
Ian Roughley

Practical Apache
Struts2 Web 2.0
Projects

Practical Apache Struts2 Web 2.0 Projects

Copyright © 2007 by Ian Roughley

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-903-7

ISBN-10 (pbk): 1-59059-903-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: Frank Zammetti
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Candace English
Copy Editor: Julie McNamee
Associate Production Director: Kari Brooks-Copony
Production Editor: Candace English
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Lisa Hamilton
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

For Skooter.

Contents at a Glance

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 Web 2.0 and Struts2 . 1

■CHAPTER 2 Getting Up and Running . 11

■CHAPTER 3 Framework Overview . 37

■CHAPTER 4 Application Overview . 71

■CHAPTER 5 Data Manipulation . 89

■CHAPTER 6 Wizards and Workflows . 147

■CHAPTER 7 Security . 179

■CHAPTER 8 Searching and Listings . 209

■CHAPTER 9 Syndication and Integration . 237

■CHAPTER 10 AJAX . 279

■INDEX . 327

v

Contents

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 Web 2.0 and Struts2 . 1

What Is Web 2.0? . 1

Web Application Development 2.0 . 5

Web Framework Agility with Struts2 . 6

Using this Book . 8

■CHAPTER 2 Getting Up and Running . 11

The Build Process . 11

Maven2 . 12

The Struts2 Starter Application . 15

The Maven2-Generated Directory and File Structure 15

The Maven2 Configuration File . 16

Starter Application Features. 20

Summary. 35

■CHAPTER 3 Framework Overview . 37

Walking Through a Request-Response . 37

The Request Initiation . 38

The Struts2 Servlet Filter . 38

The Action Invocation . 39

The Action . 39

Interceptors. 39

The Results . 40

vii

Exploring the Core Components . 40

Actions . 41

Interceptors. 42

Custom Interceptors . 45

The Value Stack and OGNL . 46

Results and Result Types . 48

Tag Libraries. 49

Configuring the Elements of the Framework . 52

The web.xml File . 52

Zero Configuration Annotations . 52

The struts.xml File. 55

Configuring the Execution Environment. 65

Extending the Framework . 67

Summary. 69

■CHAPTER 4 Application Overview . 71

The Application . 71

Use Cases . 72

Integration Technologies . 73

The Domain Model. 74

An Agile Development Process . 75

Continuous Integration . 76

Integrating the Persistence Layer . 77

Configuring the Dependencies . 78

Installing MySQL . 81

Configuring Hibernate . 83

Using Hibernate to Create Data Access Objects. 85

Summary. 88

■CHAPTER 5 Data Manipulation . 89

The Use Case . 89

CRUD Functionality . 90

The Domain Model . 90

Model-Driven Actions . 91

Setup Code and Data Prepopulation. 92

Configuration . 96

■CONTENTSviii

The Action Class . 98

Single Unit of Work . 98

Zero Configuration . 100

Multiple Units of Work. 108

Unit Testing. 112

JSP Templates . 116

Internationalization . 123

Input Validation . 127

Exception Handling . 133

Unexpected Errors . 134

Changing the Workflow. 135

Recovery via User Interaction . 135

Displaying the Error . 137

File Uploads . 140

Action Modifications . 143

XML-Configured Actions and Wildcard-Configured Actions 144

Zero Configuration Actions. 145

Summary. 146

■CHAPTER 6 Wizards and Workflows . 147

The Use Case . 147

The Scope Interceptor . 150

Configuration . 151

Workflow Elements . 153

Custom Validations . 155

Customizing the Rendering of Struts2 Tags 160

Working with Subclassed Domain Objects . 162

Implementing flash Scope . 168

Action Validation Using OGNL . 170

An Alternative Approach to Entering Contestants. 171

Summary. 178

■CHAPTER 7 Security . 179

The Use Cases . 179

Container-Based Authentication . 180

Configuring the Container. 180

Configuring the Web Application. 182

Accessing Role Information . 185

The Roles Interceptor . 187

■CONTENTS ix

Implementing Acegi . 187

Configuring Acegi. 188

The Acegi Application Context Configuration File. 189

Implementing a Custom Authentication Provider 191

Authenticating the User . 193

Accessing Role Information . 195

Custom Authentication and Authorization . 200

Preventing Unauthorized Access. 200

Configuring Authorization . 203

Implementing Authentication. 205

Accessing Role Information . 207

Summary. 208

■CHAPTER 8 Searching and Listings . 209

The Use Cases . 209

Setting the Stage . 210

Updating the Screen Layout. 210

Creating a Friendly Home Page . 214

Modularizing the List Rendering . 217

Search for Events by Name . 220

Developing a Search Form. 227

Consolidating List Actions . 232

Summary. 236

■CHAPTER 9 Syndication and Integration . 237

The Use Case . 237

Implementing RSS. 238

Results and Result Types . 241

Configuring Result Types . 241

Implementing the RSS Result Type . 243

Implementing an Atom Feed . 248

Consuming the RSS Feed with a Mashup . 249

Configuring the GeoRSS Module . 251

Geo-coding the Address and Creating the Feed Entry. 251

Implementing the Mashup Client . 256

Integrating a Map into the Home Page. 260

■CONTENTSx

Implementing Web Services . 262

Mapping URLs to Actions . 263

Configuring Action Mappers. 265

Creating a Custom Action Mapper . 266

Implementing the RESTful Web Service Logic 271

Summary. 277

■CHAPTER 10 AJAX . 279

The Use Cases . 280

Developing the Supporting Infrastructure . 280

Updating the Menu Options . 281

Implementing the Voting Use Cases . 283

Using the ajax Theme. 291

Configuring the Application . 291

Retrieving Action Results . 292

Invoking Actions as Events . 294

Additional ajax Theme Opportunities . 299

Using JavaScript . 302

Using the XML Result Type . 302

Using the JSON Result Type Plug-in. 310

Using the Google Web Toolkit . 315

Generating the GWT Starter Code . 316

Configuring the Struts2 Plug-in. 318

Integrating Struts2 and GWT . 319

Summary. 326

■INDEX . 327

■CONTENTS xi

Foreword

Apache Struts is one of the most successful open source projects ever created. With the
exception of “infrastructure” projects such as Linux, MySQL, and various programming lan-
guages, few other open source frameworks have managed to have the success, popularity,
