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Chapter 1

ADVANCED COLLISION DETECTION

Collision detection is the math, art, science, or general guesswork used to determine
whether some object has hit another object. This sounds pretty simple, but when you
are dealing with objects that exist only in a computer’s memory and are represented
by a collection of various properties, some complexities can arrive.

The basic methods of collision detection are covered in Foundation ActionScript 3.0
Animation: Making Things Move! (hereafter referred to as Making Things Move). This
chapter looks at one method of collision detection that wasn’t covered in that book
and a strategy to handle collisions between large amounts of objects.

Note that the subject of collision detection does not delve into what you do after
you detect a collision. If you are making a game, you might want the colliding objects
to blow up, change color, or simply disappear. One rather complex method of han-
dling the results of a collision was covered in the “Conservation of Momentum”
chapter of Making Things Move. But ultimately it’s up to you (and the specs of the
application or game you are building) to determine how to respond when a collision
is detected.
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Hit Testing Irregularly Shaped Objects

Making Things Move covered a few basic methods of collision detection, including the built-in
hitTestObject and hitTestPoint methods, as well as distance-based collision detection. Each of these
methods has its uses in terms of the shapes of objects on which you are doing collision detection.
The hitTestObject method is great for detecting collisions between two rectangular-shaped objects,
but will often generate false positives for other shapes. The hitTestPoint method is suitable for
finding out whether the mouse is over a particular object or whether a very small point-like object has
collided with any other shaped object, but it is rather useless for two larger objects. Distance-based
collision detection is great for circular objects, but will often miss collisions on other shaped objects.

The Holy Grail of collision detection in Flash has been to test two irregularly shaped objects against
each other and accurately know whether or not they are touching. Although it wasn’t covered in
Making Things Move, a method has existed for doing this via the BitmapData class since Flash 8. In
fact, the method is even called hitTest.

First, a note on terminology. ActionScript contains a BitmapData class, which holds the actual bitmap
image being displayed, and a Bitmap class, which is a display object that contains a BitmapData and
allows it to be added to the display list. If | am referring to either one of these classes specifically, or
an instance of either class, | will use the capitalized version. But often | might casually use the term
bitmap in lowercase to more informally refer to a bitmap image. Do not confuse it with the Bitmap
class.

BitmapData.hitTest compares two BitmapData objects and tells you whether any of their pixels are
overlapping. Again, this sounds simple, but complexities arise once you start to think about it. Bitmaps
are rectangular grids of pixels, so taken in its simplest form, this method would be no more complex
(or useful) than the hitTestObject method on a display object. Where it really starts to get useful is
when you have a transparent bitmap with a shape drawn in it.

When you create a BitmapData object, you specify whether it will support transparency right in the
constructor:

new BitmapData(width, height, transparent, color);

That third parameter is a Boolean value (true/false) that sets the transparency option. If you set it
to false, the bitmap will be completely opaque. Initially, it will appear as a rectangle filled with the
specified background color. You can use the various BitmapData methods to change any of the pixels
in the bitmap, but they will always be fully opaque and cover anything behind that BitmapData. Color
values for each pixel will be 24-bit numbers in the form 0OxRRGGBB. This is a 6-digit hexadecimal num-
ber, where the first pair of numbers specifies the value for the red channel from 00 (0) to FF (255), the
second pair sets the green channel, and the third sets the blue channel. For example, OxFFFFFF would
be white, 0xFF0000 would be red, and 0xFF9900 would be orange. For setting and getting values of
individual pixels, you would use the methods setPixel and getPixel, which use 24-bit color values.

However, when you specify true for the transparency option in a BitmapData class, each pixel now
supports an alpha channel, using a 32-bit number in the format 0XAARRGGBB. Here, the first 2 digits
represent the level of transparency for a pixel, where 00 would be completely transparent, and FF
would be fully opaque. In a transparent BitmapData, you would use setPixel32 and getPixel32 to
set and read colors of individual pixels. These methods take 32-bit numbers. Note that if you pass
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in a 24-bit number to one of these methods, the alpha channel will be evaluated as being 0, or fully
transparent.

