The Definitive Guide to
Spring Web Flow

Erwin Vervaet

Apress

The Definitive Guide to Spring Web Flow
Copyright © 2008 by Erwin Vervaet

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1624-7
ISBN-13 (electronic): 978-1-4302-1625-4
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written
without endorsement from Sun Microsystems, Inc.

SpringSource is the company behind Spring, the de facto standard in enterprise Java. SpringSource is a
leading provider of enterprise Java infrastructure software, and delivers enterprise class software, support,
and services to help organizations utilize Spring. The open source-based Spring Portfolio is a comprehen-
sive enterprise application framework designed on long-standing themes of simplicity and power. With
more than five million downloads to date, Spring has become an integral part of the enterprise application
infrastructure at organizations worldwide. For more information visit: www.springsource.com.

Lead Editor: Steve Anglin

Technical Reviewers: Keith Donald, Karl David Moore

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan
Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Kylie Johnston

Copy Editor: Heather Lang

Associate Production Director: Kari Brooks-Copony

Senior Production Editor: Laura Cheu

Compositor: Pat Christenson

Proofreader: Lisa Hamilton

Indexer: Becky Hornyak

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW. apTess. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

About the AULhOr Xi
About the Technical Reviewers i xiii
ACKNOWIedgmeNtS. XV
INtrodUCioN Xvii
CHAPTER 1 Introducing SpringWeb Flow 1
CHAPTER2 GettingStarted 25
CHAPTER 3 Spring Web Flow’s Architecture............................... 51
CHAPTER4 SpringWeb FlowBasics....................., 63
CHAPTER5 Advanced Web Flow Concepts 131
CHAPTER 6 Flow Execution Management 197
CHAPTER 7 Driving Flow Executions.................... 239
CHAPTER 8 Testing with SpringWeb Flow 271
CHAPTER9 The Sample Application 289
CHAPTER 10 Real-WorldUseCases........................ooiiiiiiiinn.. 309
CHAPTER 11 Extending SpringWeb Flow. 325
EPILOGUE 351
REFERENCES 357
INDEX 359

Contents

Aboutthe AUTNOro Xi
About the Technical Reviewers. Xiii
ACKNOWIBdgMENTS. Xv
INtrodUCtion Xvii
CHAPTER1 Introducing SpringWeb Flow............................... 1
Free Browsing. ... 4

Controlled Navigation.............. i, 6

Navigational Control 7

State Management, 12

Modularity COnCerns. ...t 14

Traditional Solutions. L. 15

SpringWeb Flow. 20

SUMMaANY .. 22

CHAPTER2 Getting Started... 25
Downloading SpringWeb Flow 25

Runtime Requirements 26

Build System Integration................l 26

Manual Integration 27

Integrationwith vy L 29

Integration with Maven. 30
SpringJumpstart............... 30

HelloWorld.o 34

Spring Web Flow in a Development Environment. 39

Installingan IDE. 39

“Hello World” inEclipse....................... . il .. 42

UsingSpring IDE 44

SpicingUpHelloWorld 46

SUMMANY ... 49

vi CONTENTS

CHAPTER 3

CHAPTER 4

Spring Web Flow’s Architecture 51
LangUAgEo 52
Domain Vision Statement for SpringWeb Flow................. 53
Architectural Layers...............c i 54
Execution Core. ...t 55
ExecutionEngine.............l 58
Executor 59
TestSupport. ... 60
System Configuration................... 60
QUMM ANy .. 60
Spring Web Flow Basics 63
Designing Flows 64
UML State Diagrams.t 66
Your First Flow Definition.................................... 67
FlowBuUilders. ... 72
The XML Flow Builder. ... 74
The JavaFlow Builder 75
Choosing an Appropriate Flow Builder 79
Defining Flows.o 80
FIOWS. ..o 80
States ... 82
Transitions 85
Flow Definition Structure 89
Flow Executions o 90
Flow Sessions ... 92
The Flow Execution Context 94
The Request Context............... 95
Implementing Actions 102
AbstractAction........... 104
MultiAction 106
Deploying Actions i 107
BasicState Types. ... 112
ViewStates. ... 113
ActionStates 118

End States ... 120

CHAPTER 5

CONTENTS
Flow Definition Registries 121
XML Flow Definition Registries.............................. 123
Java Flow Definition Registries. 127
Combining Flow Definition Registries 128
SUMMANY ... 129
Advanced Web Flow Concepts............................ 131
OGNL. .. 131
OGNL by Example ... 133
OGNLinAction. 136
The Conversion Service., 153
Annotating Flow Definition Artifacts 156
Handling Exceptions. 158
View Selections. 162
Empty String. 164
VIEWNAME. . ..o 164
redirectviewName i 164
externalRedirect:url. 165
flowRedirect:flowld?input1=value1&. . .&inputN=valueN........ 166
bean:id 166
Custom View Selectors 167
Data Binding and Validation 168
The FormAction............. .. i 172
SUDFIOWS. 178
INiNne FIOWSo 179
Flow Sessions Revisited. 180
Declaring an Input-Output Contract. 181
Mapping Input and Output Arguments........................ 185
Enhancing the “Enter Payment” Flow 189
Flow Startand End Actions............... 190
The Complete “Enter Payment” Flow Definition.................... 192

