AdvanckED ActionScript 3.0
Animation

Keith Peters

LN

EEEEEEEEEEEEEEEEEEEE

an Apress: company

AdvancED ActionScript 3.0 Animation

Copyright © 2009 by Keith Peters

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1608-7
ISBN-13 (electronic): 978-1-4302-1608-7
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Seb Lee-Delisle

Editorial Board

Clay Andres, Steve Anglin, Mark Beckner,
Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick,
Michelle Lowman, Matthew Moodie,
Jeffrey Pepper, Frank Pohlmann,

Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Sofia Marchant

Copy Editor
Nancy Sixsmith

Associate Production Director
Kari Brooks-Copony

Production Editor
Janet Vail

Compositor
Lynn L'Heureux

Proofreader
Nancy Bell

Indexer
Carol Burbo

Artist
Kinetic Publishing Services, LLC

Cover Image Designer
Bruce Tang

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

To Miranda and Kristine, for their patience and support,
once again.

CONTENTS AT A GLANCE

About the Author......... Xiii
About the Technical Reviewer XV
About the Cover Image Designer...................................... xvii
Acknowledgments........... ... Xix
Chapter 1 Advanced Collision Detection.................................. 1
Chapter 2 Steering Behaviors .. 49
Chapter 3 Isometric Projection... 99
Chapter 4 Pathfinding............ 155
Chapter 5 Alternate Input: The Camera and Microphone 197
Chapter 6 Advanced Physics: Numerical Integration............. .. . 237
Chapter7 3DinFlash10........... 275
Chapter 8 Flash 10 Drawing APL.......... 311
Chapter 9 Pixel Bender.........l 359
Chapter 10 Tween Engines................ 399
IndeX 440

CONTENTS

About the Author......... Xiii
About the Technical Reviewer XV
About the Cover Image Designer...................................... xvii
Acknowledgments........... ... Xix
Chapter 1 Advanced Collision Detection.................................. 1
Hit Testing Irregularly Shaped Objects o i e 2
Bitmaps for collision detection. i 5

Hit testing with semitransparent shapes. i 9

Using BitmapData.hitTest for nonbitmaps 1"

Hit Testing with a Large Number of Objects. i 14
Implementing grid-based collision detection. 16

Coding the grid 20

Testing and tuning the grid. 28
Making it areusable class 31

Using the Class.ot 37

Collision detection: Not just for collisions i, 42
SUMMIANY. oottt e e e e e e e e e e e e e e e e e e e 47
Chapter 2 Steering Behaviors .. 49
BehaVIOrsS ..o 51
VECtOr2D Class . . . oottt e e e e 51
Vehicle Class.ot e e 60
SteeredVehicle Class it 67
Seek behavior. 69

Flee behavior o 71

ArTive DehaVIOr .. . 75

Pursue behavior. 77

Evade behavior. 80
Wander behavior. 81

Object avoidanCe.ot e 84

Path following 89
FlOCKING . .o 92

I 44 =T 75 97

Vii

CONTENTS

Chapter 3 Isometric Projection... 99
Isometric versus DImMetric i e 102
Creating Isometric Graphics. i e 104
I[sometric Transformations. i e 104

Transforming world coordinates to screen coordinates 105

Transforming screen coordinates to world coordinates 110

ISOULILS Class . . . o oottt e 110
Isometric Objectso 113
Depth SOMtiNg. . . .ot 123
Isometric World Class.ttt 129
MOVING N 3D ... 132
Collision DeteCtion.ottt 138
Using External Graphicsot e 141
Isometric Tile Maps . .o oot 146
SUMMANY. . o ettt e e e e e e e e e e e e e e e e e e e 153

Chapter 4 Pathfinding............. 155
Pathfinding Basics.o 155
AX (A-SHar) o 157

X DaSICS. o oot 157
A algorithm. .. 157
Calculating CoStot 159
Visualizing the algorithm. o 160
Getting It iNto code o 164
Common A* heuristiCs.o 176
Implementing the AStar Classt e 181
Refining the path: Corners e 185
Using ASTar in @ Game.o 189
Advanced Terraint 193
SUMMAANY. « o« ettt e e e e e e e e e e e e e e e e e e 195

Chapter 5 Alternate Input: The Camera and Microphone 197
Cameras and MiCrophones 198
SoUNd aS INPUL. . .. 199

Asound-controlled game 203
ACHIVItY BVENTS . . o 206
Video as INPUL . ..o e 209
Video sizeand qualityt e 211
Videos and bitmaps. 212
Flipping the Image. 213
ANalyzing PiXelso 213
ANalyzZing COlOrS. . .ot 214

