Pro OpenSSH

Michael Stahnke

Apress’

Pro OpenSSH
Copyright © 2006 by Michael Stahnke

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-476-2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Darren Tucker

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Managers: Beckie Stones and Laura Brown

Copy Edit Manager: Nicole LeClerc

Copy Editors: Ami Knox and Damon Larson

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Kinetic Publishing Services, LLC

Proofreader: Lori Bring

Indexer: Michael Brinkman

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

Contents at a Glance

Aboutthe AUthOr o Xiii
About the Technical Reviewer. i XV
ACKNOWIBAgMENTS Xvii
INtrodUCHION. Xix

PART 1 Quick and Secure

CHAPTER 1 Legacy Protocols: Why Replace Telnet, FTP, rsh, rcp,
andrloginwith SSH?l 3

CHAPTER 2 A Quick SSH Implementation................................... 17

PART 2 Configuring OpenSSH

CHAPTER 3 The File Structure of OpenSSH 37
CHAPTER 4 TheOpenSSHServer............... 47
CHAPTERS5 TheOpenSSHClient ... 69
CHAPTER 6 Authentication.............. 113

PART 3 Advanced Topics

CHAPTER7 TCPForwardingcooiiiiiiiii. 147
CHAPTER 8 Managing Your OpenSSH Environment......................... 165

PART 4 Administration with OpenSSH

CHAPTER 9 Scripting withOpenSSH 201
CHAPTER 10 SSHTectiaServer i .. 227
APPENDIX A SSH Client Alternatives 241
APPENDIX B OpenSSHonWindowsoooiiia.. 263

Contents

Aboutthe AUthOr o Xiii
About the Technical Reviewer. i XV
ACKNOWIBAgMENTS Xvii
INtrodUCHION. Xix

PART 1 Quick and Secure

CHAPTER 1 Legacy Protocols: Why Replace Telnet, FTP, rsh, rcp,

andrloginwithSSH? 3
Foundations of Information Security 3
Analysis of Legacy Protocols. 4
Common Strengths in Legacy Protocols 4
What Makes These Protocols Legacy?.......................... 5
Learn to Replace Legacy Protocols. 9
Improving Security with OpenSSH 9
Establishing Security Basics 10
OpenSSH Replacing Legacy Protocols......................... 14
SUMMArY 15
CHAPTER 2 A Quick SSH Implementation............................... 17
ABrief Introductionto SSH 17
Whatls SSHDoing?. ... 19
Basicsof SSH. 20
Installing SSH. 20
ChoicesinSSH. 21
ConnectingviaOpenSSH ...l 22
Installing OpenSSH 22
Downloading OpenSSH................ 22

Installing OpenSSH i 24

vi

CONTENTS

PART 2

CHAPTER 3

Turning Off Telnet 30
What About FTP? 30
10} o [31
Client Tools for Windowsc it 32
SUMMArY ... 34

Configuring OpenSSH

The File Structure of OpenSSH 37
Server Configuration Filesc i 37
SSh_hOSt_KeY.o 38
ssh_host_key.pub......... 38
ssh_random_Seed. ...t 38
SSNA .. o 39
sshd_configc i 39
banner. ... 39
sshd.pid ... 40
NOIOGIN. ...t 40
SSh_Known_hosts..............coo i 40
hosts.equiv......... 40
SNOSES.BQUIVo 4
ssh-rand-helper* 4
SSh-KeySCan™ 4
SSN-KBYOEN™ . . 4
SHP-SBIVEr . .. 4
Server SUmMmary ... 42
Client Configuration Files............. ..., 42
SSN_CONTig. ... 42
Thosts ..o 42
ShOStS. ..o 43
Xauthority.o 43
identity, id_dsa,id_rsa................ 43
CONfIg. ..o 44
Known_hostS ... 44
authorized_Keys. 44
environment 44
LG e e e e 44
agent.<ppid>....... 44

SSN-KBYSIGN . . .o 45

CHAPTER 4

CONTENTS
SSh-add™ 45
SN 45
SSh-agent™ 45
SCP, SHP . 45
ClientSummary i 46
Conclusion 46
The OpenSSH Server....................................... 47
OpenSSH ServerTesting. 47
Checking the Syntax of sshd_config 47
Changing the Default Configuration Fileand Port 48
Running the OpenSSH Server in DebugMode 48
Reloading ConfigurationFiles 49
Managing the OpenSSH Server. 49
OpenSSHsshd_config 51
AcCeptENV 51
AlIOWGIOUPSottt e 51
AllowTCPForwarding. ... 52
AlIOWUSEIS 52
AuthorizedKeysFile 52
Banner. 52
ChallengeResponseAuthentication............................ 53
CIpherS. .. 53
ClientAliveCountMax 53
ClientAlivelnterval i 54
COMPIESSION. ..\ttt 54
DenyGroupsot 54
DenYUSErS. . ..ot 54
GatewayPorts 54
GSSAPIAuthentication................ 55
GSSAPICleanupCredentials 55
HostbasedAuthentication 55
HostKey 55
IgnoreRNOStS. 56
IgnoreUserkKnownHosts.l 56
KerberosAuthentication...................................... 56
KerberosGetAFSToken. it 56
KerberosOrLocalPasswd. ...t 56
KerberosTicketCleanup.............. 56

KeyRegenerationinterval. 57

vii

viii

CONTENTS

CHAPTER 5

ListenAddress.t 57
LoginGraceTime.ooirii 57
Loglevel 57
MACS ..o 57
MaxAuthTrieso 58
MaxStartups 58
PasswordAuthentication....................l 58
PermitEmptyPasswordsl 58
PermitRootLogin. 58
PermitUserEnvironmentl 59
PidFileo 59
PO . 59
PrinfLastLogc. 60
PrintMotd. 60
Protocol 60
PubkeyAuthentication......................l 60
RhostsRSAAuthentication...................... 61
RSAAuthentication...................l 61
ServerKeyBits. 61
StrictModes. 61
Subsystem ... 61
SyslogFacility 62
TCPKeepAlive 62
UseDNSo 62
UselLogin 62
UsePAM 63
UsePrivilegeSeparation. 63
X11DisplayOffset 63
X1TForwarding. ... 63
X11Uselocalhost. 64
XAuthLocation 64
Building the sshd_configFilel 64
Ensure Security of sshd_config............................... 67
SUMMANY ... 67
The OpenSSH Client.. 69
OpenSSH Client Order of Precedence 69
The ClientCommands ...t 70
SSN L 70
1] o 1R 80