To see the exact difference between the two, let’s create one of each. You can use the following class
as the main class in a Flex Builder 3 or 4 ActionScript Project, or as the document class in Flash CS3 or
CS4. This class, BitmapCompare, is available at this book’s download site at www.friendsofed.com.

package

{
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.geom.Rectangle;

public class BitmapCompare extends Sprite

{

public function BitmapCompare()

{
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO SCALE;
// draw a bunch of random lines
graphics.lineStyle(0);
for(var i:int = 0; i < 100; i++)
{

graphics.lineTo(Math.random() * 300,
Math.random() * 400);
}
// create an opaque bitmap
var bmpdi:BitmapData = new BitmapData(300, 200,
false, oxffffff);
bmpd1.fillRect(new Rectangle(100, 50, 100, 100), 0xff0000);
var bmpi:Bitmap = new Bitmap(bmpdi);
addChild(bmp1);
// create a transparent bitmap
var bmpd2:BitmapData = new BitmapData(300, 200,
true, oxooffffff);
bmpd2.fillRect(new Rectangle(100, 50, 100, 100),
oxffff0000);

var bmp2:Bitmap = new Bitmap(bmpd2);
bmp2.y = 200;
addChild(bmp2);

}

}
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This code first draws a bunch of random lines on the stage, just so you can tell the difference between
the stage and the bitmaps. It then creates two bitmaps and draws red squares in the center of each.
The top bitmap is opaque and covers the lines completely. The bottom bitmap is transparent, so only
the red square covers the lines on the stage. You can see the result in Figure 1-1.

Figure 1-1. An opaque bitmap on top, transparent below

Furthermore, with a transparent bitmap you can use partial transparency. Change the second fillRect
statement in the last code sample to the following:

bmpd2.fillRect(new Rectangle(100, 50, 100, 100), Ox80FF0000);

Note that we used a 32-bit AARRGGBB color value for the fill, and the alpha value has been halved to
0x80, or 128 in decimal. This makes the red square semitransparent, as seen in Figure 1-2.
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Figure 1-2. A semitransparent square

Bitmaps for collision detection

So now let’s take a look at how to use bitmaps to achieve collision detection. First, we’ll need a nice
irregular shape to test with. A five-pointed star will do nicely. Why not make it into its very own class
so we can reuse it? Here’s the Star class, also available at the book’s download site:

package

{
import flash.display.Sprite;

public class Star extends Sprite

{

public function Star(radius:Number, color:uint = OxFFFF00):void

{
graphics.lineStyle(0);
graphics.moveTo(radius, 0);
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}

grap
// d
for(

{

hics.beginFill(color);
raw 10 lines
var i:int = 1; i < 11; i++)

var radius2:Number = radius;
if(i %2> 0)
{
// alternate radius to make spikes every other line
radius2 = radius / 2;
}

var angle:Number = Math.PI * 2 / 10 * i;
graphics.lineTo(Math.cos(angle) * radius2,
Math.sin(angle) * radius2);

This just draws a series of lines at increasing angles and alternate radii, which cleverly form a star. And
here is the class that does the hit testing. Again, like most of the code in this book, it can be used
either as a document class in Flash CS3 or CS4, or as a main application class in Flex Builder 3 or 4, and
is available from the book’s download site.

package

{
import
import
import
import
import
import
import
import
import

public
{

flash.
flash.

flash

flash.
flash.
flash.
flash.
flash.
flash.

class

display.Bitmap;
display.BitmapData;
.display.Sprite;
display.StageAlign;
display.StageScaleMode;
events.MouseEvent;
filters.GlowFilter;
geom.Matrix;
geom.Point;

BitmapCollisionl extends Sprite

private var bmpdi:BitmapData;
private var bmpi:Bitmap;
private var bmpd2:BitmapData;
private var bmp2:Bitmap;

public function BitmapCollisioni()

{

stag
stag

// m
var

e.align = StageAlign.TOP_LEFT;
e.scaleMode = StageScaleMode.NO_SCALE;

ake a star
star:Star = new Star(50);
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}