Using tracked colors as input.t e 219
Analyzing areas of Motion e 221
ANalyzing edges. 229

1) .41 .4 = 25 235

viii

CONTENTS

Chapter 6 Advanced Physics: Numerical Integration............. 237
Numerical Integration and Why Euler Is “Bad”. i 238
Runge-Kutta Integration 240

Time-based MoOtioN 241
Coding Runge-Kutta second order integration RK2) 246
Coding Runge-Kutta fourth order integration RK4) 249
Weak liNKS . ..o e 253
Runge-Kutta summary. e 253
Verlet Integration. o e 253
Verlet POINtS. . ..o e 255
Constraining PoiNtSo e 258

Verlet StiCKS . ..o 259
Verlet StruCtUres o 264
HINg S, « ot e 271
Taking it further. ... 272
SUMIMANY. . ettt e e e e e e e e e e e e e e e e 273

Chapter7 3DinFlash10.............. 275

FIash 10 3D BaSiCs . . .ottt ettt et e e e e e e e e 276

Setting the vanishing point 278
3D POSItIONING . .o 282

Depth SOMtiNg. . ..o 283

3D CONEAINETS. ottt ettt e e e 286
3D ROLALION ottt e 288
Field of View and Focal Length e 298
Screen and 3D Coordinates.t 303
Pointing at Something 307
SUMIMIANY .« ettt e et e e e e e e e e e e e e e e e 309

Chapter 8 Flash 10 Drawing APL.......... 311

Paths . . 312
A simple drawing Programttt e 314
Drawing CUNVES. . . . ottt e e et et e e e e e e e e e e 317
Wide drawing commands and NO_OP. i 319
WiINAiNg . o 322

T ANglES « o ot 326
Bitmap fills and triangles. 331

UVEData. . . 333

More triangles! 337
Triangles and 3D 340
The tin UVE .o 345
Rotating the tube 346
Making a 3D globe e 348
Graphics Data.o 351
SUMMIANY. ottt et e e e e e e e e e e e e e e e e e e 357

CONTENTS

Chapter 9 PixelBender......... 359
What Is Pixel Bender?. 359
Writing a Pixel Shader e 361
Data TYPES . .o 365
Getting the Current Pixel Coordinates i 367
Parameters . e 371

Advanced parameters 374
Sampling the Input Image 375
Linear samplingot 377
Twirl Shader for Flash. 379
Using Pixel Bender Shadersin Flash 382
Loading shaders versus embedding shaders. 383
Usingashaderasafill......... i e 384
Accessing shader metadatain Flash i 386
Setting shader parametersin Flash. 387
Transforming ashader fill 388
Animating ashader fill. 390
Specifying a shader inputimage. i 391
UsingaShaderasa Filter. i e 393
Using a ShaderasaBlend Mode. i 395
SUMMANY. .« ottt et e e e e e e e e e e e e e e e e e e e 397

Chapter 10 Tween Engines................ 399

The Flash Tween Classot e e e e 400
Easing fUNCHIONSo 402
CombININg tWEENS . . . o 403

Flex TWeen Class.ottt e e e e e e e e 406
Easing functions for the Flex Tween class. 411
MuULtiple tWeeNSo 412
TWEEN SEQUENCES oottt ettt e e e e e e e e 414

TWeeN ENgiNes o 416

TN . ot e 417
Easing functions in TWeener i 418
Multiple tweens in TWEENErot e e e e 418
SEQUENCES IN TWEBNET . . . ottt ettt e e e e e e e e e e e e e 419

TweenLite/TWEENGIOUP . .« . .o v ettt et et e e e e e e e 421
Easing functions in TweenLite 423
Multiple tweens in TweenLite i 424
Sequences in TweenLite/TWeeNGroUPo vttt ettt 425

CONTENTS

KitChenSYNC . . 430
Easing functions in KitchenSync 431
Tweening multiple objects/properties with KitchenSync........................... 432
Tween sequences in KitchenSync 434

BN L 435
Easing functions in gTWeen o i e 436
Tweening multiple objects with gTween. i, 437
Tween sequEeNnCes iN GTWEENottt et e et e e e 438

SUMIMANY. ettt ettt e e e e e e e e e e e e e e e e 439

IndeX 440

ABOUT THE AUTHOR

Keith Peters is a non-recovering Flash addict, author of
several books on Flash and ActionScript, speaker at Flash
conferences around the world, and owner of various Flash-
related web sites (www.bit-101.com, www.artfromcode.
com, and www.wickedpissahgames.com).