market dominance, and ability to change the way developers think as Struts has.

As one of the creators of the original Struts 2.0 codebase, I am overwhelmed with pride
and joy to see so many people contribute and use the project. With literally hundreds of thou-
sands of projects developed on top of Struts, and countless more developers experienced with
it, the decision to update Struts from version 1.x to 2.x was not a trivial one. And yet through
the experience and leadership of the Struts team, the new 2.x version, which this book is about,
has been met with wonderful reception among the developer community.

Ian Roughly is a good friend of mine: Over the past 4+ years, he and I both dedicated far
too much time on WebWork, the project that merged with Struts and became the foundation
for Struts 2.0. Although Ian is not an original Struts developer—in fact, we both got involved
with WebWork because, ironically, we didn’t feel Struts 1.x was exactly what we needed—he is
definitely one of the most qualified people to write a book about Struts.

With a next generation of Struts gaining momentum among classic Struts users as well as
new ones, the time is right for a book on this updated, modern technology. Whether you want
to learn about AJAX integration, plug-in-oriented development, or just how to build quality
web apps, I can think of no one better than Ian to be your guide.

I am certain you will enjoy this book. It’s about a great technology, and it’s written by an
expert who not only created much of this technology but also uses it on a daily basis in his
own practice. Ian’s words and advice come from real experience—he’s not some disconnected
architect who doesn’t actually write web apps anymore. He’s the real deal. He knows what it
takes to build quality web applications, all the way from setting up a build system that works
well for web development teams, to building complex wizards and workflows, to properly
securing your application in a more complicated world dominated by AJAX.

You are in good hands, both in terms of your guide as well as a technology choice. Struts is
an evolving framework for building modern web applications, and I encourage you to join the
community after you are done with this book so that you may continue to participate in the
evolution and be part of one of the most interesting Java web frameworks today.

Enjoy the book!
Patrick Lightbody

Co-creator, Struts 2.0

xiii

About the Author

■IAN ROUGHLEY is a speaker, author, and consultant based in Boston, MA,
where he runs From Down & Around, Inc., a consultancy specializing in
architecture, development, and process improvement services. For more
than 10 years, he has been helping clients ranging in size from Fortune 10
companies to start-ups.

Focused on a pragmatic and results-based approach, he is a pro-
ponent for open source, as well as process and quality improvements
through agile development techniques. Ian is a committer on the XWork

and WebWork projects; member of the Apache Struts PMC; and speaks at conferences in
the United States and abroad. He is also a Sun Certified Java Programmer and J2EE Enter-
prise Architect and an IBM Certified Solutions Architect.

You can reach Ian at ian@fdar.com, or via the web at http://www.fdar.com.

xv

About the Technical Reviewer

■FRANK W. ZAMMETTI is a web architect/developer for a worldwide financial company by day
and a jack-of-all-trades by night. Frank has authored a number of books and articles on topics
ranging from AJAX to DataVision. Frank is an active participant in a variety of open source
projects both small and large; some he leads, and a few he has founded himself. Frank has
been involved with computers, in one form another, for more than 25 years, 15 of that being
“professional,” which just means he was being paid to pretend he knew what he was doing!
Frank is an avid indoorsman, shunning the sun like the uncle no one talks about. Frank lives
in the United States with his wife, two children who never stop talking, and an assortment of
voices in his head that won’t stop singing the theme songs from ’80s television shows.

xvi

Acknowledgments

It has been a remarkable experience being involved with open source development, what I
believe to be the real “beta” of Web 2.0 sharing and collaboration. Where else can you combine
talented individuals from around the world, without significant management, to produce a
product that hundreds of thousands of companies depend upon every day? I’d like to thank
everyone involved in the XWork, WebWork, and Apache Struts projects; without their tireless
commitment and contributions, I would have nothing to write about. In particular I’d like to
thank Don Brown, Patrick Lightbody, Philip Luppens, Rainer Hermanns, and Rene Gielen;
they have always been there when I had a particularly tricky question that needed answering.

I would like to thank Steve Anglin, Candace English, and Julie McNamee from Apress, as
well as all of the people behind the scenes that I haven’t had the opportunity to meet person-
ally. Without your ongoing support and assistance, this book would not have been possible.

I’d also like to thank Frank Zammetti, my technical reviewer and Struts2 community
member, for keeping me on my toes, always questioning, and always making sure that the
information presented was at its very best.

Finally, I would like to thank my remarkable wife LeAnn. Her continuing support and
ongoing review and nongeek analysis of the manuscript has been invaluable.

xvii

Introduction

Web application development has been around for a long time. In fact, it has been around
long enough that a new term, Web 2.0, is being used to describe the next generation of web
applications. Web 2.0 is an intersection of new business models, new ideas, and multifaceted
sharing and collaboration—with iterative development techniques getting new features to
users at a much faster pace. Along with Web 2.0 came a revival of scripting languages (and
even a few new ones), all dynamic and supporting fast-paced and highly productive develop-
ment environments.