CHAPTER 6

PART 3

CHAPTER 7

CONTENTS
SSN_CONfig 92
Debugging OpenSSH ssh_config 92
ssh_configkeywords i 92
ssh_configdocumented...................... 105
SUMMArY ... 112
Authentication 113
Public Key Authentication. 113
What Is Public Key Authentication? 114
How Secure Is Public Key Authentication? 114
Public Key Authentication vs. Password Authentication 115
Ensuring Public Key Authentication Is Available on the Server ... 116
Ensuring the Client Allows Public Key Authentication........... 116
Setting Up Public Key Authentication......................... 116
AlLookattheKeys................ i 120
SSHAQGENtS. ... 132
Whatlsanssh-agent? 132
AgentForwarding. 138
Summary of Public Key Authentication 140
Types of Authentication Inside of OpenSSH 142
A Quick Reference to Authentication 143
Reference: Setting Up User Public Key Authentication 143
Reference: Using SSHAgentsooiiin... 143
Reference: Host-based Authentication. 143
SUMMANY .. 144
Advanced Topics
TCPForwarding ... 147
Introductionto Forwarding...................l 147
How Does ForwardingWork?. 148
TCP Connection Forwardingccoiiiiiiin.. 150
SettingUptheTunnel 151
Tunnel Setup via ssh Client Escape Sequence................. 152
VNG, 152
Tunneling Through Firewalls 153
Pass-through Forwarding................................... 154

Remote Forwarding............... 155

ix

X

CONTENTS

CHAPTER 8

Creating Forwarded Connection via $SHOME/.ssh/config 156
Using SSHAsaTransport..............ooiiiiiiiiann, 157
Dynamic Forwarding.............. i 157
X1TForwarding 159
A Primer in the X11 Windowing System 160
Making OpenSSHWork with X11 161
XAuthentication................... ... 163
Noteson X11 163
SUMMANY ... 164
Managing Your OpenSSH Environment 165
Planning Your Environment 165
Establishing Security Guidelines............................. 166
OpenSSH Secure Gateway. ..., 170
Introducing the Gateway Server 171
SettingUpthe Gatewayiill 172
Security CONCEIMSottt 174
Managing the Gateway...................... 176
DoYouNeedaGateway?....................coiiiiin... 179
Securing OpenSSH 180
Setting Up Authentication Methods That Make Sense........... 180
Securing the RootAccount. 181
Patching OpenSSH. i, 184
SSH Management 185
Creating Master Configuration Files.......................... 185
Checking Host Keys. 187
Monitoring SSH 187
Key Management. ... 187
Introduction to Key Management 187
Key Distribution 192
SSHFP: Storing Public Host Keys inDNS...................... 196

SUMMANY ... 198

PART 4

CHAPTER 9

CHAPTER 10

CONTENTS
Administration with OpenSSH
ScriptingwithOpenSSH 201
Prerequisites 201
Automation.......... ... 201
INPUL. . 201
Output 202
Shell Seripts. 202
Why Shell Scripts.c. o 202
Redirectionand Pipes............. 205
Migrating Legacy Scriptso i 210
Real-World Examplescoi i 210
Administrative Example 211
Security Examples. ... 212
Using Perlo 215
WhenisPerlaGoodIdea?.................................. 216
The Net:SSHModule ..., 216
Examples of ScriptsinPerl.................................. 219
Web Scripting. ... 221
Introduction to Web Front Endsfor SSH....................... 221
Setting Up an Account to Use aWeb FrontEnd 221
UsingWeb FrontEnds. ..., 222
SUMMANY ... 225
SSH TectiaServer ... 227
The Pros and Cons of SSH Tectia Server........................... 227
Advantages Over OpenSSHol 227
SSH Tectia Server Disadvantages............................ 229
Recommendations 230
Installing SSH Tectia Server. ...t 230
Differences Between OpenSSH and SSH Tectia Server 231
Public Key Authentication with SSH Tectia Server.............. 232
Configuration of SSH Tectia Server........................... 233
Configuration Differences.ccoiiiiiiit. 234
Patching SSHTectiaServer 234
Working in a Mixed Environment 235
SCP/SFTP .. 235
SSHHKeYS. ..o 236

SUMMArY 240

Xi

Xii

CONTENTS
APPENDIX A SSH Client Alternatives.................................... 241
PUTTY Family 241
PUTTY . 241
PINK . 246
PUTTYgEN .. 247
Pageant......... 248
PSOP . 249
PSFTP. . 250
PUTTY Summary ... 250
WINSCP .. 250
FISH . . 253
FileZilla oo 254
SSHTectiaClient......... 257
SUMMANY ... 261
APPENDIX B OpenSSHon Windows 263
OpenSSHvia Cygwin. 263
Introductionto Cygwin 263
Downloading and Installing Cygwin 263
Configuring sshdasaService............................... 266
Testing the Connection..........................ooiiialt. 268
Cygwin and USErScooriii e 270
Upgrading OpenSSH Cygwin Packages....................... 270
Configuration 270
Cygwin as an X ServeronWindows.cooviunn.. 271
INDEX .. . 273

About the Author

MICHAEL STAHNKE works as a UNIX Security Administrator at a For-
tune 100 company in the Midwest. He has headed implementations of
Secure Shell for his corporate IT group and provided consultation and
assistance with production rollouts around the globe. Additionally, he
has led several studies and projects to improve the security state of his
large-scale UNIX/Linux environment, utilizing SSH, mandatory access
control, configuration management integration, and automation tech-
niques. When not devoting his time to improving security at work,
Michael spends time researching and applying new open source tech-
nologies and practices on his ever-changing home network. Michael
has also done contract programming to create content management solutions utilizing PHP,
Perl, MySQL, and C++. Michael earned a CS degree from Ball State University in 2002. He also
recently became a CISSP.

xiii

About the Technical Reviewer

DARREN TUCKER is an independent consultant in Sydney, Australia.
He has worked on a variety of systems and networks for over 10 years,
many of those with OpenSSH and other SSH products. He has been
a member of the OpenSSH development team since 2003. He likes
cricket and dislikes talking about himself in the third person.

