer und analogem	
		Komparator	240
	8.2	Zählen der Nulldurchgänge	243
9	Kapazit	äts- und Induktivitätsmessung	
	9.1	Ladekurve	247
	9.2	Schwingkreis	
	9.3	RC-Oszillator	250
10	Temper	aturmessung	253
	10.1	Widerstandstemperatursensoren	
	10.1.1	Ptxxx (Pt100, Pt1000,)	
	10.1.2	KTY-Serie	
	10.1.3	PTC	
	10.1.4	NTC	
	10.2	Halbleitertemperatursensoren	
	10.2.1	AVR®-interner Temperatursensor	
	10.2.2	Externe Temperatursensoren mit Spannungs-/Stromausgang	
	10.3	Thermoelement	
	10.4	Digitale Temperatursensoren	
	10.4.1	Beispiel LM75-kompatibler I ² C-Temperatursensor	265
11		nikation mit Menschen	
	11.1	Eigenes »printf()«	
	11.2	LEDs und 7-Segment-Anzeigen	
	11.2.1	LEDs	
	11.2.2	7-Segment-Anzeige	
	11.2.3	RGB-LED mit PWM	
	11.3	Taster und Keypads	
	11.3.1	Matrixtastatur	281
12		peichern	
	12.1	Internes EEPROM	
	12.2	Interner Flash-Speicher	
	12.2.1	Lookup-Tabelle im Flash	290

	12.3	Externe Speicher	291
	12.3.1	SPI-Flash	291
12	Ab.	· · · · · · · · · · · · · · · · · · ·	202
13	_		
	13.1	Elektrotechnische Grundgleichungen	
	13.1.1	Das Ohm'sche Gesetz	
	13.1.2	Serien- und Parallelschaltung R, C, L	
	13.1.3	Spannungsteiler	
	13.1.4	Grenz- und Resonanzfrequenz	
	13.1.5	Bandbreite eines Rechtecksignals	
	13.2	Darstellung von Bauteilwerten	
	13.3	E-Reihe	
	13.4	Temperaturbereiche	
	13.5	LED-Vorwiderstand	300
	13.5.1	Berechnung	301
	13.6	Dezibel (dB)	303
	13.6.1	Signal-Rausch-Verhältnis SNR	304
	13.7	Kalibrierung	305
	13.7.1	Kalibrieren, Justieren und Eichen	305
	13.7.2	Grundprinzip der Kalibrierung	
	13.7.3	Ein-Punkt-Kalibrierung	
	13.7.4	Zwei-Punkt-Kalibrierung	
	13.8	Linearisierung	
	13.8.1	Vorgehensweise	
	13.9	Lookup-Tabellen	
	13.10	Steckbrett, Loch- und Streifenrasterplatinen	
	13.11	Dualsystem	
	13.12	Zweierkomplement	
	17.14	Zweicikompiement	<i>J</i> <u>L</u> L
	Stichwo	ortvorzoichnis	325

1 Mikrocontroller-Grundlagen

1.1 Was ist ein Mikrocontroller?

Man spricht von einem Mikrocontroller (μ C, MicroController Unit MCU), wenn außer dem *Mikroprozessor* selbst noch Peripherieeinheiten in einen Chip integriert sind. Dieses erste Kapitel dient dem genaueren Verständnis der grundlegenden Funktionen, Möglichkeiten und Grenzen eines Mikrocontrollers. An dieser Stelle wird vieles noch bewusst vereinfacht dargestellt, auf das in späteren Kapiteln noch genauer eingegangen werden soll.

Das Herzstück einer jeden MCU ist der beinhaltete *Prozessor* oder *Kern (Core)*, also die für die Ausführung der Programme zuständige Recheneinheit. Je nach Anzahl der auf einmal verarbeitbaren Bits spricht man von 4-, 8-, 16- oder 32-Bit-Mikrocontrollern. Ein *Bit (Binary Digit)* ist die kleinste Informationseinheit in digitalen Systemen, mit der ein Prozessor auf unterster Ebene rechnet. Es kann entweder den Wert *null* oder *eins* haben³. Jeder Befehl eines Programms, jede Form von gespeicherten Daten – also alles, was eine digitale Recheneinheit verarbeiten soll – wird letztendlich in mehr oder weniger komplexe Bitmuster aus Einsen und Nullen umgewandelt, die der Prozessor dann der Reihe nach bewältigen kann.

Zum Betrieb benötigt ein Prozessor außerdem einen Takt, also ein Signal bestehend aus periodischen Taktimpulsen (abwechselnd 1 und 0) in einer gewissen Geschwindigkeit. Der Takt kann entweder intern generiert oder extern zugeführt werden. Angegeben wird er in Hertz (1 Hz = 1/s), also in Taktimpulsen pro Sekunde.

Da wir aber nur selten mit so niedrigen Frequenzen zu tun haben, findet man eher Angaben in kHz (Kilo-Hertz, also 1.000 Hertz) oder MHz (Mega-Hertz, also 1.000.000 Hertz). Signalen im GHz-Bereich (Giga-Hertz, 1.000.000.000 Hertz) wiederum begegnet man nur in Ausnahmefällen.

Wie »null« oder »eins« physikalisch aussehen, dazu gibt es eine Vielzahl möglicher Umsetzungen. Auf einer Signalleitung wird bei »eins« ein festgelegter Spannungspegel über- bzw. bei »null« unterschritten. Sollen Daten gespeichert werden, so hängt es von der Technologie des Speichers ab, auf welche Art jede seiner Speicherzellen den Wert »null« oder »eins« annimmt.

Hinweis:

Im Zusammenhang mit Datenübertragung werden Taktfrequenzen eher in Baud (1 Bd = 1/s) angegeben. Ein Baud entspricht also einem Hertz und wird auch gleichermaßen skaliert (1 kBd = 1.000 Bd etc.).