SUMMaANY . . 195

vii

viii

CONTENTS

CHAPTER 6

CHAPTER 7

Flow Execution Management 197
Introducing Flow Execution Repositories 197
Flow Executors i 200
Launching a Flow Execution................................ 201
Resuming a Flow Execution 203
Refreshing a Flow Execution................................ 204
RequestHandling 206
Configuring a Flow Executor................................ 207
Flow Execution Repositories................. 211
Conversation Management 213
The Simple Repositoryco i, 216
The Single Key Repository.......................... 217
The Continuation Repository................................ 220
The Client Continuation Repository 224
Selectinga Repositoryo i 226
Flow Execution Listeners. 227
Listener Invocation Examples............................... 231
Listener Configuration il 235
SUMMaANY .. 237
Driving Flow Executions. 239
Flow Executor Integration 240
Spring Web Flow View Development. 242
ModelData................o i 243
Building Requests............... 245
Host Framework Integrations 250
SpringWeb MVC 251
SpringPortlet MVCl 253
SHrULS. .. 255
JavaServerFaces 258

SUMMaANY ... 270

CHAPTER 8

CHAPTER 9

CONTENTS
Testing with SpringWeb Flow............................ 271
UnitTesting ... 272
MockRequestContext i 272
MockRequestControlContext................................ 272
MockExternalContext 272
MockParameterMap i 273
MockFlowExecutionContext. 273
MockFlowSession 273
MockFlowServiceLocator.ocooall. 273
Testing with Mock Objects 273
Flow Execution Testing 275
Testing Java Flow Definitions............................... 276
Testing XML Flow Definitions 277
Testing the “Enter Payment” Flow........................... 278
Using Flow Execution Listeners 282
Integration Testing 284
SUMMANY ... 287
The Sample Application................................... 289
Functional Requirements. 290
Downloading and Building 290
The DomainModel 293
Application Setup o 295
The Presentation Tier. i 297
SpringWeb MVC Setup 297
Implementing the “Enter Payment” Use Case 302
Internationalization...................l 305
ExceptionHandling................., 306
Pagelayout........... 307

SUMMaANY ... 307

ix

CONTENTS

CHAPTER 10

CHAPTER 11

EPILOGUE ...

Real-WorldUseCases..................................... 309
Accessing the Host Environment. 309
Flow Definition Parameterization................................. 31
Leveraging Listeners 314
SecuringaFlow. 314

A Global Back Transition 315
Breadcrumbsl 317
Loadand StressTesting i, 319
SpringWeb Flow and AJAX. 322
SUMMaANY .. 323
Extending Spring Web Flow............................... 325
Common Extension Points. L. 325
Using Bean Referencescoiiii... 326
Extending the Flow Definition Constructs..................... 327
Custom Flow Builders., 333

A Database-Backed Conversation Manager........................ 334
AFlowServlet.............. 342
Building SpringWeb Flow................ 346
SUMMANY . . 348
.. 351
SpringWebFlow 2....... 352
Choosing Between SpringWeb Flow 1and 2 355
Concluding Thoughts......... i, 355
.. 357
.. 359

About the Author

ERWIN VERVAET is an independent consultant based in Leuven, Belgium. Erwin has been
using Java since its inception and has extensive experience applying it in a wide range of
application domains. He also runs his own software and consultancy company, Ervacon
(http://www.ervacon.com).

Erwin enjoys writing, teaching, and speaking about Java- and Spring-related subjects.
As the originator of the Spring Web Flow project, he currently co-leads its development
together with Keith Donald.

Xi

About the Technical Reviewers

KEITH DONALD is a principal and founding partner of SpringSource (formerly Interface21),
the company behind Spring. He is best known in the Spring community for creating
Spring Web Flow with Erwin Vervaet. At SpringSource, Keith is the lead of the web appli-
cation development products team. His team, based in Melbourne, Florida, helps sustain
the development of Spring Web MVC and Web Flow and their associated integrations and
is also responsible for future innovations in the domain of web application development
frameworks.

Keith, together with Jay Zimmerman of NoFluffJustStuff Software Symposiums, is also
the director of the Spring Experience conference series. He is responsible for the technical
content of the conference, which takes place in Florida each December.

In addition, Keith is the principal architect behind SpringSource’s state-of-the-art
Spring training curriculum. This curriculum has provided practical training on Spring to
over 3,000 students worldwide.

Keith, an experienced enterprise software developer and mentor, has built business
applications for customers spanning a diverse set of industries including banking,
network management, information assurance, education, and retail. He is particularly
adept at translating business requirements into technical solutions.

Keith’s blog can be found at http://blog.springsource.com/main/author/keithd.

KARL DAVID MOORE is a software engineer with over six years’ commercial development
experience. He holds a first class honors degree in software engineering from Sheffield
Hallam University.

Karl has been a Spring Framework user since early 2004 and is an active contributor to
the Spring forums, with over 8,000 posts. During his career, Karl has been extensively
involved in all aspects of software development and has a particular passion for refac-
toring legacy systems. This has helped him foster a very strong interest in test-driven
development, code quality, and attention to detail.

Karl enjoys researching and developing approaches to aid and simplify development,
and evangelizing about techniques and tools to improve the skills of other developers.

You can find Karl’s LinkedIn profile at http://www.linkedin.com/in/karldmoore.

xiii

Acknowledgments

This book, and Spring Web Flow itself, only exist thanks to the input and help of many
different people.

Spring Web Flow was lucky and gained an active community right from the start.

A special thanks goes out to the early adopters and forum members, whose invaluable feed-
back has helped mold Spring Web Flow into what it is today. Several people deserve special
credits for their active involvement in the project: Juergen Hoeller, Colin Sampaleanu, Rod
Johnson, Ben Hale, Christian Dupuis, J. Enrique Ruiz, C_sar Ordifiana, Rossen Stoyancheyv,
Jeremy Grelle, Rob Harrop, Seth Ladd, Colin Yates, Steven Devijver, Greame Rocher, Sam
Brannen, Maxim Petrashev, Marten Deinum, and Dave Syer. It goes without saying that
countless others also deserve credit.