// make a fixed bitmap, draw the star into it
bmpd1 = new BitmapData(100, 100, true, 0);
bmpdi.draw(star, new Matrix(1, 0, 0, 1, 50, 50));
bmpl = new Bitmap(bmpd1);

bmp1.x = 200;
bmp1.y = 200;
addChild(bmp1);

// make a moveable bitmap, draw the star into it, too
bmpd2 = new BitmapData(100, 100, true, 0);
bmpd2.draw(star, new Matrix(1, o, 0, 1, 50, 50));
bmp2 = new Bitmap(bmpd2);

addChild(bmp2);

stage.addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMoving);

private function onMouseMoving(event:MouseEvent):void

{

// move bmp2 to the mouse position (centered).
bmp2.x = mouseX - 50;
bmp2.y = mouseY - 50;

// the hit test itself.
if(bmpd1.hitTest(new Point(bmpi.x, bmpi.y), 255, bmpd2,
new Point(bmp2.x, bmp2.y), 255))

{
bmp1.filters = [new GlowFilter()];
bmp2.filters = [new GlowFilter()];
}
else
{
bmp1.filters = [];
bmp2.filters = [];
}

Here we create a star using the Star class and draw it into two bitmaps. We use a matrix to offset the
star during drawing by 50 pixels on each axis because the registration point of the star is in its center,
and the registration point of the bitmap is at the top left. We offset it so we can see the whole star.

One of these bitmaps (bmp1) is in a fixed position on the stage; the other (bmp2) is set to follow the
mouse around. The key line comes here:

if(bmpdi.hitTest(new Point(bmpi.x, bmpi.y), 255, bmpd2,

new Point(bmp2.x, bmp2.y), 255))



CHAPTER 1

This is what actually determines if the two bitmaps are touching. The signature for the BitmapData.
hitTest method looks like this:

hitTest(firstPoint:Point,
firstAlphaThreshold:uint,
secondObject:0bject,
secondPoint:Point,
secondAlphaThreshold:uint);

You'll notice that the parameters are broken down into two groups: first and second. You supply
a point value for each. This corresponds to the top-left corner of BitmapData. The reason for doing
this is that each bitmap might be nested within another symbol or deeply nested within multiple sym-
bols. In such a case, they might be in totally different coordinate systems. Specifying an arbitrary point
lets you align the two coordinate systems if necessary, perhaps through using the DisplayObject.
localToGlobal method. In this example, however, both bitmaps will be right on the stage, so we can
use their local position directly to construct the point for each.

The next first/last parameters are for the alpha threshold. As you saw earlier, in a transparent
BitmapData, each pixel’s transparency can range from 0 (fully transparent) to 255 (fully opaque). The
alpha threshold parameters specify how opaque a pixel must be in order to register a hit. In this exam-
ple, we set both of these to 255, meaning that for a pixel in either bitmap to be considered for a hit
test, it must be fully opaque. We’'ll do another example later that shows the use of a lower threshold.

Finally, there is the secondObject parameter. Note that it is typed to an object. Here you can use
a Point, a Rectangle, or another BitmapData as the object to test against. If you are using a Point or
Rectangle, you do not need to use the final two parameters. Testing against a Point is useful if you
want to test whether the mouse is touching a bitmap. A quick example follows:

if(myBitmapData.hitTest(new Point(myBitmapData.x, myBitmapData.y),
255,
new Point(mouseX, mouseY)))

{
}

| can’t think of a particularly useful example for testing a bitmap against a rectangle, but it'’s good to
know that if the need arises, it’s there!

// mouse is touching bitmap

In our example, however, we are using another BitmapData object, so we pass that in along with the
second Point and alpha threshold.

Finally, if there is a hit, we give each star a red glow through the use of a default glow filter. If no hit,
we remove any filter. You can see the results in Figures 1-3 and 1-4.
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Figure 1-3. Stars are not touching. Figure 1-4. And now they are.

Play with this for awhile, and you’ll see that it truly is pixel-to-pixel collision detection.