Keith lives in Wellesley, Massachusetts with his wife
Miranda and daughter Kristine, in a house that Flash
helped pay for. He works as a senior Flash programmer at
Infrared5 in Boston.

ABOUT THE TECHNICAL REVIEWER

Seb Lee-Delisle has been working in digital media for more than 15 years
and is one of the founding partners of UK Flash specialists Plug-in Media
(http://pluginmedia.net), working with clients such as BBC, Sony, Philips,
Unilever, and Barclays. He is also one of the developers of Papervision3D,
the highly successful open source, real time 3D ActionScript library. Seb’s
work with Plug-in Media has pushed the boundaries of 3D and gaming in
Flash. He has recently completed the live 3D GameDay visualizations for
Major League Baseball and a real time 3D website for the BBC kids’ show
Big and Small.

XV

ABOUT THE COVER IMAGE DESIGNER

Bruce Tang is a freelance web designer, visual programmer,
and author from Hong Kong. His main creative interest is
generating stunning visual effects using Flash or Processing.

Bruce has been an avid Flash user since Flash 4, when he began
using Flash to create games, websites, and other multimedia
content. After several years of ActionScripting, he found him-
self increasingly drawn toward visual programming and com-
putational art. He likes to integrate math and physics into his
work, simulating 3D and other real-life experiences onscreen.
His first Flash book was published in October 2005. Bruce’s
folio, featuring Flash and Processing pieces, can be found at
www . betaruce. com, and his blog at www.betaruce.com/blog.

The cover image uses a high-resolution Henon phase dia-
gram generated by Bruce with Processing, which he feels is
an ideal tool for such experiments. Henon is a strange attrac-
tor created by iterating through some equations to calculate
the coordinates of millions of points. The points are then
plotted with an assigned color.

X, = X, €os(a) - (y, = x.P) sin(a)

n+

Your = X, sin(a@) + (y, —x P) cos(a)

ACKNOWLEDGMENTS

Little—if any—of the material in this book is stuff | dreamed up in my own head. Thanks to the
hundreds of programmers, developers, scientists, mathematicians, and physicists who studied,
researched, programmed, translated, and made their work available for others to benefit from.

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

@ Important words or concepts are normally highlighted on the first appearance in italics.
@ Code is presented in fixed-width font.

@ New or changed code is normally presented in bold fixed-width font.

@ Pseudo-code and variable input are written in italic fixed-width font.

@ Menu commands are written in the form Menu » Submenu » Submenu.

@ Where | want to draw your attention to something, I've highlighted it like this:
Ahem, don’t say we didn’t warn you.

®@ Sometimes code won't fit on a single line in a book. Where this happens, | use an arrow
like this: =

This is a very, very long section of code that should be written all w»
on the same line without a break.

XixX

Chapter 1

ADVANCED COLLISION DETECTION

Collision detection is the math, art, science, or general guesswork used to determine
whether some object has hit another object. This sounds pretty simple, but when you
are dealing with objects that exist only in a computer’s memory and are represented
by a collection of various properties, some complexities can arrive.

The basic methods of collision detection are covered in Foundation ActionScript 3.0
Animation: Making Things Move! (hereafter referred to as Making Things Move). This
chapter looks at one method of collision detection that wasn’t covered in that book
and a strategy to handle collisions between large amounts of objects.

Note that the subject of collision detection does not delve into what you do after
you detect a collision. If you are making a game, you might want the colliding objects
to blow up, change color, or simply disappear. One rather complex method of han-
dling the results of a collision was covered in the “Conservation of Momentum”
chapter of Making Things Move. But ultimately it’s up to you (and the specs of the
application or game you are building) to determine how to respond when a collision
is detected.

CHAPTER 1

Hit Testing Irregularly Shaped Objects

Making Things Move covered a few basic methods of collision detection, including the built-in
hitTestObject and hitTestPoint methods, as well as distance-based collision detection. Each of these
methods has its uses in terms of the shapes of objects on which you are doing collision detection.
The hitTestObject method is great for detecting collisions between two rectangular-shaped objects,
but will often generate false positives for other shapes. The hitTestPoint method is suitable for
finding out whether the mouse is over a particular object or whether a very small point-like object has
collided with any other shaped object, but it is rather useless for two larger objects. Distance-based
collision detection is great for circular objects, but will often miss collisions on other shaped objects.

The Holy Grail of collision detection in Flash has been to test two irregularly shaped objects against
each other and accurately know whether or not they are touching. Although it wasn’t covered in
Making Things Move, a method has existed for doing this via the BitmapData class since Flash 8. In
fact, the method is even called hitTest.