Writing a book is a big undertaking that could not be done without the support and
feedback of several people. I would like to thank Keith Donald for his invaluable input into
Spring Web Flow, as well as for his review efforts. Karl David Moore also went above and
beyond the call of duty, doing extraordinarily thorough chapter reviews and helping me
polish my quirky English. The fine people at Apress that molded this book into its current
form also deserve accolades: Heather Lang, Laura Cheu, and Kylie Johnston. Several other
people also directly or indirectly contributed to this book: Philip Van Bogaert, Henri Shih,
Kris Meukens, and Mike Seghers. Thank you all.

Avery special thanks goes out to my wife Bieke. She tirelessly kept the kids busy and did
more than her fair share while I slaved away at this book. I can honestly say that without
Bieke’s support, this book would not have been possible.

Xv

Introduction

When I started working on Spring Web Flow at the end of 2004, web applications already
accounted for a large part of the Java enterprise development space. I had used Struts

on several projects at that point but always felt something was missing. Working with a
proprietary framework on a few projects in the financial industry sparked my interest. The
framework I was using included a work flow engine, a fairly typical feature for frameworks
targeted at high-end enterprise applications. What was novel about it, however, was that
the work flow engine could also be used to define page flows in web applications. This
brought a refreshingly intuitive approach to Java web application development.

Using a state diagram as the basis for page flows in web applications seemed much
more natural than the request-centric solutions offered by the mainstream frameworks
of the time. This was especially true for the more complex use cases that required the user
to pass through a number of different steps in the completion of a business process. Over
the course of 2004, I had been learning about the Spring Framework, which was gaining
momentum at the time, and had been impressed by its design and implementation
quality. I set out to add a page flow controller to the Spring Web MVC framework and
created what would later become Spring Web Flow.

Initially, Spring Web Flow focused on using a state-diagram-based approach to make
defining page navigation in web applications easy and intuitive. This gave web application
developers a powerful way to express page navigation rules. Expressive page flow defini-
tions also highlighted the need for better navigational control. The infamous Back button
problem caused all sorts of difficulties in web applications that tried to control page navi-
gation. Spring Web Flow clearly needed to address this issue.

Around that time, I read an article discussing the use of continuations to solve naviga-
tional problems in web applications. This struck me as fitting very well with Spring Web
Flow’s flow execution model and provided the missing link. Spring Web Flow now com-
bined two very attractive and complementary features:

¢ An intuitive and easy to use method of expressing page navigation rules in web
applications.

* A powerful and robust navigational control system.
Bringing a third attractive feature to the table required only a small step:

¢ Encapsulate page flows as black-box application modules with a well-defined input-
output contract.

Xvii

xviii

INTRODUCTION

Spring Web Flow has come a long way in the last two years. It has grown from a simple
“flow controller” for the Spring Web MVC framework into “a next generation Java web
application controller framework that allows developers to model user actions as high-
level modules called flows. The framework delivers improved productivity and testability
while providing a strong solution to enforcing navigation rules and managing application
state” (Johnson et al 2003). The next generation of the framework, Spring Web Flow 2,
introduces exciting new features to help you build and run rich web applications. Clearly,
Spring Web Flow is now a mature project that is used in many production deployments
and has an active user community.

I wrote this book not only to teach you how to work with Spring Web Flow but also to
help you understand the rationale and motivation behind the framework. I hope you
enjoy reading this book and have fun working with Spring Web Flow!

About the Spring Web Flow Project

The original incarnation of the Spring Web Flow project was a small open source project
started by Erwin Vervaet in October 2004 called Ervacon Spring Web Flow (http://

www . ervacon.com/products/springwebflow). The project caught the attention of Keith
Donald, one of the developers on the Spring Framework team, and became an official
Spring Framework subproject in February of 2005. After almost two years of active devel-
opment and a number of preview releases and release candidates, the project released
its first production ready 1.0 version in October of 2006. This version is the subject of
this book.

Building on the solid foundation set by Spring Web Flow 1, development continued on
the next generation of the product. Spring Web Flow 2, released in June of 2008, under-
went a few architectural changes allowing it to more seamlessly integrate into a rich web
environment. It has impressive support for JSF and AJAX techniques and further simplifies
the flow definition syntax.

Spring Web Flow uses the well-known Apache 2 license, a free/open source software
license (Apache Software Foundation 2004). The Apache 2 license is used by many other
open source projects, such as the Spring Framework itself and the Apache HTTP Server. It
allows use of Spring Web Flow for any purpose, whether commercial or noncommercial,
and even allows for modification and redistribution.

Spring Web Flow is sometimes mistakenly written as “Spring WebFlow.” This confu-
sion has its origin in the Spring Web Flow package name, org.springframework.webflow,
which writes webflow in one word. “Spring Web Flow” is also often abbreviated as “SWE.”

The official Spring Web Flow home page is located at http://www. springframework.org/
webflow. It is an essential resource for Spring Web Flow users wanting to keep an eye
on the evolution of the project. If you're still left with questions after reading this book,

INTRODUCTION

you’ll have a good chance of getting an answer on the very active Spring user forums:
http://forum.springframework.org. The Ervacon Spring Web Flow Portal (http://

www . ervacon.com/products/swf) also offers useful information such as Spring Web Flow tips
and tricks and a practical introduction.

Abhout This Book

This book aims to teach you how to work with Spring Web Flow. It covers both basic and
advanced use cases and provides an in-depth reference to all features Spring Web Flow
currently offers. You'll also learn to extend the framework to take it beyond its out-of-the-
box feature set. Once you’ve finished this book, you'll be able to call yourself a Spring Web
Flow expert!

Spring Web Flow 1 and Spring Web Flow 2

Before we continue, one important point needs to be clarified. This book deals with Spring
Web Flow 1. The next generation of the framework, Spring Web Flow 2, is subject matter
for another book.