Hit testing with semitransparent shapes

In the preceding example, we drew a star that was totally opaque into each bitmap. We were thus
testing against fully opaque pixels in each bitmap and therefore we set the alpha threshold to 255 in
each one. (We actually could have set the alpha threshold to anything above zero and had the same
effect.)

Now let’s look at hit testing with a shape that isn’t fully opaque. We’ll alter the BitmapCollsion1 class
slightly, naming it BitmapCollision2 (available for download on the book’s site):

package

{
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.GradientType;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;
import flash.geom.Matrix;
import flash.geom.Point;

public class BitmapCollision2 extends Sprite
{

private var bmpdi:BitmapData;

private var bmpi:Bitmap;

private var bmpd2:BitmapData;

private var bmp2:Bitmap;
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public function BitmapCollision2()

{
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
// make a star
var star:Star = new Star(50);
// make a gradient circle
var matrix:Matrix = new Matrix();
matrix.createGradientBox (100, 100, 0, -50, -50);
var circle:Sprite = new Sprite();
circle.graphics.beginGradientFill(GradientType.RADIAL,
[0, o], [1, 0]
[0, 255], matrix);
circle.graphics.drawCircle(0, 0, 50);
circle.graphics.endFill();
// make a fixed bitmap, draw the star into it
bmpd1l = new BitmapData(100, 100, true, 0);
bmpdi.draw(star, new Matrix(1, 0, 0, 1, 50, 50));
bmp1 = new Bitmap(bmpd1);
bmp1.x = 200;
bmp1l.y = 200;
addChild(bmp1);
// make a moveable bitmap, draw the star into it, too
bmpd2 = new BitmapData(100, 100, true, 0);
bmpd2.draw(circle, new Matrix(1, o, 0, 1, 50, 50));
bmp2 = new Bitmap(bmpd2);
addChild(bmp2);
stage.addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMoving);
}

private function onMouseMoving(event:MouseEvent):void
{
// move bmp2 to the mouse position (centered).
bmp2.x = mouseX - 50;
bmp2.y = mouseY - 50;

// the hit test itself.

if(bmpd1.hitTest(new Point(bmp1.x, bmpl.y), 255, bmpd2,
new Point(bmp2.x, bmp2.y), 255))

{

bmp1.filters
bmp2.filters

[new GlowFilter()];
[new GlowFilter()];

10
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else
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bmp1.filters
bmp2.filters
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}

Here we make a new Sprite named circle and draw a radial gradient-filled circle shape in it. We
draw this to bmpd2 instead of the star. If you test this, you’ll see that no hit will be registered until the
very center of the circle touches the star because only at the center is the circle fully opaque. You can
see the results in Figures 1-5 and 1-6.

Figure 1-5. The star is touching Figure 1-6. Only the center of the
the circle, but not a pixel that circle has an alpha of 255, so you
has the required alpha threshold. get a hit.

Change the hit test line to make the second alpha threshold a lower value like so:

if(bmpdi.hitTest(new Point(bmpi.x, bmpi.y), 255, bmpd2,
new Point(bmp2.x, bmp2.y), 128))

Now you have to move the circle only part way onto the square, just so it hits a pixel whose alpha is
at least 128. Try setting that second alpha threshold to different values to see the effects. Note that
if you set it to zero, you might get a hit even before the circle touches the star because it will suc-
cessfully hit test even against the fully transparent pixels in the very corner of the bitmap. Remember
that the bitmap itself is still a rectangle, even if you can’t see it all. Also note that changing the first
alpha threshold (to anything other than 0) won’t change anything because the star doesn’t. have any
semitransparent pixels—they are either fully transparent or fully opaque.

Using BitmapData.hitTest for nonbitmaps

In the examples so far, we’ve been using Bitmap objects directly as the display objects we are moving
around and testing against. But in many (if not most) cases, you’'ll actually be moving around differ-
ent types of display objects such as MovieClip, Sprite, or Shape objects. Because you can’t do this
type of hit testing on these types of objects, you'll need to revise the setup a bit. The strategy is to
keep a couple of offline BitmapData objects around, but not on the display list. Each time you want to
check a collision between two of your actual display objects, draw one to each bitmap and perform
your hit test on the bitmaps.