Xv

Acknowledgments

I would like to thank a few individuals who helped me make this book a reality. First and fore-
most, I would like to thank my wife Jaime for putting up with an absent and almost nonexistent
husband on several occasions during the authoring process. I would also like to thank John
Traenkenschuh for encouraging me to write down my experiences with SSH. Brian Tower also
deserves many thanks for allowing me to share my ideas and for helping correct a few oddly
worded sentences.

Finally, I would like to thank the open source community for so many projects that I use
everyday; but I especially want to thank the OpenSSH development team, including my techni-
cal reviewer Darren Tucker, for delivering a high-quality, secure connectivity solution at a price
that everyone can afford.

Xvii

Introduction

What Is SSH?

In 1995, Helsinki University of Technology researcher Tatu Ylonen learned that system passwords
were being retrieved through network monitoring, resulting in a compromise of the university
network. Simple tools allowed adversaries of the university to gain access to several account
names and passwords. Mr. YIonen responded by creating the Secure Shell (SSH), a security solu-
tion intended to resolve the deficiencies of legacy protocols by encrypting data, account names,
and passwords while they are in transit, thus rendering network sniffing useless.

Mr. Ylénen'’s creation resolved many issues that had haunted legacy protocols for years.
The initial release of SSH quickly became popular at his university and throughout the Inter-
net. Users from around the globe were soon asking for copies of the software, support on that
software, and of course new features. Later in 1995, he founded SSH Communications Secu-
rity (http://www.ssh.com). With this new tool, security/system administrators could replace
legacy system access applications such as rsh, rlogin, rcp, Telnet, and FTP with secure alter-
natives. SSH could also provide solutions for many common user-friendliness issues—for
example, through simplifying passwords by moving to digital credentials in the form of pub-
lic keys.

According to http://www.openssh.org, Mr. Ylonen released his SSH originally as Free SSH,
but it contained a few proprietary libraries and licenses that prevented it from being widely
adopted by major projects. As the Free SSH project progressed, newer versions came with more
restrictive licenses. Some early licenses attached to Free SSH forbade developers to create Win-
dows or DOS versions. Later licenses restricted the use of Free SSH in commercial operating
environments.

In 1999, Bjorn Gronvall, a Swedish computer scientist, created a new version of SSH
called OSSH. When the OpenBSD project became aware of Grénvall’s work a few short
months before the scheduled release of OpenBSD 2.6, the decision was made to include an
SSH implementation in OpenBSD. The OpenBSD community forked OSSH to enable rapid
development and control over the project, and continued developing and refining it on
a very rigorous schedule—upon release, the product was renamed OpenSSH. Shortly after
the release of OpenBSD 2.6, Linux advocates and other UNIX programmers saw the need for
SSH on their systems. OpenSSH was then split into two versions: baseline (for OpenBSD
systems) and portable (for Linux, UNIX, and other operating systems). OpenSSH is freely
usable and redistributable by everyone under a BSD license. It has since been included in
nearly every major UNIX and Linux release, and is regularly integrated into embedded
devices and appliances.

OpenSSH creates value in a network of any size by protecting data. In the enterprise,
UNIX administrators will find using key-based authentication allows them to perform
tasks and script as quickly as with rsh/rlogin, but with added security and logging. Secu-
rity administrators will be happy to remove legacy clear-text protocols and applications.

Xix

XX

INTRODUCTION

Auditors can streamline their workflow as they will only require understanding of one serv-
ice instead of several. The list of benefits for implementing OpenSSH is long, and this book
provides instruction on many of the benefits and best practices.

Note http://www.openssh.comis the official home page for OpenSSH. You can find the latest source
code, FAQs, credits, history, and goals of the project there.

Who Should Read This Book?

This question has been foremost in my mind since the onset of this project, as my goal is to
compile and offer the right information for the right audience. While architecting and deploying
OpenSSH implementations for Fortune 100 enterprises and home networks alike, I have referred
to SSH resources both online and in print, and I came to the conclusion that most information
on the topic is scattered, disorganized, or pretty dated. This presents a problem to most over-
worked system administrators. Maybe you are looking for an immediate response to a security
incident, or perhaps you need practical information you can use now—not security theory or
outdated implementation details and obscure encryption trivia—if so, this book is for you.

Maybe you are a stressed system administrator responsible for UNIX security, stuck in
endless Sarbanes-Oxley, HIPAA, or compliance audit du jour meetings; inundated with confer-
ence calls, procedural reviews, and emails at all hours; and even forced to carry the support
pager off-shift. Like you, I needed immediate answers to the problems with the plain-text pro-
tocols, and searched to learn concepts and best practices that helped me make the most of
OpenSSH. The time you spend weighing and ultimately implementing this transition to SSH or
improving your existing SSH environment should not be wasted, given the importance of this
security solution. If you share my sentiments, I think you will find this book valuable. Along the
way I will draw upon my experience implementing large-scale SSH systems, and provide real-
world examples, scenarios, and best practices.

How This Book Is Organized

Secure communication is not a new goal among information technology professionals, but as
new topics, tools, and exploits are created, new measures are taken to obstruct the adversaries
and provide assurance of risk mitigation to management professionals. This is where the Secure
Shell protocol comes into play, and in this book I will discuss OpenSSH, the most popular
implementation of that protocol.

If you are system administrator, security professional, or home user of UNIX/Linux, then
this book will provide value to you. Chances are if you are picking up this book, you have some
idea what OpenSSH is and what you can do with it. Your exposure to OpenSSH certainly will not
be a hindrance as you continue to work your way through the book. Whether you have introduc-
tory knowledge of OpenSSH or are simply looking to hone your skill set in a certain area, [am
confident that by the time you complete this book, you will be able to piece together an effective,
secure SSH network solution.