Versions 1 and 2 are essentially two separate products. The core concepts are the same,
but the two versions are quite different technically. As a result, Spring Web Flow 2 is not
backward compatible with Spring Web Flow 1. Moving from version 1 to version 2 would
be a migration rather than a simple upgrade. This book’s Epilogue discusses the differ-
ences between the two versions in more detail and will help you decide which version is
best for you.

Spring Web Flow 1 will be referred to as just “Spring Web Flow” in this book, omitting
the version number. When talking about Spring Web Flow 2, the version number will be
explicitly mentioned.

Target Audience

This book is intended to be a reference for both new and advanced Spring Web Flow users.
If you're a new user, you'll learn how to get started using Spring Web Flow and leverage all
of its powerful features. As an advanced user, you'll learn about extending the framework
and many of its best practices, and you'll find this book provides very interesting insights
into the design of Spring Web Flow.
Before reading this book, you should have a solid understanding of Java and Java web

application development including topics such as servlets and JavaServer Pages (JSP).
Many of the samples in this book use the Spring Web MVC framework. However, if you're

Xix

XX

INTRODUCTION

familiar with any web Model-View-Controller (MVC) framework (for instance Struts or
WebWork), you should have no problem following along.

A basic knowledge of the Spring Framework and its guiding principles, such as the
Inversion of Control pattern and dependency injection, is also assumed. You don’t need
to be a Spring expert to read this book, but you’ll have an easier time if you have at least
played around with Spring classes like ApplicationContext and BeanFactory and under-
stand how Spring wires together beans.

Rather than bloating this book with a detailed description of Java web applications,
Spring Web MVC, or even Spring in general, I refer you to the Apress books Beginning
Spring 2: From Novice to Professional by Dave Minter (2005); Pro Spring 2.5 by Jan
Machacek, Jessica Ditt, Aleksa Vukotic, and Anirvan Chakraborty (2008); and Pro Java™
EE Spring Patterns: Best Practices and Design Strategies Implementing Java EE Patterns
with the Spring Framework by Dhrubojyoti Kayal (2008). Find other Apress books at
http://www.apress.com.

Overview

This book provides both introductory material and in-depth coverage of Spring Web Flow.
The following overview will help you focus on the chapters most relevant to you. You can
also read this book from cover to cover, and I recommend doing so if you're new to Spring
Web Flow. If you're already familiar with the framework, you can skip the first two chap-
ters and head directly to Chapter 3.

Chapter 1: Introducing Spring Web Flow

This chapter takes a high-level view and examines the problem Spring Web Flow was
designed to solve. It will explain the context in which Spring Web Flow lives and give you
a conceptual understanding of what exactly Spring Web Flow is.

Chapter 2: Getting Started

After the broad introduction of Chapter 1, this chapter will help you to hit the ground
running. It explains all the practical details to get started using and experimenting with
Spring Web Flow. The environment setup in this chapter should enable you to easily
follow along with the examples covered in later chapters and to try things for yourself.

Chapter 3: Spring Web Flow’s Architecture

Chapters 1 and 2 superficially touch on some of the Spring Web Flow concepts. Chapter 3
digs a little deeper. It explains the Spring Web Flow architecture, giving you a detailed
understanding of the different subsystems involved and setting the stage for an in-depth
study of the Spring Web Flow feature set in the following chapters.

INTRODUCTION XXi

Chapter 4: Spring Web Flow Basics

This chapter covers basic Spring Web Flow features, needed in most, if not all, use cases.
You'll learn how to design and implement a web flow using both the XML- and Java-based
flow definition languages.

Chapter 5: Advanced Web Flow Concepts

As a follow up to the basic concepts covered in Chapter 4, this chapter will detail more
advanced functionality. It explains how to reuse flows as subflows from inside other flows,
realizing Spring Web Flow’s promise of modularity. Handling HTML form data is also
covered.

Chapter 6: Flow Execution Management

When working with Spring Web Flow, most of the development effort revolves around
defining flows. Also very important, however, is understanding how Spring Web Flow
manages flow executions and the associated data; these topics will be discussed in this
chapter.

Chapter 7: Driving Flow Executions

This chapter focuses on integrating Spring Web Flow into hosting frameworks like Spring
Web MVC and JSF and driving flow executions from those environments. Developing
views for a web flow will also be discussed.

Chapter 8: Testing with Spring Web Flow

Unit testing Spring Web Flow applications is explained in this chapter. You’ll learn how to
perform integration tests with your flow definitions and how to test flow artifacts (such as
actions) in isolation.

Chapter 9: The Sample Application

To give you an example of a nontrivial application that combines both free browsing and
controlled navigation situations, this chapter will document a sample application: Spring
Bank. Spring Bank is a simple electronic banking application that allows users to do things
such as manage their bank accounts or enter payments. Use cases of this application will
be used throughout this book to help explain and illustrate Spring Web Flow’s feature set.

Chapter 10: Real-World Use Cases

This chapter covers some frequently asked questions related to use cases occurring in the
real world. You’ll learn about such things as securing your flows, tracking breadcrumbs, or
stress testing Spring Web Flow applications.

XXii

INTRODUCTION

Chapter 11: Extending Spring Web Flow

Thelast chapter covers extending and customizing Spring Web Flow. You'll also learn how
to build Spring Web Flow from the sources.

Epilogue

To conclude this book, the epilogue leaves you with some parting thoughts and takes a
look at what’s new and improved in Spring Web Flow 2.

Typographical Conventions

This book uses simple and easy-to-understand typographical conventions. All text to be
interpreted in a literal sense, like Java class names, code fragments, file names, or XML
elements uses a fixed width font. Italics indicate topics of particular importance, and
new or important pieces of a code fragment are highlighted in boldface fixed-width
text. Commands to be entered on the command line also use a boldface font.