First, a note on terminology. ActionScript contains a BitmapData class, which holds the actual bitmap
image being displayed, and a Bitmap class, which is a display object that contains a BitmapData and
allows it to be added to the display list. If | am referring to either one of these classes specifically, or
an instance of either class, | will use the capitalized version. But often | might casually use the term
bitmap in lowercase to more informally refer to a bitmap image. Do not confuse it with the Bitmap
class.

BitmapData.hitTest compares two BitmapData objects and tells you whether any of their pixels are
overlapping. Again, this sounds simple, but complexities arise once you start to think about it. Bitmaps
are rectangular grids of pixels, so taken in its simplest form, this method would be no more complex
(or useful) than the hitTestObject method on a display object. Where it really starts to get useful is
when you have a transparent bitmap with a shape drawn in it.

When you create a BitmapData object, you specify whether it will support transparency right in the
constructor:

new BitmapData(width, height, transparent, color);

That third parameter is a Boolean value (true/false) that sets the transparency option. If you set it
to false, the bitmap will be completely opaque. Initially, it will appear as a rectangle filled with the
specified background color. You can use the various BitmapData methods to change any of the pixels
in the bitmap, but they will always be fully opaque and cover anything behind that BitmapData. Color
values for each pixel will be 24-bit numbers in the form 0OxRRGGBB. This is a 6-digit hexadecimal num-
ber, where the first pair of numbers specifies the value for the red channel from 00 (0) to FF (255), the
second pair sets the green channel, and the third sets the blue channel. For example, OxFFFFFF would
be white, 0xFF0000 would be red, and 0xFF9900 would be orange. For setting and getting values of
individual pixels, you would use the methods setPixel and getPixel, which use 24-bit color values.

However, when you specify true for the transparency option in a BitmapData class, each pixel now
supports an alpha channel, using a 32-bit number in the format 0XAARRGGBB. Here, the first 2 digits
represent the level of transparency for a pixel, where 00 would be completely transparent, and FF
would be fully opaque. In a transparent BitmapData, you would use setPixel32 and getPixel32 to
set and read colors of individual pixels. These methods take 32-bit numbers. Note that if you pass

ADVANCED COLLISION DETECTION

in a 24-bit number to one of these methods, the alpha channel will be evaluated as being 0, or fully
transparent.

To see the exact difference between the two, let’s create one of each. You can use the following class
as the main class in a Flex Builder 3 or 4 ActionScript Project, or as the document class in Flash CS3 or
CS4. This class, BitmapCompare, is available at this book’s download site at www.friendsofed.com.

package

{
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.geom.Rectangle;

public class BitmapCompare extends Sprite

{

public function BitmapCompare()

{
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO SCALE;
// draw a bunch of random lines
graphics.lineStyle(0);
for(var i:int = 0; i < 100; i++)
{

graphics.lineTo(Math.random() * 300,
Math.random() * 400);
}
// create an opaque bitmap
var bmpdi:BitmapData = new BitmapData(300, 200,
false, oxffffff);
bmpd1.fillRect(new Rectangle(100, 50, 100, 100), 0xff0000);
var bmpi:Bitmap = new Bitmap(bmpdi);
addChild(bmp1);
// create a transparent bitmap
var bmpd2:BitmapData = new BitmapData(300, 200,
true, oxooffffff);
bmpd2.fillRect(new Rectangle(100, 50, 100, 100),
oxffff0000);

var bmp2:Bitmap = new Bitmap(bmpd2);
bmp2.y = 200;
addChild(bmp2);

}

}

CHAPTER 1

This code first draws a bunch of random lines on the stage, just so you can tell the difference between
the stage and the bitmaps. It then creates two bitmaps and draws red squares in the center of each.
The top bitmap is opaque and covers the lines completely. The bottom bitmap is transparent, so only
the red square covers the lines on the stage. You can see the result in Figure 1-1.

Figure 1-1. An opaque bitmap on top, transparent below

Furthermore, with a transparent bitmap you can use partial transparency. Change the second fillRect
statement in the last code sample to the following:

bmpd2.fillRect(new Rectangle(100, 50, 100, 100), Ox80FF0000);

Note that we used a 32-bit AARRGGBB color value for the fill, and the alpha value has been halved to
0x80, or 128 in decimal. This makes the red square semitransparent, as seen in Figure 1-2.