INTRODUCTION

Part 1: Quick and Secure

The first part of the book deals with introductory topics, including reasons for eliminating
legacy protocols, how OpenSSH can help you do so, and basic connectivity. Installation and
compilation of OpenSSH on Linux is also covered.

Part 2: Configuring OpenSSH

Part 2 of the book is devoted to in-depth analysis of command-line options, configuration
files, and settings. These settings become critical when trying to achieve maximum usability
while not compromising the secure infrastructure you are striving to achieve. After a detailed
explanation of configuration settings, authentication is covered. Authentication in OpenSSH
depends upon several complex settings and concepts, as opposed to traditional password
authentication. The power of public key authentication will be introduced and explored, as
well as host-based authentication, when appropriate.

Part 3: Advanced Topics

In Part 3, the real power of OpenSSH starts to take shape. Tunneling less secure but still useful
protocols such as X-Windows, VNC (Virtual Network Computing), and rsync is introduced.
Port forwarding and tunneling of most generic TCP protocols is covered as well.

Chapter 8 discusses best practices for securing OpenSSH on both the server and client
sides. Chapter 8 relies on the knowledge presented throughout the book to build an OpenSSH
secure backbone utilizing an administrative gateway as the focal point for administration.
Managing hundreds or even thousands of servers in this fashion becomes a less daunting task
when the right scripts and security settings are employed.

Part 4: Administration with OpenSSH

OpenSSH can be used for automating nearly every administration task on a UNIX/Linux oper-
ating system. Chapter 9 provides an introduction to scripting with OpenSSH, which includes
coverage of shell scripting, Perl, and PHP options. These scripts provide a foundation on
which administrators can develop their own automation processes using OpenSSH.

Chapter 10 provides a look at the SSH Tectia Server from SSH Communications Security.
This popular commercial SSH implementation has some differences from OpenSSH, which are
explored in this final chapter. Working a heterogeneous environment is also discussed—for
example, when moving back and forth from SSH Tectia Server and OpenSSH, certain incom-
patibilities will arise. This chapter aims to minimize the impact of those incompatibilities and
show you how to manage a complex environment.

The first appendix provides information about several popular Microsoft Windows SSH
clients, including PuTTY and WinSCP. The second appendix shows you how to get an SSH
server running on a Windows platform.

What’s Not in This Book?

Because of my work with OpenSSH security, I am often asked questions that appear to be
related to OpenSSH, but in fact are separate security topics altogether. Several security publi-
cations and books cover security from a more theoretical standpoint, which can be helpful to

XXi

XXii

INTRODUCTION

architects and to those interested in learning a concept at its deepest level. This book takes

a different route, opting not to linger on the security theory behind OpenSSH, and instead has
been designed from its inception to be a book for hard-working administrators trying to keep
their proverbial heads above water. That being said, the topics of OpenSSL, IPSec, VPN, PKI,
firewalls, and Kerberos are not really covered in this book. There are several wonderful publi-
cations that do cover those topics well—however, most of them do not cover OpenSSH in the
detail presented in this material. These and other security topics are mentioned when perti-
nent to the successful implementation of OpenSSH.

Prerequisites

While this book strives to accommodate beginners and experienced professionals alike, a few
assumptions are made on your general understanding. The text covers installation and config-
uration on Linux in the most distribution-agnostic way possible. If you are able to translate
commands from Linux onto your operating system of choice, please feel free. Basic command-
line knowledge is assumed, including the ability to edit configuration files and to manage
daemon execution. Root access or root-equivalent authority is also a must for editing configu-
rations and installing OpenSSH.

Knowledge of Perl and shell scripting is also certainly helpful, but is not required for
learning the scripting and administration topics covered in this book.

For most examples, I connect from one system on my network to another. While all of
these examples can work with only one computer, having more than one available to you
will make the power and ease of OpenSSH more apparent to you.

My Network

The network used in this book is my own home network. The names of my systems are a bit
odd, but I will briefly introduce them here because they are referenced throughout the mate-
rial. Note that I have /etc/hosts and DNS configured on my systems so that using a fully
qualified domain name is not needed. Examples in this book that require fully qualified
domain names will use example.com. Table 1 describes my network naming system.

Table 1. The Network Utilized in Examples Throughout the Book

System Name Description

rack My primary workstation, which is running Linux, is named rack. It is normally
at least a dual-boot system with Fedora and SUSE Linux running on it. This
system is named rack because it is inside a rack-mount chassis.

WWW My primary web server is named www. It runs a typical LAMP stack (Linux,
Apache, MySQL, PHP/Perl/Python). It also runs LDAP and DNS services.

zoom zoom is a Debian Linux system.

mini mini is the Microsoft Windows XP workstation used in this book. It is in a small

form factor case—hence the name mini.

macmini macmini, amazingly enough, is an Apple Mac mini computer running Mac OS X.

INTRODUCTION

Downloads

The code, configuration files, and scripts used throughout this book are available for down-
load on the Apress website, http://waw.apress.com, in the Source Code section.

Read On

If you classify yourself as a rookie with OpenSSH, it may be best to start at the beginning of the
book. If you have basic knowledge but still want to further your abilities with keys and scripts,
Part 2 is great place to start. If you have a good understanding of OpenSSH and are trying to
get maximum value and security out of the tool, feel free to jump from section to section or
even topic to topic. The goal for the book is to provide you with a comprehensive tool set with
which you can do your work securely and efficiently.

If you wish to contact me, I welcome your comments, feedback (for better or worse),
updates, and errata. Feel free to email me at mastahnke@yahoo.com.

I hope this book will rest near your main administration workstation and be reopened
periodically, as so many system administration books I have relied on in the past.

xxiii

PART 1

Quick and Secure

CHAPTER 1

Legacy Protocols: Why Replace
Telnet, FTP, rsh, rcp, and rlogin
with SSH?

If you are reading this book, there is a very good chance you might already be aware of some
of the advantages of using the Secure Shell (SSH) protocol over traditional UNIX connectivity
offerings such as telnet, ftp, and rsh. This chapter will clearly outline those advantages and
hopefully enlighten you on a few more positive features of the Secure Shell protocol.

Before getting into a specific discussion about the advantages of the Secure Shell protocol,
I will cover several general security-related topics that will allow you to not only better under-
stand the UNIX/Linux secure connectivity principles, but also understand the issues that
ultimately spurred the creation of SSH.