Bei der Angabe von Übertragungsgeschwindigkeiten kann man auch von einer *Baudrate* anstatt einer Taktrate sprechen.

Mehr Hertz bedeuten also mehr Taktimpulse pro Sekunde und daher einen schnelleren Takt und eine größere *Ausführungsgeschwindigkeit*, also mehr Rechenoperationen pro Sekunde.

Die zuvor in Verbindung mit dem Prozessor erwähnte Bit-Zahl sagt nun aus, wieviele Bits ein Prozessor mit einem Taktschritt verarbeiten kann. Arbeitet beispielsweise ein 8-Bit-Mikrocontroller mit 20 MHz (Mega-Hertz), so kann er 20 Millionen Mal pro Sekunde jeweils 8 Bits verarbeiten.⁴ Der AVR[®] ist ein Vertreter der Gattung der 8-Bit-Prozessoren.

Prozessoren, die mehr Bits gleichzeitig verarbeiten können (etwa 32 statt 8), sind also leistungsfähiger. Die Ausführungsgeschwindigkeit des Programms steigt außerdem mit dem Takt, mit dem der Prozessor betrieben wird. Ein 32-Bit-Prozessor ist aber bei gleichem Takt nicht automatisch viermal so schnell wie ein 8-Bit-Prozessor, da viele Faktoren eine Rolle spielen.

Bei der Angabe von Geschwindigkeiten und Stromverbrauch gilt bei vielen Mikrocontrollern die alte Steigerungsregel: Notlüge, Lüge, Benchmark. Nicht dass wir den Herstellern unterstellen würden, gefälschte Werte zu veröffentlichen, es wird aber so stark geschönt und für das eigene Produkt vorteilhaft gemessen, dass ein konkreter Vergleich zwischen den unterschiedlichen Architekturen und Herstellern nur sehr schwer möglich ist.

Aus Kosten- und Komplexitätsgründen wird tendenziell für eine gewisse Anwendung jener Mikrocontroller ausgewählt werden, der die Mindestanforderungen an Prozessorleistung, Speicher und Peripherie gerade noch erfüllt. Warum also einen 32-Bit-Prozessor benutzen, wenn auch ein 8-Bit-Prozessor ausreicht? 8- und 32-Bit-Prozessoren sind inzwischen gebräuchlicher als jene mit 4 oder 16 Bit. Für die meisten einfacheren Anwendungen genügen die tendenziell stromsparenderen 8-Bit-Prozessoren, und falls

⁴ Dies ist eigentlich eine grobe Vereinfachung, mit der wir uns aber für den Anfang zufrieden geben. Der extern zugeführte Takt muss zudem nicht mit dem internen Takt übereinstimmen, mit dem der Prozessor tatsächlich arbeitet. Darüber hinaus wird nicht jeder Befehl in genau einem Taktzyklus ausgeführt, manche können etwa bis zu vier Taktzyklen benötigen.

nicht, springt man meistens gleich zu 32-Bit-Prozessoren, weil der Fertigungsaufwand und damit auch der Preis für 16-Bit-Prozessoren kaum geringer ist.

Abgesehen von wenigen Ausnahmen gibt es außerdem keine 8-Bit-Mikrocontroller, die mit mehr als 50 MHz getaktet werden. Der Grund liegt darin, dass es ab einer gewissen Taktrate einfach effizienter ist, einen 32-Bit-Mikrocontroller einzusetzen. Es sei aber auch erwähnt, dass es Mischformen gibt, also z. B. 8-Bit-Controller, die teilweise 16 Bit parallel verarbeiten können.

Ergänzend zum Prozessor enthält ein moderner Mikrocontroller auch zwei verschiedene Speicher: den Arbeitsspeicher (Random Access Memory, RAM) und den Programmspeicher. Sie unterscheiden sich dadurch, dass der Arbeitsspeicher die darin abgelegte Information bei Unterbrechung der Stromversorgung verliert (man sagt: »er ist flüchtig«), während der Programmspeicher sie behält (»er ist nicht-flüchtig« oder »statisch«). An dieser Stelle ist die Frage berechtigt, wieso nicht ausschließlich nicht-flüchtiger Speicher benützt wird – wozu soll ein Speicher gut sein, der beim »Ausschalten« des Mikrocontrollers seine Daten verliert?

Zur Beantwortung müssen wir etwas ausholen: Man spricht vom *Programmieren* des Mikrocontrollers, wenn ein zuvor erstelltes *Programm* (der Code dafür, was der Mikrocontroller »machen soll«) in den nicht-flüchtigen Programmspeicher geschrieben wird. Dieser kann allerdings technologiebedingt im Laufe seiner Lebenszeit lediglich rund 10.000 bis 100.000 Mal beschrieben werden. Deshalb werden sich häufig ändernde Daten im flüchtigen Arbeitsspeicher zwischengelagert, der (nahezu) unbegrenzt viele Schreibzyklen erlaubt. Hinzu kommt bei schnelleren, komplexeren Mikrocontrollern, dass die höhere Zugriffsgeschwindigkeit auf den Arbeitsspeicher zur Leistungsfähigkeit des Gesamtsystems beiträgt.

Außer Prozessor, Arbeits- und Programmspeichern beinhaltet ein Mikrocontroller eine oder mehrere Zusatzeinheiten und damit -funktionalitäten. Dazu zählen beispielsweise digitale und/oder analoge Ein- und Ausgänge, Timer und diverse Schnittstellen – dies wird später noch im Detail behandelt.

Vorerst genügt es, zu wissen, dass es diverse Zusatzfunktionen gibt, welche es ermöglichen, mit einem einzelnen Mikrocontroller bereits viele spezialisierte Aufgaben zu lösen, ohne dass eine aufwendige Zusatzbeschaltung oder zusätzliche Chips nötig sind.