Many of the program listings presented in this book have been formatted for read-
ability and to make them fit nicely on the page. In some cases, additional line breaks had
to be introduced. A backslash (\) line continuation marker is used whenever an extra line
break had to be added.

About the Examples

All the sample applications presented in this book use Java 5, Servlet API 2.4, and JSP 2.0.
Make sure you have a Java 5 Development Kit (JDK) and an appropriate application server
or Servlet engine installed on your computer (for instance, Tomcat 5 or Jetty 6).

Spring Web Flow 1.0.6, together with Spring 2.5.4, was used to develop the sample
applications. Future Spring Web Flow 1.x and Spring 2.x versions will be compatible.
Chapter 2 provides a detailed overview of setting up a build and development environ-
ment you can use to run the sample applications.

The Spring Bank sample application, together with the other samples discussed in this
book, can be found in the public Ervacon Subversion repository at https://svn.ervacon.com/
public/spring. You can browse the source code by just pointing your browser at this address.
Alternatively, you can check out the entire source tree using any Subversion client, for
instance, TortoiseSVN (http://tortoisesvn.tigris.org) if you are using Microsoft Windows.
The source code for this book is also available to readers at http://www.apress.comin the
Downloads section of this book’s home page. Please feel free to visit the Apress web site and
download all the code there.

CHAPTER 1

Introducing Spring Web Flow

Enterprise applications, and more specifically web applications, form a large part of
all applications developed using Java. Most Java developers have worked on a Java web
application at one point or another in their careers. As such, it comes as no surprise that
there is a large variety of so-called web model, view, controller (MVC) frameworks to
choose from. Well known examples include the following:

e Struts from the Apache Software Foundation (http://struts.apache.org).

* Spring Web MVC, the web MVC framework built on top of the Spring Framework
(http://www.springframework.org).

* WebWork, a web framework developed by the OpenSymphony project (http://
www . opensymphony . com/webwork). WebWork was used as the basis for Struts 2, and
its development continues under that umbrella.

In the last few years, these classic request-based frameworks have gotten more and
more competition from component-based web MVC frameworks. Key players in this
arena follow:

 JavaServer Faces (JSF), a framework developed by the Java Community Process
(JCP) as Java Specification Requests (JSRs) 127, 252, and 314 (http://java.sun.com/
javaee/javaserverfaces/)

e Tapestry from the Apache Software Foundation (http://tapestry.apache.org)

Request-based frameworks treat the HTTP request as a first-class citizen. Request han-
dling is typically done by application actions or controllers and results in the rendering of
anew page. Component-based frameworks, however, abstract the HTTP request and
encapsulate application functionality in reusable components. This approach is very sim-
ilar to the one taken by desktop graphical user interface (GUI) toolkits. Web application
components react to events and manipulate their own internal state, leaving the render-
ing of a page up to the controlling framework.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

Despite their differences, all of these frameworks use the Model, View, Controller
(MVC) design pattern to structure web applications and make them easier to understand
and maintain. MVC was originally developed in the Smalltalk community to structure the
GUI of desktop applications. It has also proven to be very effective in web application
development.

The MVC pattern tries to separate the concerns of the view (user interface) from those
of the model (domain or business model) by introducing the controller as an intermedi-
ary. In web applications, the controller processes incoming requests by delegating to
business components (for instance, a service layer) and preparing model data for render-
ing by a selected view. The view is typically implemented using a templating system such
as JavaServer Pages (JSP) or Velocity.

Note Web applications use a slight variation of the MVC design pattern sometimes called Model 2 archi-
tecture or web MVC. In the original MVC triad, the controller is not coupled to the view. Instead, the view acts
as an observer of the model, receiving event notifications when the model is changed (Gamma et al 1995).

Most implementations of the MVC pattern in web applications introduce an additional
component: the front controller (Fowler 2003). The front controller is technical in nature
and coordinates request processing by enforcing a well defined request processing life
cycle: it maps a request onto a particular controller and renders the view selected by
that controller. The front controller can also manage common concerns like security
and internationalization. Well known front controller implementations are the Struts
ActionServlet, the Spring MVC Dispatcher Servlet, or the JSF FacesServlet. From the
application’s point of view, the controller is in the driver’s seat. Once the front controller
has selected the appropriate controller for a request, that controller decides how to inter-
face with business components, which view to display, and the model data to render. This
process is presented graphically in Figure 1-1.

Web MVC frameworks help us develop efficient, structured, and maintainable web
applications: software applications that are usable on the World Wide Web (WWW). Such
an application could, for instance, dynamically serve data coming from a database, in
contrast to serving static HTML web pages.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

- - - - - - - - - ——————————— ————

Front

Controller
Request

Controller

Response

——— - —————————————————

Figure 1-1. Web MVC

Web applications are pushing the boundaries of web technology. We have become
accustomed to having complex conversations with these applications, requiring interac-
tive dialogs spanning multiple requests. An airline ticket booking process is one example:
you select a flight, indicate seating preferences, and enter payment information within
the scope of an interaction with the application that spans several pages.

Java web application development based on the MVC design pattern is well under-
stood. As always in the Java world, there is heated debate about the pros and cons of
particular frameworks. The basics are agreed on by most people involved, however, and
some of the older frameworks such as Struts have been used successfully in production
deployments for several years. Given the enormous amount of effort that has already gone
into the development of these frameworks, and the applications based on them, it comes
as a huge surprise that not a single mainstream Java web application development frame-
work offers a truly compelling way of implementing complex conversations.