Foundations of Information Security

To understand how effective SSH is in terms of security, a discussion of how information secu-
rity is measured is warranted.

According to the International Information System Security Certification Consortium, or
(ISC)? (http://www.isc2.0rg), security has three main goals, namely confidentiality, integrity,
and availability.

Confidentiality is gained through access control, or ensuring unauthorized persons are
unable to gain access to the data. Confidentiality is almost always handled by some form of
encryption if the data is in transit.

Integrity deals with authenticity of the messages. Is the reader of the message viewing the
message in its intended form without any tampering from outsiders? Integrity can be
achieved via strong authentication and digital signatures.

Availability is a security concept often forgotten. If the data is unavailable, it is assumed
to be secure, but in that case, the data is also not usable by anyone. Ensuring availability will
provide protection against failing hardware and Denial of Service attacks, and utilize disaster
recovery.

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

Note For more information about these three key security goals, check out C/SSP All-in-One Exam Guide,
Second Edition by Shon Harris (McGraw-Hill Osborne Media, 2003).

At this point, it may seem like I have strayed a bit from the goal of introducing the Secure
Shell protocol as an excellent security choice, but in reality, the Secure Shell, and in particular
OpenSSH (http://www.openssh.com), provide all three elements of information security, which
is something that the aforementioned traditional UNIX protocols certainly do not.

The final high-level information security concept I wish to cover is the trade-off between
usability and security. If a system is thought to be more usable, with less overhead, or less
bureaucracy, it usually is assumed to be less secure; in contrast, a system utilizing challenge
response authentication, PIN numbers, and other mechanisms is often a headache for end
users, but extremely difficult to gain unauthorized access in. This trade-off will require analy-
sis during many phases of your OpenSSH deployment.

Analysis of Legacy Protocols

To understand the distinct advantages that OpenSSH provides over legacy connectivity and
administration protocols on UNIX and UNIX-like systems, it is important to understand their
strengths and weaknesses.

Common Strengths in Legacy Protocols

Telnet, FTP, and the r-utilities, which include rlogin, rcp, and rsh, have several strengths that
can account for their success and explain why they are still so widely used today when more
secure alternatives are available.

e Installation: telnetd, ftpd, rshd, rlogind, and rcp are typically enabled on a UNIX sys-
tem out of the box. The default installs of HP-UX, AIX, and Solaris offer these systems
enabled immediately upon installation completion. Often the default settings are
enough to get an administrator running with these protocols on new machines. It is
appropriate to mention that most Linux systems and some of the BSD variants have
these traditional services disabled after a default installation.

* Cost: The r-utilities, ftpd, and telnetd servers are part of the operating system. An SSH
server is normally a third-party package, save for Linux and BSD systems, though it
could be included on the vendor media. Using third-party tools normally implies a cost
either in the form of a software acquisition, training, or support. The stock utilities have
no software licensing cost, other than the fees for the operating system, and most expe-
rienced UNIX administrators will be familiar with the functionality of these utilities.

* Ease of use: The traditional utilities all are easy to use due to their basic authentication
practices requiring a username/password or trusted host authentication mechanism.
These tools allow for automation of authentication procedures by using trusted hosts/
users, which led to a large proliferation of scripts and programs relying on these systems
for proper execution. For example, even today several enterprise-grade clustering solu-
tions rely on rsh to execute failover and perform several different types of cluster
administration.

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

* Speed: A final strength of these protocols is speed. A simple programmatic for loop uti-
lizing rsh can be orders of magnitude faster than a similar script utilizing SSH. Speed is
normally sacrificed to ensure security.

What Makes These Protocols Legacy?

In this context, the term legacy is used to describe protocols such as Telnet and FTP because
there are better tools available, at least from a security perspective. Legacy also implies that
these utilities have been around for a while and are working in many environments. By learn-
ing about legacy protocols, their usage and their downfalls, the need for more secure tools will
become apparent. Beyond recognizing the need for secure tools, after understanding the tools
SSH can replace, you will see how the SSH protocol is designed to handle each of these short-
comings.

Security Analysis of Telnet and FTP

Telnet and FTP often are grouped together as a connectivity solution. Telnet allows remote
command execution, while FTP allows for data transfer. Many of their flaws are common,
which means that providing protection against the weaknesses in these protocols can be
done with single solutions.

Telnet

Telnet is both an application and a protocol. It was designed to replace the hard-wired termi-
nals connected to every computer. It also allowed users at different types of computers to execute
their commands on remote machines. Telnet’s first and most apparent security issue is that
everything, including authentication credentials, are transmitted in clear-text format over the
network. This means, using freely available network sniffers such as Ethereal, you can see
every piece of information passed over the network.

Note For more information about the sniffer Ethereal, you can visit http: //www.ethereal.com.
Additionally, it is often included in Linux distributions. Several other network sniffing applications are freely
available. In particular, for sniffing on a switched network, Cain & Abel works very nicely. This is available at
http://www.oxid.it/cain.html.

Many administrators understand that logging in directly as root via Telnet is a bad secu-
rity practice, but at the same time, many log in as nonprivileged users, and then use su or sudo
(http://www.courtesan.com/sudo) to become root all inside of a telnet session. This data is
easily harvested. Many consider it safe to use Telnet in a situation where the client and server
computers all reside on an intranet, yet this is actually a highly insecure practice. Consider
that almost every organization has someone who is disgruntled, whether it be a supplier,
employee, or partner trying to exploit your system resources. If this is a home network,

a friend or family member might attempt to procure your root password to look at files
they should not have access to (credit card info, gift receipts, and e-mails) or to hack your
system for fun.

5

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

Using Cain & Abel, I am able to sniff on a switched network. The snippet presented in
Listing 1-1 is a sniffer file with just a little cleanup. The reason some characters appear twice is
because I sent those to the remote machine, and for each character I sent, it was returned to
the display. As you can see, my demonstration password is easily captured, along with my root
password. The same principles used in this example on Telnet can be used with FTP and the
r-utilities.