Wir fassen zusammen:

Ein Mikrocontroller (μ C, MCU) vereint einen Mikroprozessor und einige Peripherie auf einem Chip. Mikrocontroller unterscheiden sich durch:

- die Anzahl der Bits, die ein Controller in einem Taktschritt bearbeiten kann. Es gibt 4-, 8-, 16- und 32-Bit- μ C.
- die Größe des internen Arbeits- und Programmspeichers
- die integrierten Zusatzbausteine und -funktionen, welche für die Anforderung benötigt werden; z. B. digitale und analoge Ein- und Ausgänge, Timer, Schnittstellen etc.

Bei der konkreten Auswahl eines Mikrocontrollers müssen diese Eigenschaften und zusätzliche wichtige Punkte wie Bauform, Betriebsspannungsbereich, Lieferbarkeit und natürlich der Preis berücksichtigt werden.

Nachdem wir nun wissen, was einen Mikrocontroller ausmacht, können wir im nächsten Abschnitt genauer ins Detail gehen.

1.2 Grundlegende Konzepte

1.2.1 Die Prozessorarchitektur

Generell unterscheidet man bei Prozessoren zwei verschiedene Architekturen. Die Prozessoren der meisten aktuellen Computer (z. B. der x86-Familie) basieren auf der Von-Neumann-Architektur. Sie besteht aus einer CPU (Central Processing Unit), welche den Prozessor und das Steuerwerk umfasst, der I/O Unit (für Input/Output, also für die Kommunikation mit der Außenwelt) und dem Speicher. CPU und I/O Unit bzw. Speicher kommunizieren über ein gemeinsames Bussystem, über das sowohl Daten als auch Befehle ausgetauscht werden. Programme können problemlos auch im Datenspeicher ausgeführt werden.

Die *Harvard-Architektur* hingegen, welche für eine Vielzahl von Mikrocontrollern einschließlich der AVRs[®] typisch ist, besitzt zwei getrennte Bussysteme sowie getrennten Speicher für Daten und Programme. Das hat den Vorteil, dass simultan Befehle ausgeführt und Daten ausgelesen oder geschrieben werden können. Der Datenspeicher kann allerdings auch nicht einfach als Programmspeicher genutzt werden.⁵

⁵ Zwischen diesen beiden Architekturen kann in der Praxis oft nicht so einfach unterschieden werden, da es inzwischen eine Vielzahl von Mischformen gibt.

Unter dem Familiennamen AVR® fasst Hersteller Atmel® mehrere Mikrocontrollertypen mit 8-, 8/16- oder 32-Bit-Harvard-Architektur zusammen. Wir werden uns im Rahmen dieses Buchs auf die »klassischen« 8-Bit-AVRs beschränken⁶. Dabei sind vor allem zwei Serien für unsere Zwecke interessant:

Die ATtiny-Serie umfasst die günstigeren und teilweise sehr stromsparenden oder mit Sonderfunktionen ausgestatteten Modelle. Sie tragen die Bezeichnung ATtiny[x][y] mit der Zahl [x] und eventuell einem Buchstaben [y], welche den konkreten Mikrocontroller genauer spezifizieren (Variante, Leistungsaufnahme, Spezialfunktionen). Beispiele sind der winzige ATtiny10 oder der ATtiny261A.

Die Mikrocontroller der ATmega-Serie verfügen über deutlich mehr Peripherieeinheiten und Speicher, ihr Kern kennt einige Befehle mehr und besitzt eine Hardwaremultiplikationseinheit. Die Bezeichnung folgt demselben Schema, also ATmega[x][y] mit der Zahl [x] und dem/den Buchstabe/n [y] gemäß seiner Spezifikation. Ein Vertreter ist der ATmega48, der auch im Kapitel 2.5 Erste Schritte – ein einführendes Programm verwendet wird.

Die Bezeichnung AT90 trugen die ersten Controller mit dem AVR-Kern. Heute wird dieser Name jedoch für »Spezialtypen« mit z. B. USB, CAN oder speziellen PWM-Einheiten verwendet.

Das Namensschema ist ziemlich kompliziert und auch nicht wirklich durchgängig. Wenn man einen geeigneten Mikrocontroller für den jeweiligen Einsatzzweck sucht, verwendet man am besten die – leider nicht besonders durchdachte – parametrische Suche auf der Atmel[®]-Webseite.

Im Hobbybereich, aber durchaus auch im professionellen Umfeld, sind der ATmega8 und seine »Nachfolger« ATmega48, -88, -168 und -328 in allen Varianten beliebt, vor allem da sie im 28Pin-DIP-Gehäuse erhältlich und recht preiswert sind. Ein weiterer Vorteil ist die Kompatibilität der Baureihe, deren Modelle sich nur im Speicherausbau (und einigen kleinen Details) voneinander unterscheiden. Man kann daher die Entwicklung mit der größten Variante beginnen und das Endprodukt dann nach Möglichkeit mit einer Version mit weniger Speicher (also billiger) ausliefern, ohne die Soft- oder andere Hardware zu ändern.

⁶ Außerdem gibt es noch die 32-Bit-AVR-UC3-Familie, welche mit den hier behandelten, abgesehen vom Namen, nicht viel gemeinsam hat, und die 8/16-Bit-AVR-XMEGA-Reihe.

Hinweis

Es gibt laufend neue Typen und Modelle in den $AVR^{\textcircled{@}}$ -Serien. So ist etwa der ATmega48A ein Nachfolger des ATmega48, der mit einem neuen Herstellungsprozess gefertigt wurde und zusätzlich zu einigen Detailverbesserungen ab 1,8 V statt 2,7 V betrieben werden kann. Die Varianten ATmega48P beziehungsweise ATmega48PA sind die zugehörigen stromsparenden Varianten mit einigen Zusatzfunktionen für diesen Einsatzbereich.