Around the same time, Struts (the first, and most popular Java web application framework
ever) was reaching an important milestone—its second major release. This was not only an
important milestone for the framework in terms of functionality but also for the improvements
made to increase developer productivity. By decreasing coupling within the framework, reduc-
ing configuration, providing default and different configuration options (via annotations), and
providing a plug-in mechanism to easily extend the base features, Struts2 is providing a plat-
form that can be built upon for the next generation of web applications. With these new
enhancements, Struts2 is poised to compete as the development framework of choice for
Web 2.0 applications.

To use a new framework, you first have to know the features that are available, and learn-
ing a new technology from scratch using reference manuals and disconnected examples can
be difficult. In writing this book, my goal was to provide the information to you, on how to
develop a Web 2.0 application using Apache Struts2 in a practical and hands-on manner. You
will achieve this goal by understanding the architecture of Struts2, by knowing the features
that Struts2 provides, by seeing how these features are used, and by using and further explor-
ing each of the features through the code provided. Each chapter builds on the last, providing
more and more information until a complete web application emerges.

Time to get started!

xix

Web 2.0 and Struts2

Before charging forward with developing a Web 2.0 application, you need to understand
what a Web 2.0 application really is. In this chapter, you will learn what Web 2.0 means from
a development as well as end user perspective.

With Struts2 being the technology of choice, you will also learn how Struts2 provides the
features to make developing a Web 2.0 application easy.

What Is Web 2.0?
One of the questions that needs to be answered before embarking on developing a Web 2.0
application is “What is Web 2.0?” As it turns out, this is a particularly difficult question to
answer.

From a programming perspective, Web 2.0 is synonymous with AJAX (Asynchronous
JavaScript and XML). The term AJAX was coined in February 2005 by Jesse James Garrett and is
used to describe the interaction between many technologies. At the core is the XMLHttpRequest
object, which is supplied by the web browser. This object was first present in Microsoft Inter-
net Explorer 5 (released in March 1999), although similar techniques using IFRAMES and LAYER
elements have been available since 1996.

Along with the XMLHttpRequest object, the technologies that make up an AJAX interaction
are the following:

• HTML/XHTML (Hypertext Markup Language): Used to present information to the user
from within the web browser.

• DOM (Document Object Model): The object structure of the HTML document in the
web browser. By manipulating the DOM with JavaScript, the page rendered to the user
can be modified dynamically without reloading the current page.

• CSS (Cascading Style Sheets): Used to format and style the HTML presented. By separat-
ing formatting from structure, the code can be modified consistently and maintained
more easily. Similarly to the DOM, CSS for the current page can be modified via
JavaScript to dynamically change the formatting without reloading the current page.

1

C H A P T E R 1

• JavaScript: A programming language that can be embedded within HTML documents.
JavaScript code or functions can be executed inline (as the page is processed), in
response to HTML events (by providing JavaScript in the value of HTML attributes),
or triggered by browser events (for example, timers or user events).

• XML (eXtensible Markup Language): The format of the data returned by the server in
response to the asynchronous call from the web browser. The XML response returned
is processed by JavaScript in the web browser, causing changes in the HTML (by
manipulating the DOM or CSS).

Recently, another data format has been gaining popularity: JSON (JavaScript Object Nota-
tion). Similar to XML, JSON returns data that can be processed within the web browser using
JavaScript. The advantage of JSON is that it can be very easily parsed by JavaScript; in fact, to
convert a response of any size from the JSON transport format to JavaScript objects involves a
single call of eval('('+responseJSON+')') (where responseJSON is the JSON data represented
as text or a string). Using JavaScript to process XML is much more involved and requires at
least one line of code to assign a value from the XML document to a JavaScript object.

EVALUATING VS. PARSING

There is a security concern when calling eval() on a JSON string, especially when the JSON is obtained
from a source external to the code currently being executed. The problem lies in the fact that the eval()
function compiles and executes any JavaScript code in the text string being parsed to create the object rep-
resentation. For this reason, you need to be sure that you trust the source of the JSON text. Even better still,
you can use a JSON parser, which avoids the problems associated with the eval() function.

One such parser can be found at http://www.json.org/json.js (the web site http://www.
json.org is the gateway to all things JSON). When using this JavaScript script, additional methods are
added to the basic JavaScript objects to both generate JSON and parse JSON. When provided with a JSON
string to be parsed (say jsonText), the following code is used:

jsonText.parseJSON(filter);

The parameter filter is an optional JavaScript function, which can be used to further filter and trans-
form the result. To generate JSON, use the toJSONString() method. For example, to convert a boolean
myBoolean, use the following:

myBoolean.toJSONString();

By using a JavaScript JSON parser, the JSON text can be converted just as simply but without security
concerns.

By using AJAX interactions, developers can make the user experience less awkward.
Rather than requiring the entire HTML page to be reloaded from the server (along with pro-
cessing the request on the server) and rerendered to update values in a drop-down selection
box, now a smaller request to the server can be made. More importantly, the page is not reren-
dered; instead, the only change to the HTML is that the values for the drop-down selection
box have now been changed.

CHAPTER 1 ■ WEB 2.0 AND STRUTS22

Smaller and more targeted information requests to the server means that the time spent
waiting for the network and server processing will be less. Not having to rerender the entire
browser page on each server request will also be perceived as the web application performing
faster. With these pieces working together in an AJAX interaction, the web browser will
become more responsive and act more like a traditional desktop application—increasing the
usability and overall user experience.