ADVANCED COLLISION DETECTION

Figure 1-2. A semitransparent square

Bitmaps for collision detection

So now let’s take a look at how to use bitmaps to achieve collision detection. First, we’ll need a nice
irregular shape to test with. A five-pointed star will do nicely. Why not make it into its very own class
so we can reuse it? Here’s the Star class, also available at the book’s download site:

package

{
import flash.display.Sprite;

public class Star extends Sprite

{

public function Star(radius:Number, color:uint = OxFFFF00):void

{
graphics.lineStyle(0);
graphics.moveTo(radius, 0);

CHAPTER 1

}

grap
// d
for(

{

hics.beginFill(color);
raw 10 lines
var i:int = 1; i < 11; i++)

var radius2:Number = radius;
if(i %2> 0)
{
// alternate radius to make spikes every other line
radius2 = radius / 2;
}

var angle:Number = Math.PI * 2 / 10 * i;
graphics.lineTo(Math.cos(angle) * radius2,
Math.sin(angle) * radius2);

This just draws a series of lines at increasing angles and alternate radii, which cleverly form a star. And
here is the class that does the hit testing. Again, like most of the code in this book, it can be used
either as a document class in Flash CS3 or CS4, or as a main application class in Flex Builder 3 or 4, and
is available from the book’s download site.

package

{
import
import
import
import
import
import
import
import
import

public
{

flash.
flash.

flash

flash.
flash.
flash.
flash.
flash.
flash.

class

display.Bitmap;
display.BitmapData;
.display.Sprite;
display.StageAlign;
display.StageScaleMode;
events.MouseEvent;
filters.GlowFilter;
geom.Matrix;
geom.Point;

BitmapCollisionl extends Sprite

private var bmpdi:BitmapData;
private var bmpi:Bitmap;
private var bmpd2:BitmapData;
private var bmp2:Bitmap;

public function BitmapCollisioni()

{

stag
stag

// m
var

e.align = StageAlign.TOP_LEFT;
e.scaleMode = StageScaleMode.NO_SCALE;

ake a star
star:Star = new Star(50);

ADVANCED COLLISION DETECTION

}

// make a fixed bitmap, draw the star into it
bmpd1 = new BitmapData(100, 100, true, 0);
bmpdi.draw(star, new Matrix(1, 0, 0, 1, 50, 50));
bmpl = new Bitmap(bmpd1);

bmp1.x = 200;
bmp1.y = 200;
addChild(bmp1);

// make a moveable bitmap, draw the star into it, too
bmpd2 = new BitmapData(100, 100, true, 0);
bmpd2.draw(star, new Matrix(1, o, 0, 1, 50, 50));
bmp2 = new Bitmap(bmpd2);

addChild(bmp2);

stage.addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMoving);

private function onMouseMoving(event:MouseEvent):void

{

// move bmp2 to the mouse position (centered).
bmp2.x = mouseX - 50;
bmp2.y = mouseY - 50;

// the hit test itself.
if(bmpd1.hitTest(new Point(bmpi.x, bmpi.y), 255, bmpd2,
new Point(bmp2.x, bmp2.y), 255))

{
bmp1.filters = [new GlowFilter()];
bmp2.filters = [new GlowFilter()];
}
else
{
bmp1.filters = [];
bmp2.filters = [];
}

Here we create a star using the Star class and draw it into two bitmaps. We use a matrix to offset the
star during drawing by 50 pixels on each axis because the registration point of the star is in its center,
and the registration point of the bitmap is at the top left. We offset it so we can see the whole star.

One of these bitmaps (bmp1) is in a fixed position on the stage; the other (bmp2) is set to follow the
mouse around. The key line comes here:

if(bmpdi.hitTest(new Point(bmpi.x, bmpi.y), 255, bmpd2,

new Point(bmp2.x, bmp2.y), 255))

CHAPTER 1

This is what actually determines if the two bitmaps are touching. The signature for the BitmapData.
hitTest method looks like this:

hitTest(firstPoint:Point,
firstAlphaThreshold:uint,
secondObject:0bject,
secondPoint:Point,
secondAlphaThreshold:uint);

You'll notice that the parameters are broken down into two groups: first and second. You supply
a point value for each. This corresponds to the top-left corner of BitmapData. The reason for doing
this is that each bitmap might be nested within another symbol or deeply nested within multiple sym-
bols. In such a case, they might be in totally different coordinate systems. Specifying an arbitrary point
lets you align the two coordinate systems if necessary, perhaps through using the DisplayObject.
localToGlobal method. In this example, however, both bitmaps will be right on the stage, so we can
use their local position directly to construct the point for each.

The next first/last parameters are for the alpha threshold. As you saw earlier, in a transparent
BitmapData, each pixel’s transparency can range from 0 (fully transparent) to 255 (fully opaque). The
alpha threshold parameters specify how opaque a pixel must be in order to register a hit. In this exam-
ple, we set both of these to 255, meaning that for a pixel in either bitmap to be considered for a hit
test, it must be fully opaque. We’'ll do another example later that shows the use of a lower threshold.