Controller wie der *ATmega328* allerdings haben keinen unmittelbaren Vorgänger. Obwohl kein »A« angehängt ist, wird er nach dem gleichen, neuen Herstellungsprozess gefertigt und läuft ab 1,8 V. Man sieht, die Mikrocontrollerbezeichnungen sind eine Wissenschaft für sich, daher sollten immer Hersteller-Homepages und Datenblätter konsultiert werden.

1.2.2 Gehäuse (Package)

Wie die meisten massengefertigten ICs⁷ sind AVR[®]-Mikrocontroller in verschiedenen *Packages*, den Gehäusetypen, erhältlich. Der eigentliche Controller nimmt als *Die* (engl.: Chip, Halbleiterplättchen) nur sehr wenig Platz im finalen Gehäuse ein. Dieses übernimmt gewissermaßen die Aufgabe, den Halbleiterchip gegen äußere Einflüsse zu schützen und den Einbau in eine Schaltung zu ermöglichen.

Um die Funktionen des Chips zugänglich zu machen, muss er *gebondet* werden (eingedeutschter Begriff, von engl. *Bonding*: Binden, Verbindung), also mittels dünner Drähte eine Verbindung zwischen den Kontaktflächen des Halbleiterchips und den Außenkontakten des Gehäuses – den *Pins* – hergestellt werden.⁸

Der Anfänger wird wahrscheinlich als erstes mit AVRs im DIP-Package zu tun haben (*Abb. 1.1*). DIP steht für *Dual In-line Package* und bezeichnet, wie der Name sagt, einen länglichen Gehäusetyp mit paarweisen Pins an jeder Seite.

⁷ IC steht für Integrated Circuit, bezeichnet also eine in einen einzelnen Baustein integrierte Schaltung.

Mit »Pin« ist also meistens der »physikalische«, äußere Kontakt eines Controllers gemeint. Es muss aber nicht immer jeder Pin am Gehäuse eine elektrische Funktion haben. Es gibt auch nicht verbundene (not connected; NC) Pins, die z. B. nur eine mechanische Funktion haben.

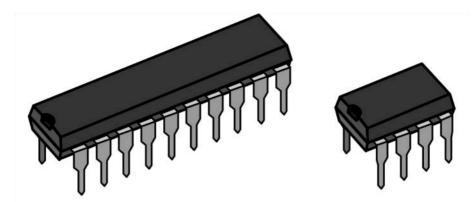


Abb. 1.1: 20- und 8-Pin-DIP-Gehäuse

Das ist der »größte« und »bastlerfreundlichste« Gehäusetyp, die Pins sind verhältnismäßig große, nach unten abgeknickte Kontaktstifte, mit denen der Controller etwa in Steckbretter oder Lochrasterplatinen passt. Bauelemente, die zum Schaltungsaufbau »in Löcher gesteckt« werden können, werden auch als »Through-Hole«-Komponenten bezeichnet. Daher (und weil sie ihrer Größe wegen einfacher zu handhaben und schwerer zu verlieren sind) eignen sich DIP-Gehäuse gut für erste Schaltungsexperimente und Prototypen.

Bausteine im DIP-Gehäuse sind zudem sockelbar, das heißt anstatt des Bausteins selbst kann auch ein Sockel eingelötet werden (*Abb. 1.2*). Der Baustein, beispielsweise der Mikrocontroller, kann daraufhin in den Sockel eingesetzt und wie gewohnt genutzt werden. Wird er beschädigt oder soll er aus einem anderen Grund ausgetauscht werden, so kann er einfach wieder aus dem Sockel gelöst werden, ohne dass aufwendiges und materialbeanspruchendes Löten notwendig ist.

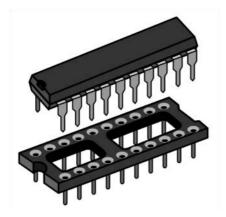


Abb. 1.2: Sockel für DIP-Bauteile

Professionelle Schaltungen beinhalten heutzutage kaum mehr Bauelemente in DIP-Gehäusen. Anders als bei Through-Hole-Komponenten sind bei der Oberflächenmontage (SMT, Surface Mount Technology) keine Bohrungen nötig und die Schaltung kann wesentlich kompakter ausgeführt werden. Die hierbei verwendeten Bauteile werden als SMD (Surface Mounted Device) bezeichnet. Ihre Anschlusspins sind so gefertigt, dass sie plan auf dafür vorgesehenen Pads auf den Platinen zu liegen kommen und an diesen angelötet werden können. Es gibt mehrere Bauformen von SMD-Bauteilen in unterschiedlichen Größen. SO-Gehäuse (Small Outline) sind die »größten« SMD-Gehäuse und noch sehr gut per Hand lötbar (Abb. 1.3). Ihr Pinabstand ist halb so groß wie bei den DIP-Gehäusen.

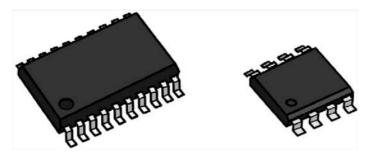


Abb. 1.3: 20- und 8-Pin-SO-Gehäuse

Neben dem geringeren Platzbedarf haben SMD-Komponenten auch elektrisch bessere Eigenschaften als ihre großen Verwandten. So sind beispielsweise Hochfrequenzschaltungen in der Regel mit DIP-Bauteilen undenkbar. Wenn es die Anforderungen hingegen erlauben, spricht nichts dagegen, Entwicklung und Programmierung zunächst mit einem

Controller in DIP-Bauform vorzunehmen und später, falls die Schaltung in Massenfertigung hergestellt werden soll, denselben Controller in einem SO-Package oder einem noch kleineren SMD-Gehäuse vorzusehen,⁹ etwa in einem QFP-Gehäuse (*Quad Flat Package*, *Abb. 1.4a*). Bei den AVR®-Mikrocontrollern verbreitet ist die dünnere Bauform TQFP (*Thin Quad Flat Package*) mit 0,8 mm bis 0,5 mm Pinabstand. Benötigt man noch kleinere Gehäuse, greift man zum »beinchenlosen« QFN (*Quad-Flat No-leads package*) oder den fast nur mit professioneller Ausrüstung zu verarbeitenden BGA-Gehäusen (*Ball Grid Array*), wo die Anschlüsse auf der Unterseite positioniert sind (Abb. 1.4b).