1
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Realize that this is not the only way, or necessarily the best possible way, of using bitmaps for collision
detection. There are probably dozens of possible methods, and this one works fine. Feel free to use it
as is or improve on it.

Here’s the class, BitmapCollision3 (download it from the book’s site):

package

{
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;
import flash.geom.Matrix;
import flash.geom.Point;

public class BitmapCollision3 extends Sprite
{

private var bmpdi:BitmapData;

private var bmpd2:BitmapData;

private var stari:Star;

private var star2:Star;

public function BitmapCollision3()

{
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

// make two stars, add to stage
starl = new Star(50);
addChild(star1);

star2 = new Star(50);
star2.x = 200;
star2.y = 200;
addChild(star2);

// make two bitmaps, not on stage
bmpd1 = new BitmapData(stage.stageWidth, stage.stageHeight, true, 0);
bmpd2 = bmpdi.clone();

stage.addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMoving);

12
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private function onMouseMoving(event:MouseEvent):void

{
// move starl to the mouse position
starl.x = mouseX;
starl.y = mouseY;
// clear the bitmaps
bmpd1.fillRect(bmpdi.rect, 0);
bmpd2.fillRect(bmpd2.rect, 0);
// draw one star to each bitmap
bmpd1.draw(star1,
new Matrix(1, o, 0, 1, staril.x, starl.y));
bmpd2.draw(star2,
new Matrix(1, o, 0, 1, star2.x, star2.y));
// the hit test itself.
if(bmpdi.hitTest(new Point(), 255, bmpd2, new Point(), 255))
stari.filters = [new GlowFilter()];
star2.filters = [new GlowFilter()];
}
else
{
star1i.filters = [];
star2.filters = [];
}
}

}

In the constructor this time, we make two BitmapData objects and two stars. There’s no need to put
the BitmapData objects in Bitmaps, as they are not going on the display list. The stars, on the other
hand, do get added to the display list. The first star, star1, gets moved around with the mouse. Each
time the mouse is moved, both bitmaps are cleared by using fillRect, passing in a color value of
zero. Remember that if the alpha channel is not specified, it is taken as zero, so this has the result of
making all pixels completely transparent. Then each star is drawn to its corresponding bitmap:

bmpdi.draw(starl, new Matrix(1, 0, 0, 1, stari.x, stari.y));
bmpd2.draw(star2, new Matrix(1, 0, 0, 1, star2.x, star2.y));

The matrix uses the stars’ x and y positions as translation values, resulting in each star being drawn in
the same position it is in on the stage. Now we can do the hit test:

if(bmpdi.hitTest(new Point(), 255, bmpd2, new Point(), 255))

13
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Because BitmapData is not on the display list or even in a Bitmap wrapper, and because both stars
are in the same coordinate space and have been drawn to each BitmapData in their relative positions,
we don’t need to do any correction of coordinate spaces. We just pass in a new default Point (which
will have x and y both zero) to each of the Point arguments. We’ll leave the alpha thresholds at 255
because both stars are fully opaque.

Although this example doesn’t look any different from the others, it’s actually completely inverted,
with the bitmaps invisible and the stars visible. Yet it works exactly the same way.

These are just a few examples of using BitmapData.hitTest to do collision detection on noncircle,
rectangle, or point-shaped objects. I'm sure once you get how it all works, you can think up some cool
variations for it.

Next up, we’ll look at how to do collision detection on a large scale.

Hit Testing with a Large Number of Objects

ActionScript in Flash Player 10 runs faster than ever before and it lets us do more stuff at once and
move more objects at the same time. But there are still limits. If you start moving lots of objects on
the screen, sooner or later things will start to bog down. Collision detection among large numbers
of objects compounds the problem because each object needs to be compared against every other
object. This is not limited to collision detection only; any particle system or game in which a lot of
objects need to interact with each other, such as via gravity or flocking (see Chapter 2), will run into
the same problems.