Listing 1-1. A Sniffing Session from Cain & Abel

=== Cain's Telnet sniffer generated file ===

login: ssttaahhnnkkee
Password: goldfish
Last login: Wed Jun 1 18:18:35 from rack
stahnke@www:~
[stahnke@www ~]$ ssuu --
Password: myrootpassword$
root@www ~> uuppttiimmee
18:21:25 up 23 days, 15:51, 2 users, load average: 0.24, 0.07, 0.02
root@www ~> eexxiitt
logout
[stahnke@www ~]$ eexxiitt
logout

Telnet clearly lacks in the confidentiality department because armed with a simple sniffer,
an adversary can watch all data transmitted between the server and your telnet client window.
Integrity can also suffer by having a rogue server setup with the Domain Name Service (DNS)
name or IP address of the target machine intercepting information and then forwarding it on
(a man-in-the-middle, or MITM, attack) either as a pristine copy, or tampered to make some
alterations to the intended system. In this sense, integrity suffers because Telnet has no authen-
tication performed by the server. The only supported authentication is user-based Telnet, which
is also susceptible to many classic attacks including ARP Poisoning (updating a switch’s address
resolution table with false data, often used to sniff switched networks), and several types of
injection or insertion attacks.

Certain issues with the Telnet protocol can be overcome using one-time passwords, or
token-based authentication; however, Telnet sessions still can be victim to an insertion/session-
hijacking attack where an attacker can insert arbitrary commands and data into an existing
Telnet session, or take over the session completely. These attacks sound sophisticated and com-
plex; however, with the emergence of tools such as HUNT (http://1in.fsid.cvut.cz/~kra/) and
dsniff (http://www.monkey.org/~dugsong/dsniff/), these attacks can be executed with ease.

Common organizational security policy often dictates a minimum password length with
some variance of punctuation, numeric, uppercase, and lowercase characters. While complex
passwords are a wonderful thing, this is negated when Telnet is in use. Even if you have created
a 50-character password that is more like a large sentence, it is easily found and harvested using
point-and-click tools freely available. Remember that a user does not have to be actively moni-
toring the output of a network sniffer. It is quite easy to look for the string password and have it
e-mail someone the three lines above and below that string.

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

As for availability, telnetd commonly runs out of inetd (the Internet services daemon)
in most implementations. Normally, this is quite reliable, but I have seen inetd die on systems
from every major vendor I have worked with, thus leaving a Telnet connection inoperable.
A walk or drive to the console (unless you are lucky enough to have remote consoles on sys-
tems) is needed to allow network connectivity again.

In summary, Telnet’s biggest disadvantages come from confidentiality and integrity, with
confidentiality being the easiest to breach. FTB which is often used in conjunction with Telnet,
has remarkably similar weaknesses.

FTP

FTP, or File Transfer Protocol, is much like Telnet in that it is an application and a protocol.
It allows a user to store and retrieve files on remote systems As its primary means of authen-
tication, FTP relies on a username and password, just as Telnet does. FTP’s primary concern
again is the clear-text transfer of data and authentication credentials. FTP opens up a new
problem as well. If an FTP password for a user is compromised, the adversary can not only
upload/download files as the user, but also log in to the machine interactively (via telnet,
ssh, or rsh) because the username/password combination is the same by default.

While there are implementations of FTP daemons that allow for separate passwords or very
configurable security, the inherit weakness of FTP still exists, namely that everything transmit-
ted is in clear text.

Using FTP through firewalls can also be difficult to set up. FTP uses multiple ports for its
communication and data transfer. Because of this, additional ports must be opened on a fire-
wall. Some firewalls have specific knowledge of the FTP protocol, and can dynamically open
ports for an FTP transfer, but these firewalls can sometimes be exploited by attackers spoofing
an FTP-like transaction.

Tip If you are forced to use FTP for legacy applications and scripts, look at vsftpd (http://vsftpd.
beasts.org). vsttpd has several advanced security options that take it a step above traditional FTP
daemons, and the ability to encrypt communications over SSL (Secure Sockets Layer) has been added,
making it a very nice alternative to stock FTP daemons.

Security Analysis of R-utilities

When working in medium- to large-sized UNIX environments, maintaining synchronized root
passwords, updating configuration files, and installing patches can be a very tedious process.
To help facilitate such matters, a collection of three utilities known as the r-utilities were
designed in BSD4.2 as great features to allow administrators to remove the connectivity and
configuration differences between their systems. Namely, the rsh, rlogin, and rcp utilities
introduce a way to manage dozens, hundreds, or even thousands of systems utilizing simple
programmatic for loops. Each is responsible for implementing a specific feature that helps
administrators accomplish this goal. Specifically, rsh allows the user execution of remote indi-
vidual commands, rlogin gives a terminal window, and rcp allows the user to store files to or
retrieve files from a remote machine. Administrators and power users have made these utilities

7

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

essential to their daily tasks when interacting with UNIX systems. These tools were developed
in an age of computing where networks were trusted and used only by computer profession-
als. Networks were not connected together in situations beyond academia. Eventually, their
ease of use caused these tools to proliferate into nearly every UNIX variant in existence.

However, one would be hard-pressed to find a set of tools that has more security prob-
lems than these. These tools shine when it comes to speed and stability, but when security
comes into question, they obviously tip the scales on the usability side. The inherent problems
from the r-utilities lie in the trust mechanism. Most setups of r-utilities involve trusting servers
using files called .rhosts. If machine A trusts machine B, then Machine A must also trust the
authentication mechanisms of machine B. This can lead to several interesting scenarios. Addi-
tionally, many times trust relationships were not set up by individual machines, but by IP
addresses, or ranges of IP addresses, or even domain names. For example, if I have a machine
running the r-utilities daemons, and I trust anything coming from *.mycompany. com, anyone
who plugs into my network is now allowed to hop from their machine to all the rest of them.
This becomes of particular concern with the rise of user-controlled machines that can pass
the r-utilities a UID of 0 or that of any other arbitrary user.

IfI am a consultant and I walk into My Company and plug in my laptop, most likely I will
be assigned an IP address via Dynamic Host Configuration Protocol (DHCP), and it will proba-
bly resolve to something in the *.mycompany.com domain. Because I have root access on my
laptop, I can use rlogin to connect to another system, machine B, and machine B trusts that
since I have root on my laptop, I should be able to have root on machine B.