It also means that developers need to think differently. In fact, developers need to
reexamine the fundamental way that a web application is constructed; rather than thinking
of a page as a unit of work, they need to think of functionality from a page as being the unit of
work, with many functions being combined to create the final page. Furthermore, the same
functionality can now be easily shared among pages.

THE PAVLOV EFFECT

Changing the user interaction (even for the better) has its own problems. Users have been trained to under-
stand that nothing on HTML pages changes until you click a link or a form submit button. All of a sudden,
things are different. Now, at any time, any part of the HTML page has the potential of being updated or
removed, and new information can be added.

To help transition users to the new browser interaction model, as well as to provide developers with
guidelines of when and how to use AJAX in web applications, a series of patterns has emerged. AJAX pat-
terns cover a wide range of topics, including how to signal the user that a UI element has changed; when to
make server calls to obtain data; options for introducing AJAX into non-AJAX web applications; how to man-
age technical aspects such as server timeouts; and ways to provide a non-AJAX fall-back when JavaScript is
not available on the user’s browser.

From a marketing or end-user perspective, things are a little different. There is no doubt
that more interactive user interfaces can make the overall web application’s usability better,
however, the shift from Web 1.0 to Web 2.0 is more than user interfaces.

In September 2005, Tim O’Reilly published an article titled “What Is Web 2.0” (http://
www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html). This article
explored what Web 2.0 was by comparing a new breed of web sites that were available to those
that had been around for some time. The result was that no hard boundaries of principles or
technologies signified an application as a Web 2.0 application. Instead, there were guiding
principles that, when adopted, resulted in a web application that is more Web 2.0 than when
the principles were not used. Following is the list of proposed principles:

CHAPTER 1 ■ WEB 2.0 AND STRUTS2 3

• Web as a platform: Applications should take advantage of the Web as a platform rather
than simply providing a presence on the Web. By working symbiotically with the open-
ness and connectedness of the Web, services can reach out to all users. And in doing so,
will get better as more people use the service.

• Harness collective intelligence: Hyperlinking has been the foundation of the Web,
allowing users to explore related content, but it has always been provided by the web
site being visited. The new breed of applications takes this a step further, allowing
users to provide information to the web application in the form of content and
metadata (information about the content, such as ranking or popularity). Individual
publishing, via blogging, has also become popular, allowing anyone to become a pub-
lisher of information and opinions.

• Data is the next “Intel inside”: Originally, companies owned and provided data to users
of their application. Although an initial set of data is still this way, a new and much
more valuable set of data is being provided by users of the application. Now the race
is on for companies to own a particular category of user-provided data, leading to the
question, “who owns the data?”

• End of the software release cycle: With software being delivered as a service rather than
a product, all users of a web application can take advantage of new features being pro-
vided immediately. In a sense, users then become codevelopers and can be monitored
to determine which features are used, and how often—shaping the features of the final
product. Releasing often also requires operations to become a core competency.

• Lightweight programming models: There is a preference to use simple protocols, such
as REST (Representation State Transfer) rather than SOAP (Simple Object Access Proto-
col), and RSS (Really Simple Syndication) to provide syndication and remixability. The
innovation is that combining many loosely coupled services together in a unique or
novel manner provides value in the assembly.

• Software above the level of a single device: In a connected world, the browser is no
longer the single device of choice. Web applications will need to interact with devices
accessing them from web browsers and cell phones, as well as more specialized devices
such as iPods, PDAs, and cable boxes.

• Rich user experiences: Services are becoming RIAs (Rich Internet Applications), provid-
ing dynamic and responsive interactions with users. AJAX (which was explained earlier)
as well as Java applets and proprietary solutions such as Macromedia Flash, are all
enabling technologies.

Almost one year later in August 2006, Tim O’Reilly gathered a group of people together
to build on his initial paper. Gregor Hohpe was one of those people invited, and he blogged
(http://www.eaipatterns.com/ramblings/45_web20.html) about the values, principles, and
patterns that were discussed.

As an agile developer, the style the values were presented in hit an accord. Using the same
format as the Agile Manifesto, it presented the differences between a Web 1.0 and Web 2.0
application as a range. The closer the application is represented by the descriptions on the
left, the more Web 2.0 the web application is. In the end, whether an application is Web 1.0 or

CHAPTER 1 ■ WEB 2.0 AND STRUTS24

Web 2.0 is still subjective, but grading the level of Web 2.0-ness is easier. The values, with my
interpretation, are provided here:

• Simplicity over Completeness: Application features do not need to be absolutely complete,
having every variation and every option possible. Instead, the most used options are all
that is required, making the application much simpler to use and quicker to market.

• Long Tail over Mass Audience: Business models are focusing on selling smaller volumes
of a large variety of hard-to-find or unique items rather than selling large volumes of a
small number of popular items. The same can be said about knowledge (see the Wiki-
pedia entry for more information on the Long Tail http://en.wikipedia.org/wiki/
The_Long_Tail).

• Share over Protect: Web sites are no longer gated enclosures; instead, information and
services are shared using techniques such as web services and feeds.

• Advertise over Subscribe: The preferred revenue model for Web 2.0 sites is advertisement
rather than subscription (although of all the values, this is the one that is most contro-
versial because as applications move from products to Web 2.0 services, a subscription
model will be required).