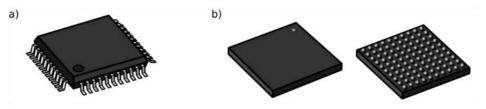


Abb. 1.4: QFP und BGA

Wir fassen zusammen:

Ein und derselbe Mikrocontroller kann in verschiedene Gehäuse eingebaut sein. Für einfache Prototypen sowie zu Experimentierzwecken eignet sich insbesondere das verhältnismäßig große DIP-Gehäuse, welches sich in Steckbretter und Lochrasterplatinen einsetzen lässt.

Im professionellen Bereich hingegen kommen hauptsächlich SMD-Gehäuse zum Einsatz, welche kleiner sind und bessere elektrische Eigenschaften aufweisen. Sie werden plan auf der Platine aufgelötet, Bohrungen wie beim Einsatz von Through-Hole-Bauteilen wie DIP-Gehäusen sind nicht nötig.

1.2.3 Datenblätter, Manuals und Errata

Jeder Controller hat ein Datenblatt, in dem (idealerweise) alle seine relevanten technischen Daten aufgelistet werden. Wie von nahezu jedem elektronischen Bauteil findet man sie zum kostenlosen Download auf der Webseite des Herstellers, in diesem Fall also bei Atmel[®] (www.atmel.com/avr).

⁹ Natürlich darf deswegen nicht auf entsprechende Tests verzichtet werden – eine Schaltung kann sich auf dem Steckbrett signifikant anders verhalten als auf einer professionell gefertigten Platine!

Der Leser mag sich vielleicht wundern: Datenblätter, so »früh« im Buch? Tatsächlich ist ein gut geschriebenes und strukturiertes Datenblatt im Idealfall ein Crashkurs für Betrieb und Programmierung des jeweiligen Mikrocontrollers, bei dem kaum Fragen offen bleiben. Viele Informationen und Erklärungen aus diesem Buch ließen sich auch aus einem guten Datenblatt extrahieren. Die Voraussetzung dafür – und das kann nicht oft genug betont werden – ist natürlich, dass das Datenblatt auch gelesen wird. Wenn dem Entwickler zum ersten Mal ein Mitglied einer neuen Mikrocontrollerfamilie unterkommt, ist es sehr hilfreich, das Datenblatt zumindest einmal grob zu überblicken. Viele Fragen könnten geklärt, Fehler von vornherein vermieden und damit so einiger frustrierender Erfahrung vorgebeugt werden, wenn Datenblätter gewissenhafter konsultiert würden.

Sehen wir uns ein solches Datenblatt also genauer an: Auf der ersten Seite steht üblicherweise eine kurze Zusammenfassung aller wichtigen Eigenschaften wie Speichergrößen, Geschwindigkeit, Betriebsspannung, Leistungsaufnahme und eine Liste der Peripherieeinheiten.

Daneben sind alle Mikrocontroller-Typen aufgelistet, für die das Datenblatt gültig ist. Sehr viele Mikrocontroller unterscheiden sich nämlich nur im Speicherausbau und höchstens noch einigen Details und werden daher gemeinsam behandelt. Eine Software, die für einen Controller dieser Familie geschrieben wurde, kann meist ohne Änderungen am Code auf ein anderes »Familienmitglied« portiert werden (natürlich nur, wenn der Speicher ausreicht).

Von einigen Controllern gibt es auch besonders stromsparende Varianten, welche mit einer niedrigeren Versorgungsspannung auskommen. Diese werden im gleichen Datenblatt behandelt, wobei abweichende Werte für den jeweiligen Untertyp einzeln angegeben werden. Als Nächstes im Datenblatt folgt die Pinbelegung für alle erhältlichen Gehäusearten und eine Beschreibung aller Anschlusspins. Anschließend wird ein Überblick über die AVR-Architektur gegeben.

Praxistipp:

Meistens gibt es (abgesehen von Masse- und Versorgungsspannungsanschlüssen) pro Pin mehrere Möglichkeiten, wie dieser intern belegt werden kann. So könnte ein und derselbe »physikalische« Pin beispielsweise als allgemeiner Ein-/Ausgang (GPIO, General Purpose Input/Output), als ADC-Eingang oder als Datenleitung für eine Schnittstelle gewählt werden.¹⁰

¹⁰ Es liegt am Entwickler, die Belegung sinnvoll zu wählen, damit nicht plötzlich ein ADC benötigt wird, nachdem sämtliche in Frage kommenden Pins als GPIO eingesetzt wurden.

Stichwortverzeichnis

Symbole

#define 48, 50, 81 antiparallel 173 #include 80 Application Note 46 16-Bit-Register 43, 87, 98 Arbeitsspeicher 17 2-wire 87, 141, 168, 204, 266, 291 Architektur 18 AREF 74, 198, 199, 208 7-Segment-Anzeige 273 Assembler 53 Α asynchron 38, 90, 97, 121, 128, 162, 163 Abschlusswiderstand 130 AT90 19 Absolute Genauigkeit 105 ATmega 19 Absolute Maximum Ratings 25, 26, 29, Atmel® Studio 45, 54, 61, 72, 76 167, 191 atomar 43 Abtastfrequenz 107 ATtiny 19 Abtastrate 107, 215 Audio-ADC 203 Audio-DAC 216 Abtasttheorem 107 Auflösung 93, 97, 99, 101, 102, 112, 120, Abtastung 100 ACK 145 186, 195, 203, 216, 218, 223, 265, 305, Active HIGH 272 314 Active LOW 272 Ausgang 100 ADC 74, 100, 195, 197, 198, 200, 203, Ausgangstreiber 180 230, 255, 260, 278, 305, 314 Ausgleichsstrom 173 ADC Left Adjust 203, 279 Autotrigger 201, 202 ADC Noise Reduction 110, 162, 163, 202, AVCC 74, 111, 200, 208, 231 203 AVR Dragon 55, 72 Aktives Filter 221 AVR Libc 45, 86 AVR® Framework 45 Aliasing 107, 212, 215 Amplitude 36, 106, 119, 208, 211, 213, AVR-Studio 54, 61 240, 296 R Analog-Digital-Wandler 100, 195 AND 66 Bandabstand 113 Bandbreite 220, 296 Anfangsgenauigkeit 198, 199, 258 Anode 77, 183, 278 Bandgap 113 Bandlücke 113 Ansteuerspannung 181