If you have just six objects interacting with each other, each object needs to pair up with every other
object and do its hit test, gravitational attraction, or whatever action it needs to do with that other
object. At first glance, this means 6 times 6, or 36 individual comparisons. But, as described in Making
Things Move, it’s actually fewer than half of that: 15 to be precise. Given objects A, B, C, D, E, F, you
need to do the following pairings:

AB, AC, AD, AE, AF
BC, BD, BE, BF

CD, CE, CF

DE, DF

EF

Notice that B does not have to check with A because A has already checked with B. By the time you
get to E, it’s already been checked against everything but F. And after that, F has been checked by all
the others. The formula for how many comparisons need to occur is as follows, where N is the number
of objects:

(N2 - N)/2

For 6 objects, that’s (36 — 6)/2 or 15.
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For 10 objects, that’s (100 — 10)/2 or 45 checks.
20 objects means 190 checks, and 30 objects is 435!

You see that this goes up very quickly, and you need to do something to limit it. One hundred objects
aren’t really hard to move around the screen in ActionScript 3.0, but when you start doing collision
detection or some other interobject comparisons, that’s 4,950 separate checks to do! If you are using
distance-based collision detection, that’s 4,950 times calculating the distance between two objects.
If you’re using bitmap collision, as described earlier in the chapter, that’s 4,950 times clearing two
bitmaps, drawing two objects, and calling the hitTest method. On every frame! That’s bound to slow
your SWF file down.

Fortunately, there is a trick to limit the number of checks you need to do. Think about this: if two
relatively small objects are on opposite sides of the screen, there’s no way they could possibly be col-
liding. But to discover that, we need to calculate the distance between them, right? So we are back to
square one. But maybe there’s another way.

Suppose that we break down the screen into a grid of square cells, in which each cell is at least as
large as the largest object, and then we assign each object to one of the cells in that grid—based on
where the center of that object is located. If we set it up just right, an object in a given cell can collide
only with the objects in the eight other cells surrounding it. Look at Figure 1-7, for example.

O

Figure 1-7. The ball can collide only with objects in the shaded cells.

The ball shown is assigned to a cell based on its center point. The only objects it can hit are those in
the shaded cells. There is no way it can collide with an object in any of the white cells. Even if the ball
were on the very edge of that cell, and another ball were on the very edge of a white cell, they could
not touch each other (see Figure 1-8).
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Figure 1-8. There’s no way the two balls can collide.

Again, this scenario depends on the size of the cells being at least as large as the largest object you
will be comparing. If either of the balls were larger than the cells, it would be possible for them to hit
each other in the above scenario.

Okay, that’s the basic setup. Knowing that, there are probably a number of ways to proceed. ’'m not
sure there is a single best way, but the goal is to test each object against all the other objects it could
possibly reach and make sure that you never test any two objects against each other twice. That’s
where things get a bit tricky.

I'll outline the method | came up with, which will seem pretty abstract. Just try to get an idea of which
areas of the grid we’ll be doing collision detection with. Exactly how we’ll do all that will be discussed
next.

Implementing grid-based collision detection

We'll start in the upper-left corner. I'll reduce the grid size a bit to make things simpler. See
Figure 1-9.

You'll want to test all the objects in that first darker cell with all the objects in all the surrounding
cells. Of course, there are no cells to the left or above it, so you just need to check the three light
gray cells. Again, there is no way that an object in that dark gray cell can possibly hit anything in any
of the white cells.

When that’s done, we move on to the next cell. See Figure 1-10.
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Figure 1-9. Test all the objects in the first cell Figure 1-10. Continuing with the next cell
with all the objects in the surrounding cells.

With this one, there are a couple more available cells surrounding it, but remember that we already
compared all the objects in that first cell with all the objects in the three surrounding cells, which
includes the one being tested now. So there is no need to test anything with the first cell again.

We continue across the first row in the same fashion. We only need to test the current cell, the cell to
its right, and the three cells below it. See Figures 1-11, 1-12, and 1-13.

Figure 1-11. Continuing across the first row Figure 1-12. Next column in first row

Figure 1-13. Final column in first row
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