• Syndication over Stickiness: An early goal of web applications was to keep users on the
site for as long as possible. By providing services, the information that could only reach
users on the site can now have a much farther reach by syndication (with links leading
them back to the application).

• Early Availability over Correctness: Rather than working behind closed doors to perfect
a web application feature, it’s more important to get the features out to users so they
can assist as codevelopers in the perfecting the features.

• Select by Crowd over Editor: The opinions and aggregated wisdom of many people is far
more valuable than the opinion of a single person.

• Honest Voice over Corporate Speak: The opinions of experts participating in or using a
service or product are more valuable than marketing information that has no personal
insight.

• Participation over Publishing: Whenever possible, it’s better to allow the users to partic-
ipate and share their experience, rather than publishing edited information.

• Community over Product: Creating a community and then taking advantage of the col-
lective knowledge of the community is more important than providing a product with
individual user access.

The interesting thing is that in this second phase of the Web, the focus is once again on
collaboration and sharing information and opinions. This was an original goal of the Internet
(http://en.wikipedia.org/wiki/History_of_the_Internet) when universities were exploring
ways to collaborate.

CHAPTER 1 ■ WEB 2.0 AND STRUTS2 5

Web Application Development 2.0
After reviewing the values and principles that make up a Web 2.0 application, you might be
asking yourself “how is this different from what I am doing now?” We have reviewed AJAX
interactions in the previous section, and this is by far the most significant change from a
development perspective. Other changes are at a far more fundamental software develop-
ment level and less visible to the end user:

• Development process agility: As a service, software features can be changed at lightning
speed. It could be at a client’s request or as new business requirements are introduced,
but either way, a process must be in place to efficiently introduce new features and vali-
date that the new code has not broken existing features. More than ever, unit testing,
continuous integration, and automated deployment processes are required to support
the development efforts.

• Syndication and integration: Two sides of the same coin, syndication and integration
allow your application to share data with other external applications as well as use serv-
ices from external sources. When architecting your web application, thought needs to
be put into determining how the application will technically achieve these objectives,
as well as what format the data and services being provided will take.

• Web framework agility: Having a web development environment that works with the
developer to provide an environment that is flexible, productive, and encompasses the
values of Web 2.0 is of utmost importance. With Web 2.0, there has been a resurgence
of development in existing dynamic languages, such as PHP, as well as newer languages
and frameworks, such as Ruby and Ruby on Rails. Struts2 is one of many Java frame-
works that provide the maturity, experience, and features to compete with dynamic
language frameworks.

The features listed previously are not technical features of web development frameworks,
and this is important. As web development matures into a second phase of growth, the focus
is on business models and features provided to the users. Technically, the difference is on how
the applications are developed—by integrating services (that may be provided by other appli-
cations, known as mashups) and data together to provide value.

Web Framework Agility with Struts2
Because the focus of this book is on web development, we will explore how Struts2 provides
agility as a web application framework. However, before getting to Struts2, we need to talk
briefly about a new web framework that made its debut around the same time that web appli-
cations were releasing Web 2.0 features. This framework is Ruby on Rails.

When Ruby on Rails was released in August 2004, many (if not all) existing web application
frameworks went through a period of self-examination; new frameworks were also created
(Grails, for example). Several driving factors made Rails so compelling to use as a developer:

CHAPTER 1 ■ WEB 2.0 AND STRUTS26

• Full web application stack: All the basic elements necessary to build a web application
were provided in the base distribution.

• Convention over configuration: Rather than configuring every element of the applica-
tion, conventions were used (that could be overridden). A standard directory structure
(where each development artifact had a known location) and standard naming conven-
tions are a large part of the conventions.

• Scaffolding: The framework can provide fully functional basic user interfaces (with con-
troller logic) for model objects, allowing the application to be used while the real
production code is being developed.

• Interpreted development language: The underlying development language is Ruby,
which is dynamic, object-oriented, and interpreted.

All these features allow developers to be more productive from the initial download and
setup of the framework, to the day-to-day development of new web application features.

Struts was first released in July 2001 and was an overwhelming success. It provided an
MVC (Model View Controller) pattern implementation for Java web development, allowing
web applications written in Java to segment code (rather than writing HTML code in servlets
or Java code in JSPs) and to manage reusability and maintenance of existing code.

Over time, developing in Struts required more developer-provided code to implement the
necessary web application features, and a proposal for the next generation of Struts was sug-
gested. Architecturally, the changes necessary to implement the proposed features were signifi-
cant and, rather than starting from scratch, Struts developers approached other open source
Java frameworks with a proposal for a merger. Without covering all the details, the result was
that WebWork (an OpenSymphony project that itself was an early fork of the Struts code base)
merged with Apache to become the basis of Struts2.

■Note The history of Struts Ti and the WebWork/Struts merger is documented by Don Brown at
http://www.oreillynet.com/onjava/blog/2006/10/my_history_of_struts_2.html.

Interestingly, one of the WebWork lead developers, Pat Lightbody, had been reviewing fea-
tures of Ruby on Rails with the goal of making WebWork more productive and easier for devel-
opers to use. Some of these features are now part of the Struts2 feature set, and some (because
of the Java language constraints as well as maturity reasons) did not make the transition.

Following is a list of Struts2 features that drive the framework forward to be more devel-
oper friendly and productive:

CHAPTER 1 ■ WEB 2.0 AND STRUTS2 7

• Java: The Java language has been around for 10 years now and has matured to a point
where most of the features (nonbusiness-related) already exist as libraries. Java is typed
(a plus for some developers) and can access an organizational infrastructure that has
already been developed (although JRuby and Groovy have options for calling existing
Java classes via dynamic languages).