Anstiegszeit 213, 297

Basis 178	Common Anode 277
Batterie 164, 207	Common Cathode 277
Baud 16, 122	Common Mode 263
Baudrate 16, 81, 122, 123, 124, 128, 160	Common Mode Range 129
BAUDRATE 48	Common Mode Voltage 234
Baudratenquarz 36, 124	Compare Match 94, 222
Benchmark 16	Compiler 40, 44, 45, 47, 51, 52, 62, 79
Beschaltung 72	const 49
BGA 23	Count 51, 102, 103, 195, 197, 208, 230,
bidirektional 63, 122, 132, 135, 142, 149,	314
234	CPU 18
Big Endian 136	crystal oscillator 35
Binärsystem 321	Current Shunt Monitor 234
Bipolartransistor 168, 173, 176, 178, 181	
Bitmaske 69	D
Bitoperation 65	DAC 215
Blockierendes Warten 98	Darlington-Transistor 180
Bonding 20	Datenblatt 23, 42, 46
Bootloader 59	Datentyp 49, 50
Brownout-Detektor 158	DC Characteristics 27
Brückengleichrichter 192	Debugging 55, 57, 60, 161
Bug 60	DebugWIRE 61, 62
Bussystem 18, 128, 149	Dekrementieren 41
	Delay 98
C	Delta-Sigma-Wandler 102, 264
C standard library 47	Device Under Test 230
CAN 149	Dezibel 109, 219, 220, 303, 304
Cast 288	Dezimalsystem 321
CKDIV8 34	Die 20
CKOUT 37	differenziell 128
CKSEL 34	Digital Input Disable 116, 200
Clear Timer on Compare 120	Digital-Analog-Wandler 113, 215, 216
Clear Timer on Compare Match 97	DIP 19, 20, 54, 63, 72, 201, 316, 319
cli() 86	diskret 100, 195
CLKPR 34, 159	Division 51, 71
CMOS 27, 161, 168, 191	Dotierung 256
Codeoptimierung 51, 62, 89, 99	Drain 174
Codierung 322	DRAM 32
Cold-Junktion 262	Drossel 200

Dualsystem 321	F
Durchlassbereich 109	factory calibration 37
Durchlassspannung 301	Fast-PWM 119, 218, 222
Durchsteppen 52, 61, 62	Fehlerbehandlung 43, 165
DUT 230	Feldeffekttransistor 173
duty cycle 118	FET 173
Dynamische Speicherverwaltung 47	Filter 108, 122, 135, 200, 219, 261, 281, 295
E	Flag 42, 70
EEMEM 287	Flankensteilheit 193
EEPROM 30, 287	Flash 31, 289, 315
Effektivwert 211, 212	Flashen 53
Eichen 305	Flash-Wandler 103
Eigenerwärmung 253	Fließkomma 49, 51, 61, 314
einadrig 317	Fließkommaeinheit 51
Eingang 100	Fließkommazahlen 45
Eingangsspannungsbereich 102, 195, 203,	Flüchtige Speicher 31
210, 260, 305	Folienkondensator 238
Einschwingen 35, 58, 90, 159, 162, 163	FRAM 31
Einweggleichrichter 213	Free Running 202
Electrical Characteristics 25	Frequenz 96, 239, 240
Elektrolytkondensator 72	Frequenzgang 221
ELKO 74	Full Swing Crystal Oscillator 58
Embedded Systems 7	Full-Duplex 130
Emitter 178	Fuse 34, 54, 57
Emulator 51, 61	
EMV 108, 174, 182	G
Endlosschleife 77, 79	GAIN 196
Entprellen 90, 281, 285	Galvanische Trennung 129, 136, 148, 183,
enum 153	237
EPROM 30	Gate 174
E-Reihe 299	Gauß 208
Errata 25	GCC 45, 86
Erwartungswert 209	Gehäuse 20
ESD 27, 55, 167, 191, 193, 281	Genauigkeit 203, 233, 253, 260, 298
Externer Interrupt 88	General Purpose I/O Register 43, 165
Externer Takt 36	Geradengleichung 308
Externer Takteingang 243	Gleichspannung 211
	Global Interrupt Enable 42