Finally, there is the secondObject parameter. Note that it is typed to an object. Here you can use
a Point, a Rectangle, or another BitmapData as the object to test against. If you are using a Point or
Rectangle, you do not need to use the final two parameters. Testing against a Point is useful if you
want to test whether the mouse is touching a bitmap. A quick example follows:

if(myBitmapData.hitTest(new Point(myBitmapData.x, myBitmapData.y),
255,
new Point(mouseX, mouseY)))

{
}

| can’t think of a particularly useful example for testing a bitmap against a rectangle, but it'’s good to
know that if the need arises, it’s there!

// mouse is touching bitmap

In our example, however, we are using another BitmapData object, so we pass that in along with the
second Point and alpha threshold.

Finally, if there is a hit, we give each star a red glow through the use of a default glow filter. If no hit,
we remove any filter. You can see the results in Figures 1-3 and 1-4.

ADVANCED COLLISION DETECTION

Figure 1-3. Stars are not touching. Figure 1-4. And now they are.

Play with this for awhile, and you’ll see that it truly is pixel-to-pixel collision detection.

Hit testing with semitransparent shapes

In the preceding example, we drew a star that was totally opaque into each bitmap. We were thus
testing against fully opaque pixels in each bitmap and therefore we set the alpha threshold to 255 in
each one. (We actually could have set the alpha threshold to anything above zero and had the same
effect.)

Now let’s look at hit testing with a shape that isn’t fully opaque. We’ll alter the BitmapCollsion1 class
slightly, naming it BitmapCollision2 (available for download on the book’s site):

package

{
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.GradientType;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;
import flash.geom.Matrix;
import flash.geom.Point;

public class BitmapCollision2 extends Sprite
{

private var bmpdi:BitmapData;

private var bmpi:Bitmap;

private var bmpd2:BitmapData;

private var bmp2:Bitmap;

CHAPTER 1

public function BitmapCollision2()

{
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
// make a star
var star:Star = new Star(50);
// make a gradient circle
var matrix:Matrix = new Matrix();
matrix.createGradientBox (100, 100, 0, -50, -50);
var circle:Sprite = new Sprite();
circle.graphics.beginGradientFill(GradientType.RADIAL,
[0, o], [1, 0]
[0, 255], matrix);
circle.graphics.drawCircle(0, 0, 50);
circle.graphics.endFill();
// make a fixed bitmap, draw the star into it
bmpd1l = new BitmapData(100, 100, true, 0);
bmpdi.draw(star, new Matrix(1, 0, 0, 1, 50, 50));
bmp1 = new Bitmap(bmpd1);
bmp1.x = 200;
bmp1l.y = 200;
addChild(bmp1);
// make a moveable bitmap, draw the star into it, too
bmpd2 = new BitmapData(100, 100, true, 0);
bmpd2.draw(circle, new Matrix(1, o, 0, 1, 50, 50));
bmp2 = new Bitmap(bmpd2);
addChild(bmp2);
stage.addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMoving);
}

private function onMouseMoving(event:MouseEvent):void
{
// move bmp2 to the mouse position (centered).
bmp2.x = mouseX - 50;
bmp2.y = mouseY - 50;

// the hit test itself.

if(bmpd1.hitTest(new Point(bmp1.x, bmpl.y), 255, bmpd2,
new Point(bmp2.x, bmp2.y), 255))

{

bmp1.filters
bmp2.filters

[new GlowFilter()];
[new GlowFilter()];

10

ADVANCED COLLISION DETECTION

else

n
—
[a—
-

bmp1.filters
bmp2.filters

I
—
[a—"
e

}

Here we make a new Sprite named circle and draw a radial gradient-filled circle shape in it. We
draw this to bmpd2 instead of the star. If you test this, you’ll see that no hit will be registered until the
very center of the circle touches the star because only at the center is the circle fully opaque. You can
see the results in Figures 1-5 and 1-6.

Figure 1-5. The star is touching Figure 1-6. Only the center of the
the circle, but not a pixel that circle has an alpha of 255, so you
has the required alpha threshold. get a hit.