• Plug-ins: Functionality provided as core or third-party plug-ins can be added as
needed, rather than requiring the core framework to include everything. As well, the
plug-in development life cycle (and hence the introduction of new features) is no
longer tied to the core framework, allowing more frequent upgrades.

• Convention over configuration: Wherever possible, configuration has been eliminated.
By using zero-configuration, class names can provide action mappings, and returned
result values can provide names for JSPs to be rendered.

• Annotations rather than XML configuration: There are two benefits to using annotations:
first is a reduction in XML configuration, and second is the configuration is closer to the
action class (reducing the effort necessary to determine the action configuration).

• Data conversion: The conversion of string-based form field values to objects or primi-
tive types is handled by the framework (and vice-versa), removing the necessity of
providing this infrastructure code in the action class.

• Dependency injection: All the objects that the action needs to interact with to perform
the logic of the action are provided via setters. This reduces the coupling between
application layers, and makes the application simpler and easier to test.

• Testability: Testing Struts2 actions, interceptor, and other classes is very easy.

• MVC pattern: Struts2 continues to use the MVC pattern, providing a layer of abstraction
between the view (usually rendered as HTML) and the framework by using a URL. This
is important because it doesn’t tie the framework to a particular device or rendering
style (such as, always refresh an entire page; partial HTML updates; and processing
events supplied as AJAX requests).

A lot of work is still needed to get to the productivity level that Ruby on Rails is today, and
some features will just never make it (due to the restrictions of the Java language). However, in
choosing a web application framework, many factors are involved, and the selection of a pro-
gramming language that can take advantage of the organization infrastructure that is already
in place is one of the most important. With numerous options available to choose from for
Java web application frameworks, Struts2 is just as strong of a contender today as it was when
Struts was first released—providing the developer productivity features and Web 2.0 function-
ality that is needed to develop today’s web applications.

Using this Book
Throughout the course of this book, the Struts2 framework will be used to develop a Web 2.0
application. As we have already discussed, Web 2.0 characteristics mostly focus around busi-
ness features and the underlying business model of the organization. However, to develop a

CHAPTER 1 ■ WEB 2.0 AND STRUTS28

fully featured application, you need to understand the framework, concepts, configuration, and
the (non-Web 2.0 specific) features. With this in mind, this book is divided into four sections:

• Chapter 2 and Chapter 3 provide the fundamentals on Struts2 with information on how
to get up and running, how a request is processed, background information on the
framework, and configuration information and extension points.

• Chapter 4 provides the background information on the application that is to be devel-
oped throughout the course of the book, including the development process to be used,
an overview of the application, the use cases that will be developed, and supporting
technologies (that are used in combination with Struts2).

• Chapters 5 through 8 describe the core features of any web application: data manipula-
tion, wizards and workflows, security, and rendering information.

• Chapter 9 and Chapter 10 focus on the Web 2.0 features of the application, including
syndication, integration, and ways that AJAX can be integrated into the application.

■Note The code was developed using Struts version 2.0.9. In most cases, the provided code should be
compatible with any 2.0.x release; however, if you do choose to use a more recent version, there may be
some incompatibilities.

Because the concepts and features being introduced are built upon the knowledge from
previous chapters, reading the book forward from start to finish is recommended. If you are
familiar with Java web application frameworks and don’t want to read the entire book, start
with Chapter 2 and Chapter 3. These provide the necessary Struts2-specific information so
that you can pick and choose the other chapters to read. If you are familiar with Struts2 and
are looking for specific implementation information, Chapters 1 through 4 can be safely
skipped.

Finally, the application developed in this book illustrates the most common technologies
used when developing web applications today: JSPs, the Spring Framework, and JPA. By using
Struts2, you have many other options for the view, business tier, and data tier. Plug-ins are the
most common mechanism for integrating new technologies, and the list of all the current
plug-ins can be found at http://cwiki.apache.org/S2PLUGINS/home.html. When considering
alternatives, this is the first place you should look.

The other reference you should keep handy is the Struts2 official document site: http://
struts.apache.org/2.x/docs/guides.html. Here you will find the most up-to-date informa-
tion on Struts2, as well as reference documentation, guides, tutorials, and release notes for
released versions.

CHAPTER 1 ■ WEB 2.0 AND STRUTS2 9

Getting Up and Running

Starting to work with a new technology or framework can be intimidating. Where do you start
learning? How do you know that you are implementing classes correctly? How do you know that
the configuration is correct? The easiest way to start out is to follow an example, and Struts2 pro-
vides just that, but not in the traditional sense. By using a build tool called Maven2, Struts2 is
able to generate an example project’s files and configuration.

In this chapter, you will learn everything you need to get started with Struts2. Starting
with information on the build process, you will continue on to generate an example applica-
tion. You will run the example project on an application server, and with a running example,
learn how the different parts of a basic Struts2 application interact.

The Build Process
The build process represents an independent, consistent, and repeatable method to package
an application in a state that can be deployed or distributed. When presented like this, it is
incomprehensible to think that any organization would not be employing such a process. It’s
easy, right? However, widespread use is limited. Either organizations have no common
process, or there is a process, but it is specific to the developers’ environment—clicking the
Build Project button, using a script that was developed locally, using a common build script
that contains hard-coded environmental information, and so on. Each of these scenarios will
lead to equally disastrous outcomes when used on a system other than the one where the
process was created.

To facilitate good development processes, we will start out using a build process that can
be utilized in any environment: on a developer’s workstation, on the integration server, on the
test server, or on the build server that creates the final distribution packages. The tool we will
be using is Maven2 from the Apache Foundation.