The r-utilities have a slew of other concerns that stem from trust relationships among
machines, weak (in some cases, virtually nonexistent) authentication, and clear-text trans-
mission of all data.

Again, confidentiality is lost in this setup. There is no encryption, and with many trust
relationships, such as those provided with .rhosts files, there really is not even any form of
access control. Integrity is also very low because I can set up my laptop with the same IP
address as machine B and get all of the information intended for machine B, do as I please
with it, and then relay it to the real machine B, or just keep it. This attack is also a type of man-
in-the-middle attack. Availability becomes questionable and is probably less important when
the integrity and confidentiality are at such low levels. If the data is available, can it be trusted?

The discussion of the downside of the r-utilities can be extremely lengthy, but overall the
r-utilities are situated on some extremely shaky ground. For more information about UNIX
security in general and especially problems with rsh, rlogin, and rcp, you can review Practical
Unix & Internet Security, 3rd Edition by Simson Garfinkel, Gene Spafford, and Alan Schwartz
(O’Reilly and Associates, 2003).

WHERE DO LEGACY PROTOCOLS STILL MAKE SENSE?

Using legacy protocols is a bad idea about 95% of the time. However, in my daily work as an administrator of
hundreds of UNIX/Linux systems, | still do from time to time.

| use FTP heavily for patching systems via tools like rpm, apt, pkg, CPAN, and swinstall. The FTP server
is configured for read-only access and only has publicly available data, so if any information is compromised
it is easily replaced. Additionally, most packaging systems have a way to verify integrity such as RPMs using
GNU Privacy Guard (GnuPG, http://www.gnupg.org).

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

Until very recently, if UNIX machines needed to transfer data to or from a mainframe, the only choice
was FTP. However, OpenSSH is now available for the mainframe (http://www-1.ibm.com/servers/
eserver/zseries/zos/unix/toys/ssh.html), and hopefully we can soon eliminate FTP as a data
transfer mechanism of mainframe data.

A final usage of legacy protocols involves the use of private networks inside of High Performance Com-
puting (HPC) clusters. | recommend using the r-utilities internal to the cluster only. Normally, two head nodes
are on the intranet and the rest of the compute nodes are only on a public network. The r-utility daemons are
not enabled on the head nodes, but they are enabled on the compute nodes due to speed and assumed secu-
rity on a private network. Additionally, most HPC software vendors count on rsh being enabled. As an added
security measure, iptables (http://www.netfilter.oxrg) can be used to block the r-utilities ports on
the head nodes, in case the r-utilities are ever enabled.

Learn to Replace Legacy Protocols

As network computing grew in purpose and popularity, these legacy protocols were made
even more common on all types of machines. With the surge of an Internet presence in the
middle 1990s by most corporations, along came their Telnet, FTP, and r-utilities for all to see.
During the latter half of the 1990s, it was commonplace to read about a compromised envi-
ronment, system, or corporation because of the use of . rhosts files or weak passwords. Even
Fortune 500 companies with very large information technology budgets were not immune to
the problems created by poor choices in connectivity protocols and poor policies covering
information security.

Many organizations have created new information security policies requiring heavy
restrictions on the usage of the r-utilities, Telnet, and FTP without providing a new solution;
these policies are then left unenforceable, allowing virtually everyone to get some form of
business exception, which allows someone to accept the risk. This is not always required,
however, because a viable replacement solution exists in the form of OpenSSH.

The case for Telnet, FTB, and r-utilities made in the past is simply not viable today. These
days, networks are shared via Virtual Private Network (VPN), Demilitarized Zone (DMZ), and
extranet access. Consultants, contractors, and business partners are constantly onsite, devot-
ing their resources to the highest bidder, and everyone understands that information is
probably your organization’s most valuable asset. OpenSSH will enable the replacement of
legacy protocols and enforce information security policy.

Improving Security with OpenSSH

To replace these legacy protocols, you need a toolset that can provide terminal emulation,
transfer files, and run commands remotely, all while encrypting the data, providing user and
host authentication, and have comparable availability, speed, and ease of use.

Replacing rlogin, rsh, and rcp was the original goal for the SSH protocol. It has done so
without relying on simple IP addresses or *.mycompany . com entries. OpenSSH also provides
sftp in lieu of FTP, eliminating clear-text authentication, while still offering a very similar
command set.

9

10

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

Establishing Security Basics

To understand the power and security embedded within OpenSSH, some key security ideas
must be conceptually understood. OpenSSH relies on several security mechanisms to ensure
the confidentiality, integrity, and availability of its data. This section will not explain exactly
how OpenSSH uses these security mechanisms, but it will provide background information so
that when a security focus point is discussed, some background on the topic can be assumed.

Checksums

Checksums are used to verify integrity of data. They are calculated values that are used to ensure
the provided data matches the expected data. For example, upon login to a UNIX system, a user
is prompted for a password. That password is then encrypted using a checksum and compared
against an expected value in the passwd or shadow file. If the value provided matches the value in
the file, the user is permitted to log in. If not, the user must try again.

Checksums are fixed lengths. If a file is 100 bytes or 100 gigabytes, a checksum will be of
the same size. This can lead to the potential problem of checksum collisions. In certain sum
algorithms the collision rate is high, while with others a collision is nearly impossible. The data
inside a file cannot be derived by just having the hash value of a file. Checksums are sometimes
called hash functions, because they convert data via a one-way hash.

sum

Of the different forms of checksum, the sum command is one of the least secure. It is found
on UNIX/Linux systems and can be used to check to see if two files are the same; however,
programs are available to pad a file until a given sum output is reached, thus negating sum
efforts.

To use sum, try checking your /etc/hosts file. The output is the checksum followed by the
number of blocks in a file.

stahnke@rack: ~> sum /etc/hosts
3705 1

MD5

md5 is a 128-bit hash function. It is commonly used in UNIX/Linux as the hash mechanism
for password encryption. The collision rate on md5 was generally thought to be very good;
however, recently several algorithms published and implemented have been able to produce
collisions in a few hours. At the time of this writing, in many cases md5 is still reliable and
secure, but most people are moving to another hash function.