Spring Web Flow aims to fill this void. It serves as a web application controller compo-
nent focused entirely on the definition and execution of complex conversations in a web
application. Instead of competing with the well established web MVC frameworks already
available, Spring Web Flow integrates into those frameworks. It serves as the “C” in “MVC”:
a controller orchestrating interaction with business components, preparing model data,
and selecting views (the role of Spring Web Flow as the controller has changed slightly in
Spring Web Flow 2, which builds on top of Spring Web MVC).

3

CHAPTER 1 INTRODUCING SPRING WEB FLOW

To better understand the goals and benefits of Spring Web Flow, you must first under-
stand the problems it tries to solve and the complexities involved in the solution. Let’s
investigate these next.

Free Browsing

Historically, the Web was designed as a system that allowed users to browse through infor-
mational pages linked together using hyperlinks. Information is annotated using Hypertext
Markup Language (HTML) to allow correct presentation in a browser and embed anchors
thatlink the information to other resources or pages. Each page is uniquely identified in this
web using a Uniform Resource Identifier (URI).

To keep the system scalable and efficient, the World Wide Web was set up as a stateless
client-server environment. Client browsers retrieve information from web servers using
the GET method defined by the Hypertext Transfer Protocol (HTTP). This simple setup
allows caching of information both on the client side and on intermediary proxy servers.
The web servers themselves can be easily scaled horizontally, adding additional systems
to form a cluster, because they do not have to maintain information associated with indi-
vidual users.

This simple stateless architecture was clearly a great success. The World Wide Web has
scaled to unprecedented size, and millions of people are now familiar with its concepts.
Browsers allow you to efficiently move between pages, offering navigational aides such as
a browsing history with Back, Forward, and Refresh buttons. Users can directly type
semantically meaningful URIs like http://en.wikipedia.org/wiki/Plato into their
browsers and bookmark URIs to easily return to those pages at a later time. Browsing is
not constrained in any way, and users surfing the World Wide Web are limited only by
their own interests, time, and imagination.

The architecture of the World Wide Web is often called RESTful, since it follows the Repre-
sentational State Transfer (REST) style of software architecture for distributed hypermedia
systems, as originally formulated by Roy Fielding in his doctoral dissertation (2000):

Representational State Transfer is intended to evoke an image of how a well-designed
Web application behaves: a network of web pages (a virtual state-machine), where the
user progresses through an application by selecting links (state transitions), resulting in
the next page (representing the next state of the application) being transferred to the
user and rendered for their use.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

Many technical publications also use the term “RESTful” to describe applications
using simple web technologies such as HTML, HTTP, and URIs. Furthermore, meaning-
ful, user-readable URIs are often referred to as REST-style URIs or URLs.

When the World Wide Web was gaining momentum, designers quickly realized that it
would be far more compelling if it allowed user interaction. To accommodate this new
requirement, core World Wide Web standards were enhanced with interactive elements:

e HTTP was extended with additional request methods: POST allows information to
be submitted to the server. PUT and DELETE allow clients to add resources to the
server or remove them again.

* Elements allowing user interaction were added to HTML. The best known example
is the HTML <FORM> tag, which allows you to include parameter key-value pairs in a
request sent to the server (typically in a POST request).

* Using technology such as cookies, servers can track a user through an entire HTTP
session spanning multiple requests, thus working around the stateless nature of
HTTP and allowing servers to customize content for each user.

All of these techniques and enhancements combine to result in a system capable of
supporting web applications: useful, interactive computer applications that leverage the
ease of use and ubiquity of the World Wide Web while realizing important benefits, such
as these:

e There’s no need to install custom software on the client, making large-scale deploy-
ment trivial.

* All clients always use the same, up-to-date version of the application.

¢ New subscription-based billing models are possible, opening up possibilities for
new revenue streams.

* Users are familiar with the technologies involved—web browsers, HTML pages, and
so on—often alleviating the need for training.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

Of course, there is also a cost attached to these new possibilities:

* Having HTTP sessions makes scaling a web application more difficult than scaling
a traditional web server. Simple solutions often cause server affinity, that is, require
a user with an active session to always use one server from a cluster, thus preventing
failover and effective load balancing. Still, this problem is on the server side, so it
can be tackled by knowledgeable people, and the client browser can remain simple
and lightweight.

¢ Web applications cannot offer the rich interactive user experience found in desktop
GUI applications. This downside turned out to be somewhat of an advantage to
users, since it forced web applications developers to create simple and intuitive
interfaces for their applications.

With web developers, users, and businesses gaining more and more experience with
web applications, the requirements of these applications become ever more challenging.
Today we see web applications using techniques such as Asynchronous JavaScript and
XML (AJAX) to offer a richer user experience. Web applications also go to great lengths to
control a user’s actions while interacting with the application. The next section explores
this topic in detail.

Controlled Navigation

Most modern web applications not only require free browsing but also have more
demanding use cases requiring controlled navigation: the users’ navigational freedom
needs to be constrained to carefully guide them to the completion of a business process.
There are many, well known examples of such controlled navigation use cases.

* One example is an airline ticket booking process, involving steps such as flight
selection, seating preferences, frequent flyer policies, and payment information
entry. Then too, most travel agencies allow you to book not only a flight but also an
associated hotel room and rental car.

¢ Also, electronic banking has become commonplace in the last few years, allowing
customers to use web applications to make payments, buy stock options, or man-
age their credit cards.

¢ Many governments are using web technology and web applications to allow citi-
zens to perform tasks electronically, for instance, submitting tax declarations. Such
processes are bound by legislation and are often extremely complex, requiring the
user to follow an exact navigational flow corresponding to his or her situation.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

These web applications potentially deal with sensitive user data or even the user’s own
money. It is therefore of utmost importance that the applications are very stable, secure,
and robust. Users should feel comfortable interacting with the application, trusting it to
do the right thing, even in situations where a user has accidentally used the browser’s
Back or Refresh buttons.