■Note There is no requirement to use Maven2 to create a Struts2 application; you could use ANT scripts
or your IDE to create the WAR file. The important thing is to have the process independent, consistent, and
repeatable.

11

C H A P T E R 2

Maven2
Maven2 is a command-line tool that is used to build, test, report on, and package projects.
It provides many features that will make developing your project easier. Here are a few of the
features that you will be taking advantage of:

• Standard directory structure: Each project that uses Maven2 will have the same directory
structure; this makes it easier when developers are working across multiple projects.

• Plug-in architecture: Each function of Maven2 is performed by a plug-in, whether the
function is compiling classes or deploying the site. If a feature is being used for the first
time, the plug-in will be downloaded from a common repository; you no longer need to
manually obtain all the parts before starting work.

• Dependency management: When dependencies are described in the Maven2 configura-
tion file, they will be accessed from a local repository or downloaded to the local
repository during the build process (just as the core Maven2 functionality is). As well as
the explicitly configured dependency, the transitive dependencies are managed and
downloaded as necessary.

• Scope management: The final distribution package contains only the elements required.
Test code and dependencies that are not needed (or provided by application servers) in
the final package are left out.

• Archetypes: The archetype plug-in allows developers to create a default implementation
template for a project category. This is then used to quickly create a new project with-
out the need for creating the common directory structure, creating the configuration
files, and coding default classes and tests from scratch.

■Note More information on the many features of Maven2 is provided in the official document at http://
maven.apache.org.

To build the project locally, you need to install Maven2 and learn about build life cycles.

CHAPTER 2 ■ GETTING UP AND RUNNING12

COMPARING ANT AND MAVEN2

If you are familiar with Apache ANT build scripts, by now Maven2 may look a little overwhelming. The best
example of the differences is comparing ANT vs. Maven2 to Struts2 vs. Ruby on Rails.

In Struts2, developers need to do a lot of work (although this is changing for the better), such as creat-
ing actions, mapping results, creating interceptors, and so on. Ruby on Rails abstracts away from the
developer all possible configuration and common developer tasks and instead provides intelligent defaults
(that can be modified if needed). Maven2 is the same. Instead of creating the same “clean,” “compile,”
“test,” and so on ANT tasks, these are handled by Maven2 by relying on a common directory structure. The
order (Maven2 life cycle) that the tasks (Maven2 phases) are executed in is also handled automatically, as the
common tasks are usually called in the same order for every ANT build file.

One of the most compelling reasons to use Maven2 is that project dependencies can be handled
declaratively via the pom.xml configuration file. And, if the dependent libraries also use Maven2, transitive
dependencies are resolved automatically (because they are defined in the dependent libraries configuration
file, they can be automatically downloaded as well).

More information can be found at the Maven2 web site (http://maven.apache.org), including a
complete list of features (http://maven.apache.org/maven-features.html).

Installing and Using Maven2
Installing Maven2 is easy; the project can be downloaded from the Apache project web site
at http://maven.apache.org/download.html. Once downloaded, your development environ-
ment path needs to be modified to include the Maven2 bin directory. On a Linux or UNIX
system, this is achieved by export PATH=/usr/local/maven-2.0.6/bin:$PATH (for Maven2
having been installed in the /usr/localmaven-2.0.6 directory), and on a Windows system,
with set PATH=%PATH%; C:\maven-2.0.6\bin (for Maven2 being installed in the maven-2.0.6
directory).

■Note At the time of writing this book, the most recent version of Maven2 is 2.0.6. However, using any
2.0.x release should work without any significant issues. Version 1 of Maven uses a completely different
configuration file and structure, and should be avoided.

Once installed, you can check whether the installation is correct by issuing the command
mvn -v. If the installation is correct, you will get a response of Maven version: 2.0.6.

Using Maven2 to build a project is just as simple. First you need to create a Maven2
project configuration file. By convention, this file is called pom.xml and is located in the root
directory of the project. To make it even easier, Maven2 provides an archetype feature that
will create empty directory structures, the project’s pom.xml file, and even configuration files
and sample project files—all for a specific type of project.

CHAPTER 2 ■ GETTING UP AND RUNNING 13

After you have a pom.xml configuration file, you issue the mvn command in the directory
that it is located, followed by one or many life cycle phases, for example, mvn clean package.
Another option is to use a plug-in goal rather than a life cycle phase, for example, mvn
archetype:create.

The Maven2 Life Cycle Phases
Unlike other build tools, Maven2 uses common life cycles for building a project. Each life
cycle provides multiple phases, which are executed in a specific order to consistently gener-
ate the outcome expected for your project. The phases and the order cannot be modified;
however, each plug-in (and remember everything in Maven2 is a plug-in) can bind a goal
(which can be thought of as a target in ANT) to each and any phase. Because order is impor-
tant, the following default life cycle phases for building a project are listed in the order that
they are called:

• validate: Verifies that all needed resources are available.

• compile: Compiles the source code for the project.

• test-compile: Compiles the source code for any tests within the project.

• test: Runs unit tests from the project using an applicable testing framework. These tests
should not require the code to be packaged or deployed.

• package: Packages the compiled code and resources into a distributable format.

• integration-test: Deploys the packaged project into an environment where any integra-
tion tests can be run and executes any integration tests.

• install: Installs the packaged project into a local repository so that other projects may
use it.

• deploy: Deploys the package into a remote repository to share with other developers
and projects.