Change the hit test line to make the second alpha threshold a lower value like so:

if(bmpdi.hitTest(new Point(bmpi.x, bmpi.y), 255, bmpd2,
new Point(bmp2.x, bmp2.y), 128))

Now you have to move the circle only part way onto the square, just so it hits a pixel whose alpha is
at least 128. Try setting that second alpha threshold to different values to see the effects. Note that
if you set it to zero, you might get a hit even before the circle touches the star because it will suc-
cessfully hit test even against the fully transparent pixels in the very corner of the bitmap. Remember
that the bitmap itself is still a rectangle, even if you can’t see it all. Also note that changing the first
alpha threshold (to anything other than 0) won’t change anything because the star doesn’t. have any
semitransparent pixels—they are either fully transparent or fully opaque.

Using BitmapData.hitTest for nonbitmaps

In the examples so far, we’ve been using Bitmap objects directly as the display objects we are moving
around and testing against. But in many (if not most) cases, you’'ll actually be moving around differ-
ent types of display objects such as MovieClip, Sprite, or Shape objects. Because you can’t do this
type of hit testing on these types of objects, you'll need to revise the setup a bit. The strategy is to
keep a couple of offline BitmapData objects around, but not on the display list. Each time you want to
check a collision between two of your actual display objects, draw one to each bitmap and perform
your hit test on the bitmaps.

1

CHAPTER 1

Realize that this is not the only way, or necessarily the best possible way, of using bitmaps for collision
detection. There are probably dozens of possible methods, and this one works fine. Feel free to use it
as is or improve on it.

Here’s the class, BitmapCollision3 (download it from the book’s site):

package

{
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;
import flash.geom.Matrix;
import flash.geom.Point;

public class BitmapCollision3 extends Sprite
{

private var bmpdi:BitmapData;

private var bmpd2:BitmapData;

private var stari:Star;

private var star2:Star;

public function BitmapCollision3()

{
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

// make two stars, add to stage
starl = new Star(50);
addChild(star1);

star2 = new Star(50);
star2.x = 200;
star2.y = 200;
addChild(star2);

// make two bitmaps, not on stage
bmpd1 = new BitmapData(stage.stageWidth, stage.stageHeight, true, 0);
bmpd2 = bmpdi.clone();

stage.addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMoving);

12

ADVANCED COLLISION DETECTION

private function onMouseMoving(event:MouseEvent):void

{
// move starl to the mouse position
starl.x = mouseX;
starl.y = mouseY;
// clear the bitmaps
bmpd1.fillRect(bmpdi.rect, 0);
bmpd2.fillRect(bmpd2.rect, 0);
// draw one star to each bitmap
bmpd1.draw(star1,
new Matrix(1, o, 0, 1, staril.x, starl.y));
bmpd2.draw(star2,
new Matrix(1, o, 0, 1, star2.x, star2.y));
// the hit test itself.
if(bmpdi.hitTest(new Point(), 255, bmpd2, new Point(), 255))
stari.filters = [new GlowFilter()];
star2.filters = [new GlowFilter()];
}
else
{
star1i.filters = [];
star2.filters = [];
}
}

}

In the constructor this time, we make two BitmapData objects and two stars. There’s no need to put
the BitmapData objects in Bitmaps, as they are not going on the display list. The stars, on the other
hand, do get added to the display list. The first star, star1, gets moved around with the mouse. Each
time the mouse is moved, both bitmaps are cleared by using fillRect, passing in a color value of
zero. Remember that if the alpha channel is not specified, it is taken as zero, so this has the result of
making all pixels completely transparent. Then each star is drawn to its corresponding bitmap:

bmpdi.draw(starl, new Matrix(1, 0, 0, 1, stari.x, stari.y));
bmpd2.draw(star2, new Matrix(1, 0, 0, 1, star2.x, star2.y));

The matrix uses the stars’ x and y positions as translation values, resulting in each star being drawn in
the same position it is in on the stage. Now we can do the hit test:

if(bmpdi.hitTest(new Point(), 255, bmpd2, new Point(), 255))

13

CHAPTER 1

14

Because BitmapData is not on the display list or even in a Bitmap wrapper, and because both stars
are in the same coordinate space and have been drawn to each BitmapData in their relative positions,
we don’t need to do any correction of coordinate spaces. We just pass in a new default Point (which
will have x and y both zero) to each of the Point arguments. We’ll leave the alpha thresholds at 255
because both stars are fully opaque.

Although this example doesn’t look any different from the others, it’s actually completely inverted,
with the bitmaps invisible and the stars visible. Yet it works exactly the same way.

These are just a few examples of using BitmapData.hitTest to do collision detection on noncircle,
rectangle, or point-shaped objects. I'm sure once you get how it all works, you can think up some cool
variations for it.

Next up, we’ll look at how to do collision detection on a large scale.