All of the Java web application frameworks discussed previously allow you to develop
simple web applications with relative ease. Most use the HTTP session to manage state
associated with a particular user and make it easy to work with pages containing HTML
forms using techniques such as automatic data binding. However, they do not go beyond
these abilities to provide support to tackle the difficult use cases where navigation needs
to be controlled and users need to be carefully guided to the completion of a certain task.

This shortcoming is unfortunate, since correctly implementing a completely con-
trolled navigation in a web application is a difficult problem to solve. Three key issues
need to addressed:

¢ Navigational control
¢ State management
* Modularity

Let’s investigate each of these topics in a little more detail.

Navigational Control

The first question to be answered when implementing a controlled navigation in a web
application is, “How do you control the user’s navigational freedom?” As explained in the
“Free Browsing” section, the World Wide Web was designed as a system promoting free
browsing and unconstrained navigation. Browsers offer lists of favorite bookmarks, allow-
ing a user to bookmark a page of particular interest and jump directly to that page again
at later point in time. History lists maintained by browsers, and the Back, Forward, and
Refresh buttons make it easy for users to go back to pages they visited earlier. A user can
even open multiple browser windows or tabs at the same time to compare information,
for instance.

You might think that all this functionality is just a convenience offered by modern brows-
ers, but in reality, the free browsing spirit is engrained in the specifications of the core
technologies powering the World Wide Web. The following extract from the HTTP 1.1 spec-
ification (section 13.13 of RFC 2616) suggests browsers should not reload a page from the
server when the user accesses the browsing history, for instance, using the Back button:

User agents often have history mechanisms, such as navigation buttons and history
lists, that can be used to redisplay an entity retrieved earlier in a session.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

History mechanisms and caches are different. In particular, history mechanisms should
not try to show a semantically transparent view of the current state of a resource.
Rather, a history mechanism is meant to show exactly what the user saw at the time
when the resource was retrieved.

By default, an expiration time does not apply to history mechanisms. If the entity is still
in storage, a history mechanism should display it even if the entity has expired, unless
the user has specifically configured the agent to refresh expired history documents.

This definition suggests that the browser history is intended as a client-side naviga-
tional aid, enhancing the user’s web surfing experience. At the time of this writing, most
popular browsers, such as Mozilla Firefox (http://www.mozilla.com/firefox) and
Microsoft Internet Explorer (http://www.microsoft.com/ie), do not strictly follow the
specification and will use cache control settings to decide whether or not to reload a page
from the history. The Opera browser (http://www.opera.com) is an example of a browser
strictly complying with the specifications. When you click the Back button, Opera will
redisplay the previous page exactly as it was shown before, without reloading it from the
server.

It’s clear that all of this free browsing support doesn’t complement use cases requiring
controlled navigation. Unfortunately, it is not generally possible to disable the browser’s
navigation history, its bookmarking capability, or its ability to open new windows or tabs.
You are therefore forced to deal with the problem head-on: you must handle situations
where the user uses free browsing conveniences when having a controlled conversation
with a web application. Some of the situations that need to be handled follow:

¢ What happens when a user bookmarks a page in the middle of the conversation? We
can’t stop the actual bookmarking, but how should the application react when the
user uses the bookmark to jump back into the conversation? In most cases, the
answer will be that the application should produce an error informing the user that
the conversation has expired or ended, possibly allowing the conversation to be
restarted. The entry point into the conversation or task might be bookmarkable, but
the internal pages typically are not. In other situations, it will be necessary to keep
track of the conversation for along period of time and allow users to jump back into
it and continue where they left off.

¢ How does an application handle refresh requests or moving back or forward in the
browsing history? Ideally, a refresh request is idempotent, not causing any side
effects with repeated use and allowing the user to freely refresh pages. Handling
back and forward navigation, however, is more difficult.

¢ Aless common situation involves the user opening two browser windows on the
same application, typically to compare results or evaluate alternatives. How does a
web application deal with this? Care needs to be taken to avoid interference or dou-
ble submits.

CHAPTER 1 INTRODUCING SPRING WEB FLOW

Applications can ignore these problems and just ask the user not to use the browser’s
Back button when starting a process requiring controlled navigation. This approach is
obviously naive and brittle, as users are accustomed to surfing around the Internet, fre-
quently clicking the Back or Refresh buttons. When a mistake is made, web applications
should be able to handle it in a stable and predictable way.

Applications with a well known and controlled user group, like intranet applications,
can sometimes avoid these problems altogether. By deploying a specialized or custom-
ized web browser, developers can completely disable all navigational aides. This is
obviously not an option for web applications running on the Internet, where users use a
wide variety of web browsers. Some Internet web applications try to simulate this by run-
ning the application in a special browser window that contains no button bar or other
embellishments. This helps, but breaks easily, if for instance, the user presses the Back-
space button or a special mouse button to navigate backward in the browser’s history.

Incomplete navigational control and users accidentally using the navigational aids
offered by the browser also cause another well known problem in web applications: the
dangerous double submit.

The Double Submit Problem

You have already seen the two central request methods supported by the HTTP protocol
used on the World Wide Web. A request method indicates the intention of a request to the
server.

The GET method allows a client to retrieve a resource (page) from the server. HTTP
defines GET to be safe, meaning that it should only ever be used for information
retrieval and does not change the state of the server. In other words, a GET request is
idempotent and can be repeated (refreshed) any number of times, always producing
the same result. GET was the first request method supported by HTTP and was origi-
nally the only one. It is still the most frequently used request method today.