Glockenkurve 209	Interruptroutine 39, 47, 51, 61
GND 73	Interruptserviceroutine 79, 82, 84
GPIO 77, 99	Interruptvektor 84
GPIOR 165	invertierend 114
Grace Hopper 60	Isolierung 317
Grenzfrequenz 108, 295, 304	ISP 55, 73, 78, 136
	ISP-Header 56
Н	ISR 39, 84
Halbleiter 254	_
Halbleitertemperatursensor 257	J
Half-Duplex 130	Jitter 106, 202, 241
Half-Scale 217	JTAG 57, 62
Hallsensor 237	JTAG-Fuse 63
Handshake 127	Justieren 305
Harvard-Architektur 18	
Hauptroutine 79	K
Headerfile 48	Kalibrierung 37, 159, 254, 258, 305
HIGH 27, 33, 99, 123, 128, 167	Kapazität 237, 247, 294
High Voltage Serial Programming 57	Kathode 183, 278
Highside 172	Kausalität 210
Highside-Messung 234	Kelvin Sensing 228, 233
Histogramm 208	Kennlinie 300
Hochpass 296	Keramik 254
Hysterese 247	Keramikkondensator 72, 238
	Keramikresonator 36
1	KERKO 73, 199, 238, 281
I2C 141, 204, 264	Kern 15
IGBT 178	Keypad 281
In System Programming 55	Kleinsignaldiode 213, 281
Induktivität 173, 181, 247, 294	Kollektor 178
Initial Accuracy 198, 258	Komparator 114, 238, 243, 251
Inkrementieren 41, 93	Kompiliervorgang 53
Input Bias Current 236	Konstantstromquelle 229
Instrumentenverstärker 262	Kontaktwiderstand 182, 229, 233, 260
Integrale Nichtlinearität 105	kontinuierlich 101, 195
Interner Oszillator 35	Korrelation 209
Interrupt 38, 84	KTY 256, 311
Interrupt-Flag 87	Kurzschluss 172, 177, 191, 192, 263
Interruptquelle 84	

L	Metalloxid 254
Ladekurve 247	Microwire 122, 135, 167, 169, 205, 206
Langzeitstabilität 198, 199, 207, 228, 233	Mischspannung 239
Latch 169	MISO 135
Latenz 89	Mittelwert 52, 104, 115, 208, 209, 210,
LC-Filter 200, 220	261, 314
Least Significant Bit 102	Modem 127
Leckstrom 263	Modulo 276
LED 41, 64, 72, 77, 162, 168, 173, 272,	MOSFET 173, 174, 181
300	MOSFET-Treiber 177
Leitfähigkeit 253	MOSI 135
Leitungskapazität 229	Most Significant Bit 102
Lichtbogen 182	MRAM 31
LIN-Bus 38	MSB 102
Linearbetrieb 177	Multimaster 130
Linearisierung 311	Multiplex 110, 115, 201
Linearität 203	Multi-Processor Communication Modus
Little Endian 136	132
LM75 264	
Lochrasterplatine 319	N
Lock-Bit 59	NACK 145
Logarithmus 248	Nichtflüchtige Speicher 30
Logic Level 176	nichtinvertierend 114
Lookup-Tabelle 290, 315	NMOS 174
LOW 27, 33, 99, 123, 128, 167	Noise Canceler 241
Low Power 159	normalverteilt 208
Low Power Crystal Oscillator 58	Normreihe 221, 299
Lowside 172	NOT 67
Lowside-Messung 234	NPN 176, 178
LSB 102, 195	NTC 254, 257
	Nulldurchgang 183, 188, 239
M	Nulldurchgangsdetektor 184, 188
Magnetfeld 237	
Manual 26	0
Maschinensprache 53, 62	Offset 203, 234, 255, 311
Massepotenzial 173	OPCode 292
Masseschluss 172	Operating Voltage 26
Matrixtastatur 281	Operationsverstärker 196, 213, 221, 229,
MCU 15	225
11100 13	235

Optimierungslevel 52	Prescaler 41, 93, 201, 244, 278
Optokoppler 130	printf 60, 61, 271
OPV 196, 212	Priorität 84
OR 66, 281	PROGMEM 289
OSCCAL 37	Programmieradapter 53, 54
Oszillator 34, 154, 159	Programmieren 17
Oszilloskop 64, 297	Programmiersprache C 45, 47
OTP 30	Programmierumgebung 54
Overflow 38, 40, 93	Programmspeicher 17
Oversampling 106, 112	Promille 298
	Prozent 298
P	Prozessor 15
Package 20	Pt100 254
Parallel Programming 57	Pt1000 254, 311
PCB 64	PTC 193, 253, 257
Pegelwandler 167	Pufferkondensator 74
Periodendauer 211, 223, 239	Pulldown 161, 167, 169, 175, 217
Peripheriemodul 110	Pullup 73, 88, 100, 141, 161, 167, 169,
Personal Computer 7	175, 217, 281
Phase and Frequency Correct PWM 121	Pulspaketsteuerung 188
Phase Correct PWM 121, 278	Pulsweitenmodulation 117
Phasenabschnittsteuerung 185	Punktstreifenrasterplatine 319
Phasenanschnittansteuerung 183	Punkt-zu-Punkt 128, 135
Pin 99	PWM 109, 117, 118, 121, 170, 217, 278
Pinchange-Interrupt 91	
Pinerweiterung 168	Q
Pipeline-Wandler 103	QFN 23
Platine 64	QFP 23
PLL 35, 93	Quarz 36
PMOS 174	
PNP 178	R
Polarität 210	Rail-to-Rail 196
Port 99	RAM 17
Portierbarkeit 49, 51	ratiometrisch 219, 230, 247, 313
Potentiometer 162, 260, 278, 306	Rauschen 104
ppm 35, 106, 298	RC-Filter 217
Präfix 298	RC-Oszillator 35, 37, 250
Präprozessor 81	RC-Snubber 173
Preliminary 26	Receive 121, 127
" <i>1</i> -	, .