Hit Testing with a Large Number of Objects

ActionScript in Flash Player 10 runs faster than ever before and it lets us do more stuff at once and
move more objects at the same time. But there are still limits. If you start moving lots of objects on
the screen, sooner or later things will start to bog down. Collision detection among large numbers
of objects compounds the problem because each object needs to be compared against every other
object. This is not limited to collision detection only; any particle system or game in which a lot of
objects need to interact with each other, such as via gravity or flocking (see Chapter 2), will run into
the same problems.

If you have just six objects interacting with each other, each object needs to pair up with every other
object and do its hit test, gravitational attraction, or whatever action it needs to do with that other
object. At first glance, this means 6 times 6, or 36 individual comparisons. But, as described in Making
Things Move, it’s actually fewer than half of that: 15 to be precise. Given objects A, B, C, D, E, F, you
need to do the following pairings:

AB, AC, AD, AE, AF
BC, BD, BE, BF

CD, CE, CF

DE, DF

EF

Notice that B does not have to check with A because A has already checked with B. By the time you
get to E, it’s already been checked against everything but F. And after that, F has been checked by all
the others. The formula for how many comparisons need to occur is as follows, where N is the number
of objects:

(N2 - N)/2

For 6 objects, that’s (36 — 6)/2 or 15.

ADVANCED COLLISION DETECTION

For 10 objects, that’s (100 — 10)/2 or 45 checks.
20 objects means 190 checks, and 30 objects is 435!

You see that this goes up very quickly, and you need to do something to limit it. One hundred objects
aren’t really hard to move around the screen in ActionScript 3.0, but when you start doing collision
detection or some other interobject comparisons, that’s 4,950 separate checks to do! If you are using
distance-based collision detection, that’s 4,950 times calculating the distance between two objects.
If you’re using bitmap collision, as described earlier in the chapter, that’s 4,950 times clearing two
bitmaps, drawing two objects, and calling the hitTest method. On every frame! That’s bound to slow
your SWF file down.

Fortunately, there is a trick to limit the number of checks you need to do. Think about this: if two
relatively small objects are on opposite sides of the screen, there’s no way they could possibly be col-
liding. But to discover that, we need to calculate the distance between them, right? So we are back to
square one. But maybe there’s another way.

Suppose that we break down the screen into a grid of square cells, in which each cell is at least as
large as the largest object, and then we assign each object to one of the cells in that grid—based on
where the center of that object is located. If we set it up just right, an object in a given cell can collide
only with the objects in the eight other cells surrounding it. Look at Figure 1-7, for example.

O

Figure 1-7. The ball can collide only with objects in the shaded cells.

The ball shown is assigned to a cell based on its center point. The only objects it can hit are those in
the shaded cells. There is no way it can collide with an object in any of the white cells. Even if the ball
were on the very edge of that cell, and another ball were on the very edge of a white cell, they could
not touch each other (see Figure 1-8).

15

CHAPTER 1

16

o

D

N

Figure 1-8. There’s no way the two balls can collide.

Again, this scenario depends on the size of the cells being at least as large as the largest object you
will be comparing. If either of the balls were larger than the cells, it would be possible for them to hit
each other in the above scenario.

Okay, that’s the basic setup. Knowing that, there are probably a number of ways to proceed. ’'m not
sure there is a single best way, but the goal is to test each object against all the other objects it could
possibly reach and make sure that you never test any two objects against each other twice. That’s
where things get a bit tricky.

I'll outline the method | came up with, which will seem pretty abstract. Just try to get an idea of which
areas of the grid we’ll be doing collision detection with. Exactly how we’ll do all that will be discussed
next.

Implementing grid-based collision detection

We'll start in the upper-left corner. I'll reduce the grid size a bit to make things simpler. See
Figure 1-9.

You'll want to test all the objects in that first darker cell with all the objects in all the surrounding
cells. Of course, there are no cells to the left or above it, so you just need to check the three light
gray cells. Again, there is no way that an object in that dark gray cell can possibly hit anything in any
of the white cells.

When that’s done, we move on to the next cell. See Figure 1-10.

ADVANCED COLLISION DETECTION

Figure 1-9. Test all the objects in the first cell Figure 1-10. Continuing with the next cell
with all the objects in the surrounding cells.

With this one, there are a couple more available cells surrounding it, but remember that we already
compared all the objects in that first cell with all the objects in the three surrounding cells, which
includes the one being tested now. So there is no need to test anything with the first cell again.

We continue across the first row in the same fashion. We only need to test the current cell, the cell to
its right, and the three cells below it. See Figures 1-11, 1-12, and 1-13.

Figure 1-11. Continuing across the first row Figure 1-12. Next column in first row

Figure 1-13. Final column in first row

17