To create an md5 hash value of a file, use the md5sum command. It is installed by default
on many different system types, and is available for nearly any operating system. The follow-
ing example shows how to generate a hash value using the md5 algorithm:

stahnke@rack: ~> md5sum /etc/hosts
f935ef656d642e4e3b377e8ebaq2db66 /etc/hosts

SHA-1

SHA-1 is another hash function that uses 160-bit checksums. It is generally thought to be
more secure than md5. SHA-1 is used in some password authentication implementations on

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH? 1

UNIX/Linux. It also is approved for use by the United States Government. The collision rate on
SHA-1 is significantly lower than that of even MD5; however, recently some theoretical attacks
against SHA-1 have been presented. These, too, require weeks or months on supercomputers
to duplicate. For maximum security, combining multiple hash algorithms can be used. If some-
one is able to duplicate an MD5 and SHA-1 checksum, the chances of a collision is believed to
be impossible even using today’s fastest supercomputers.

SHA-1 hashes can be generated using sha1sum. This utility is available on Linux and sev-
eral BSD variants by default. It normally is an add-on for Solaris, HP-UX, AIX, and IRIX. In the
following example, a shalsum is used to compute a SHA-1 checksum of the /etc/hosts file:

stahnke@rack: ~> shaisum /etc/hosts
d538de234634994b2078a34ea49c377108193ce7 /etc/hosts

Tip OpenSSL can be used to generate md5 and SHA-1 sums also. openssl mds /etc/hosts and
openssl shal /etc/hosts will provide hash outputs.

MACs

MAG s, in a security sense (not MAC addresses), are Message Authentication Codes. In cryptog-
raphy, a MAC is a small amount of information used to authenticate a given data set. A MAC
algorithm uses a secret key in combination with the data set to create the MAC or tag. This
process can protect a file in the form of integrity, because a MAC will change if the data set has
been altered. MACs also provide nonrepudiation (proof of origin), because the secret key must
be known to generate a valid MAC.

MACs are not normally available from the command line of a UNIX system. These algo-
rithms are used in encryption security products, such as OpenSSH.

Symmetric Ciphers

Encryption is handled in the form of ciphers. A cipher can be a simple as a character substitu-
tion. For example, if a message is to be sent over an untrusted medium, the message might be,
“We attack at dawn.” This text is called the plaintext, and is human readable. Using a simple
cipher called ROT13, the ciphertext, or encrypted text, is “Jr nggnpx ng qnja.” This substitution
simply replaces each letter of the alphabet with a character 13 places to the right of it. For exam-
ple, “€” becomes “r,” and “w” becomes “j.” The party receiving the message then has to replace
each character with the letter 13 places to left in the alphabet, which can span the beginning or
end of the alphabet. These are called symmetric ciphers because the same key is used to encrypt
and decrypt a message.

This is obviously an example of weak cryptography, but it illustrates some key points. Poor
encryption is trivial to break. Replacing a single letter with another letter often takes very little
time to decode. Patterns can easily be discovered in the ciphertext to assist with decoding the
message. For example, if a character occurs more often than any other character, and the plain
text message is English, that letter probably represents the letter “e.” Attacks can be made against
encrypted messages.

Encrypted messages can be sniffed on a network; therefore strong cryptographic algorithms
should be utilized to thwart potential attacking efforts.

12

CHAPTER 1 " LEGACY PROTOCOLS: WHY REPLACE TELNET, FTP, RSH, RCP, AND RLOGIN WITH SSH?

The simple substitution cipher given in this example is keyed by the number of letters to
rotate the alphabet by. Because there are only 25 possible values for this key, it is about 4 bits in
length, thus extremely weak. Ciphers depend on a shared key. If a shared key is agreed upon,
ahead of time by both the sender and receiver of a message, the encryption is much stronger.
An attacker will then need a sniffed (intercepted) ciphertext message and a key to decode it
properly. Strong ciphers also produce ciphertext that will contain higher degrees of random-
ness than most normal written languages.

This description of ciphers is fairly high level. To administer OpenSSH, no knowledge of
how a cipher is created is required. For performance optimization or security concerns, how-
ever, knowing which ciphers to choose and their key length can come into play.

There are two main types of symmetric ciphers utilized in computing today: block and
stream ciphers. Both of these types of ciphers are supported in OpenSSH.

Block Ciphers

Block ciphers are used to encrypt data of a fixed length in conjunction with a shared key. For
example, if a cipher is using a 128-bit block of clear text, the encrypted text would be 128 bits.
The way the encryption occurs is dependent on the key and cipher algorithm. Decryption of
block ciphers requires the shared key and using the decryption algorithm. Ciphers are gener-
ally a fast solution to encryption, but they present a problem of transmitting a shared key to
the receiving party without it being compromised.

DES

DES, or the Data Encryption Standard, was published in the late 1970s as an encryption
standard for the United States Government. It uses 56-bit keys, which at the time would
have taken years to break; however, with computational power increases, compromising
DES-encrypted communication is possible, and with some expensive hardware can be done
in hours or sometimes minutes. DES is only supported by the OpenSSH client for compati-
bility with SSH Protocol 1 servers that do not support any stronger ciphers. OpenSSH does
not support any cryptographically weak ciphers by default.

3DES

3DES, pronounced triple-DES, is a derivative of DES that uses separate shared keys (either two
or three) to encrypt, decrypt, and then encrypt data again using DES. Because it was designed
to be implemented in hardware, the structure of DES makes it relatively slower to implement
in comparison with other ciphers. It has not been broken by any known attacks against it.

AES

AES, which stands for Advanced Encryption Standard, was adopted by United States Govern-
ment as an encryption standard after DES proved to be much too weak. Like DES, it relies on
a shared key, but the algorithm used for encryption is much more difficult to break. AES
supports several different block sizes as well. Using OpenSSH, AES key sizes can range from
128 bits to 256 bits. AES performs at high speed and is commonly used in hardware and software.

Blowfish
Blowfish is another block cipher that is supported in OpenSSH. Blowfish is a fast cipher that
was aimed at replacing aging DES technology. It usage has been decreasing because of the