■Note This is not a complete listing of all the life cycle phases that are available. If you are interested
in learning more, the full life cycle phase list can be found at http://maven.apache.org/guides/
introduction/introduction-to-the-lifecycle.html.

Two additional life cycles are available: clean and site.
The clean lifecyle removes the build directory, along with any other configured directories

to restore the state of the project to a baseline.
The site life cycle has the following goals:

• site: Runs the reports configured for a project, rendering HTML documents.

• site-deploy: Deploys the HTML reports to a configured web server.

Similar to the default life cycle, both contain additional phases that are not listed.

CHAPTER 2 ■ GETTING UP AND RUNNING14

The Struts2 Starter Application
The Struts2 project includes several Maven2 archetypes that can be used to kickstart project
development. The full list of different archetypes can be found at https://svn.apache.org/
repos/asf/struts/maven/trunk. Included are archetypes for portlet development, plug-in
development, and Struts2 projects.

You will be using the starter project archetype, called struts2-archetype-starter. To gen-
erate the starter project, select the working directory, and issue the following command:

mvn archetype:create
–DgroupId=com.fdar.apress.s2
–DartifactId=app
-DarchetypeGroupId=org.apache.struts
-DarchetypeArtifactId=struts2-archetype-starter
-DarchetypeVersion=2.0.9-SNAPSHOT
-DremoteRepositories=http://people.apache.org/maven-snapshot-repository

This command has two parameters that can be varied. The artifactId property specifies
the directory name to use as the base directory for the project (created in the working direc-
tory that you selected and in which you issued the Maven2 command to create the archetype)
and is also used as the project’s name. Into this directory, the project will be created with the
common Maven2 directory structure. The groupId is the package name to use as the base class
directory and the directory in which the starter classes will be located.

Now that the starter project has been created, you can see it working in a browser. The
Maven2 command mvn jetty:run will start a servlet container with the application deployed,
but remember to issue the command from the directory containing the pom.xml configuration
file (the app directory). When this command is run for the first time, there will be many plug-
ins and dependency artifacts to download, so it may take some time. After the artifacts are
cached in your local repository, the startup time will improve. We will discuss how the servlet
container is configured in the following chapters, but for now, you have a working application
in only two steps.

The Maven2-Generated Directory and File Structure
After the Maven2 struts2-archetype-starter archetype has been run, many directories (in
accordance with the Maven2 standard directory structure) and files are created. The complete
directory structure follows.

app
+- pom.xml
+- src

+- main
| +- java
| | +- com
| | +- fdar
| | + apress
| | +- s2

CHAPTER 2 ■ GETTING UP AND RUNNING 15

| +- resources
| +- webapp
| +- jsp
| +- styles
| +- WEB-INF
| +- decorators
+- test

+- java
| +- com
| +- fdar
| + apress
| +- s2
+- resources

The standard directory structure goes like this: the src directory is the root for all code
in the project, and within this directory, there is a main directory (for production code) and
a test directory. Only the src directory’s contents (after any processing/compiling is per-
formed) go into the packaged artifact.

■Note For more detail on the standard directory structure, see the Maven2 documentation at http://
maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.

html.

These two directories can contain many other directories, which are aligned with a plug-
in or technology. The most common are the java and resource (containing property, XML,
and other configuration files) directories—because Maven2 is a build tool for Java—but there
are many more. When the AspectJ (AspectJ provides a way to weave additional code for cross-
cutting concerns, with logging and transaction management being the commonly used
examples, into existing compiled code) plug-in is included, an aspects directory contains the
.aj files. The same goes for scripting, where a groovy directory contains the Groovy scripts
that are to be executed. (Groovy is a dynamic scripting language with syntax similar to Java
that can be executed on the fly or compiled down to byte code.) For a war packaged artifact,
the main directory includes a webapp directory that contains the additional information for
a WAR file that an EAR or JAR does not need.

The Maven2 Configuration File
As well as the starter program elements, the archetype will create a Maven2 pom.xml config-
uration file that is used to build the project. This file defines the project’s dependencies, the
packaging details, and the testing and reporting requirements.

The configuration file plays a central role, so let’s take some time to understand its parts.
The first part is the header information:

CHAPTER 2 ■ GETTING UP AND RUNNING16

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.fdar.apress.s2</groupId>
<artifactId>app</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>Struts 2 Starter</name>
<url>http://www.myComp.com</url>
<description>Struts 2 Starter</description>

…

</project>

The header of the configuration file contains information for the final packaging, and you
should see several values that are familiar: the groupId and artifactId have the same values
that were provided in the command to create the starter package.

Some information will remain constant; the modelVersion will always have a value of
4.0.0 (until a significant Maven2 configuration format revision occurs), which refers to the
Maven2 model version. The packaging value for web applications is usually war. If this were
a component of a larger application, the value would be jar; and if it were a J2EE application
containing web components, EJB components, and other resources, it would be ear. The
version value remains constant for the time being but will change over time. As this compo-
nent becomes stable or goes into preview or testing phases, it may change. When the compo-
nent is released for production use, it should be changed to 1.0. As further development
starts, it may be changed to 1.1-SNAPSHOT (for enhancements) or 2.0-SNAPSHOT (for new major
features).

Three elements—the name, url, and description tags—have a default value that you
should change soon after the starter code has been generated. Each provides descriptive
information to developers and consumers of the packaged artifact but is not utilized during
building or packaging.

The next interesting part of the pom.xml file is the dependency section:

<project>

…

<dependencies>
<!-- Junit -->
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

CHAPTER 2 ■ GETTING UP AND RUNNING 17