Receiver 130	SCK 135
Reedrelais 182	SCL 141
Referenzspannung 102, 103, 105, 197,	SDA 141
198, 200, 207, 215, 227, 229, 230, 258	SDRAM 32
Referenzwiderstand 227, 229, 230, 256,	sei() 86, 164
313	sequentiell 39
Refresh 32	Serielle Schnittstelle 122, 127
Register 40, 42, 46	Settling Time 113, 215
Relais 181, 182	Shift 68, 71
Relative Genauigkeit 105	Shunt 233, 235
Relaxationsoszillator 250	Sicherung 192
Reset 154	Signalpegel 27
RESET 55, 58, 63, 72, 136, 167, 175	Signal-Rauschverhältnis 304
Resonanzfrequenz 249, 261, 295, 296	Signed 49, 65, 83
Revision 25	Single Conversion 202
RGB-LED 278	Sleep 111
RMS 212	Slew Rate 213
RS-232 122, 127	SMBus 148
RS-422 123, 128	SMD 22
RS-485 123, 128	SNR 304
RSTDISBL 57	Sockel 21
RTD 254	Software-PWM 222
Rundungsfehler 52, 124, 239, 314	SO-Gehäuse 22
Rx 121, 127	Source 174
	Spannungsfolger 196, 213
S	Spannungsreferenz 113
Samples-Per-Second 101	Spannungsteiler 114, 195, 227, 240, 255,
Sättigung 179, 213	256, 294
Sättigungsgrenze 247	Speed Grades 33
Schaltschwelle 176	Sperrbereich 109
Schiebeoperator 68	Sperrschicht 178
Schieberegister 169, 273	SPI 56, 122, 135, 204, 291
Schlafzustände 81, 159, 162	SPI-Flash 291
Schreibzugriff 287	Spitzenwert 211, 212
Schutzdiode 191, 195, 263	Spitzenwertgleichrichter 212
Schutzschaltung 190	SRAM 31
Schwingkreis 249, 296	SREG 42
Schwingquarz 35	Stabilität 198, 233
Schwingungsformel 249	Standard C Library 61

Startbit 122	Thermospannung 262
State Machine 150	Threshold 158
static 83	Through-Hole 21
Statusmeldungen 61	Thyristor 183
Steckbrett 72, 315	Tiefpass 295, 304
Steuerleitung 127	Tiefpassfilter 108, 115, 118, 217, 220, 241
Stopbit 122	Timer 40, 93
Störung 104, 110, 115, 129, 155, 203, 207,	Timer Overflow 40, 222
215, 239, 241	Toggeln 41,70
Streifenrasterplatine 319	Torzeit 243
String 271	Transformator 130, 237
Stringoperation 290	Transimpedanzverstärker 235
Strom-Spannungswandler 235	Transmit 121, 127
Stromverstärkung 179	Transmitter 130
Stromwandler 237	Treiber 29, 176, 180, 181, 192, 217
Sukzessive Approximation 102, 204	TRIAC 183, 188
Summary 26	Trigger 64, 84
Supressordiode 191	TTL 28, 168
	TWI 87, 141, 168, 204, 266, 291
T	Twisted-Pair 130
Takt 15, 33, 40, 46, 58, 163	Tx 121, 127
Taktrate 34, 99, 159	typedef 153
Taster 281	
Tastgrad 118	U
Tastkopf 64	UART 60, 121
Tastverhältnis 118	Überabtastung 112
Temperatur 253	Übergangsbereich 109
Temperaturabhängigkeit 35, 199	Überspannung 191
Temperaturbereich 299	Uhrenquarz 36, 38, 97, 162
Temperaturdrift 207	Ungenauigkeit 52, 155, 230, 248, 256
Temperaturerhöhung 229	unidirektional 234
Temperaturkoeffizient 253, 256	Unit Load 132
Temperatursensor 227	Unsigned 49, 65, 83, 125
Terminalprogramm 271	USART 121, 123, 135, 271
Terminierungswiderstand 130	USB 149
Testpunkt 64	USI 141
Thermistor 254	
Thermocouple 262	V
Thermoelement 262	Varianz 209

Varistor 191 VCC 26, 73, 195 verdrillt 129, 130 Verlustleistung 233 Verpolung 192 Versorgungsspannung 26 Verstärker 178, 196, 215, 234, 235, 255, 256, 262, 304, 314 Vierleitermessung 228, 233, 256 volatile 47, 97, 112, 186, 189, 224, 242, 244 Von-Neumann-Architektur 18 Vorwiderstand 72, 77, 177, 191, 273, 277, 278, 300 vorzeichenbehaftet 83 VREF 258

W

Watchdog 154

Wechselspannung 182, 210 Wellenwiderstand 130 Widerstand 227 Window Watchdog 157 Worst Case 155

Х

XOR 67

Ζ

Zähler 40, 93 Z-Diode 176, 192 Zeiger 47 Zeitkonstante 241, 248 Zufall 209 Zustandsautomat 150 Zweierkomplement 65, 265, 322 Irmtraut Meister / Lukas Salzburger

AVR-

Mikrocontroller-Kochbuch

Programmieren ist wie Kochen

Rezept auswählen, Zutaten zusammenstellen – und genießen. Nach genau diesem Konzept finden Sie in diesem Buch alles, um Ihr "Mikrocontroller-Süppchen" zu kochen: Von den ersten Programmierschritten über Messungen unterschiedlichster Größen bis zum Erzeugen von Signalen und zur Kommunikation über diverse Schnittstellen.

Entdecken Sie die schier endlosen Möglichkeiten der Mikrocontroller! Mit nur wenig Programmieraufwand verwirklichen Sie im Hand-umdrehen Ihre Ideen. Schritt für Schritt begleitet dieses Buch Sie von den allgemeinen Grundlagen zur praktischen Umsetzung und erleichtert so auch komplexe Programmierungen.

Am Beispiel des AVR®-Mikrocontrollers von Atmel® lernen Sie das Potenzial von Mikrocontrollern kennen und können sich dadurch auch leicht in "fremde" Mikrocontroller einarbeiten. Für Einsteiger bietet das Buch auch Hinweise zur Programmierung von Bitoperationen und einfache Codegerüste – so bleiben keine Fragen offen.

Die Rezepte aus diesem Buch:

- Mikrocontroller-Grundlagen
- Programmierung und Implementierung
- Digitale Ein- und Ausgänge
- Spannungsmessung
- Spannungen ausgeben
- Widerstandsmessung
- Strommessung
- · Zeit- und Frequenzmessung
- · Kapazitäts- und Induktivitätsmessung
- Temperaturmessung
- · Kommunikation mit Menschen
- · Daten speichern