The POST method, on the other hand, allows a request to submit data to the server for
processing, possibly causing side effects such as updating records in a database. A user
submitting a POST request is responsible for the changes caused to the state of the
server. POST requests are not safe or idempotent and therefore cannot be refreshed or
bookmarked. Historically, POST requests are initiated by clicking buttons on web pages,
in contrast with textual links used for GET requests. Using buttons visually differentiates
POST requests from GET requests, highlighting their sensitive nature to the user.

A user using the browser navigation history or Refresh button can accidentally repeat a
POST request, causing server-side processing to occur twice. This repeat processing has
the potential to result in incorrect or unwanted side effects and is known as the double
submit problem. Imagine a user resubmitting a “confirm purchase” request, resulting in
two purchases! Web browsers are aware of this problem and will display a warning to the

10

CHAPTER 1 INTRODUCING SPRING WEB FLOW

user when they try to reissue a POST request, such as the following one from Internet
Explorer:

Windows Internet Explorer.

To display the webpage again, Internet Explorer needs to
! resend the information you've previously submitted.,

IF wou were making a purchase, you should click Cancel to
avoid a duplicate transaction, Otherwise, click Retry to display
the webpage again,

Retry] [Cancel

In contrast, refreshing pages loaded using a GET request is allowed, and no warning
will be shown. Although these warnings provide an extra layer of security, they will make
an application feel brittle to the end user: accidentally clicking the Back button causes an
unnerving message about possible duplicate transactions!

A real solution for the double submit problem is provided by the POST-REDIRECT-
GET idiom (Jouravlev 2004). When a web application sends an HTML page in response to
a POST request, that page will look like a normal web page to the user, causing the user to
think it is bookmarkable and refreshable. Instead of sending the page data directly in
reply to a POST request, the POST-REDIRECT-GET idiom states that a web application
should issue a REDIRECT request in response to a POST request, causing a subsequent
GET request. This is illustrated in Figure 1-2.

Browser Server
POST >
.. Rediect
Process
Reffés*’ GET >
< Page Data
- -

Figure 1-2. The POST-REDIRECT-GET idiom

CHAPTER 1 INTRODUCING SPRING WEB FLOW

A redirect instructs the web browser to look for the response elsewhere using a GET
request. HTTP 1.1 defines result code 303, “See Other”, for exactly this purpose (from sec-
tion 10.3.4 of RFC 2616):

The response to the request can be found under a different URI and should be retrieved
using a GET method on that resource. This method exists primarily to allow the output
of a POST-activated script to redirect the user agent to a selected resource.

For backward compatibility with older web browsers that do not support HTTP 1.1,
many web applications don’t use the 303 response and instead use the 302, “Found”, code
(from section 10.3.3 of RFC 2616):

The requested resource resides temporarily under a different URL

All web browsers in common use today react to the 302 code in exactly the same was as
to the 303 code.

A browser receiving a redirect response will know that the requested resource is to be
found at another location. As a result, it will not add the original request to its browsing
history and instead add only the redirected GET request. This elegantly solves the double
submit problem, since the redirected request can be safely refreshed (it’s a GET request!).
Furthermore, the navigational history will contain only idempotent GET requests, allow-
ing the user to use the browser Back and Forward buttons or bookmark pages without
causing alarming warning messages or side effects on the server.

The HTTP specification defines the semantics for GET and POST requests. Unfortu-
nately, these semantics are enforced neither by the HTTP protocol nor by web servers.
Because of this, many web sites and web applications abuse GET requests to submit data to
the server and cause side effects. These compromises are often driven by visual require-
ments and a desire to make a web page look as beautiful as possible. JavaScript gives web
developers a lot of freedom to post forms by clicking textual links or to get a resource from
the server by clicking a button. Image buttons blur the presentational distinction between
GET and POST requests even further, giving you complete visual freedom.

Since a GET request can also be used to submit data to the server for processing, possi-
bly causing side effects, the POST-REDIRECT-GET idiom can be reformulated in a more
general way as redirect after submit: a web application should issue a redirect in response
to every submit, be it using a POST or a GET.

Redirecting after every submit allows you to build web applications that behave cor-
rectly even when the user accidentally uses functions such as the browser Back button.
Another interesting problem is protecting the application against a malicious user trying
to short-circuit a conversation with a web application.

Short-Circuiting Conversations

Most complex conversations in web applications require a linear progression, typically
working toward the completion of a business process, such as filling in a tax form. It is

1

12

CHAPTER 1 INTRODUCING SPRING WEB FLOW

crucial that the user enters all the required data and does not jump ahead, skipping impor-
tant information, or hack around sensitive checks. The server must carefully track a user’s
progression to ensure the task is completed as defined by the business requirements.

Having a client submit information about its location in a conversation is insufficient.
A hacker could easily manipulate those request parameters to short-circuit the flow, pos-
sibly compromising the application and the data it manages.

Web applications have no control over the environment the client is using. Normal
users will be using the popular browser variants. A malicious user, however, may be using
other tools to craft special requests to trick the server into doing things it’s not supposed
to do. A well known rule among web application developers is that the server should
always validate user input data, even when client-side (JavaScript) checks are used. This
is also true of navigational control. The server needs to take responsibility and ensure the
client follows the defined navigation rules.

In summary, controlling user navigation in a web application is clearly a hard problem
to solve. The crux of the problem is the fact that we are trying to enforce navigational con-
straints in an environment that was explicitly designed for free browsing.

State Management

Complex conversations within web applications not only mandate a controlled naviga-
tion but also involve state management. These subjects are often intertwined: a user
accumulates state while progressing through the navigational flow prescribed by a partic-
ular business process. When the browser’s navigational facilities are used, the application
needs to handle the possible impact on the data associated with the conversation:

¢ When using the Back button, should the application undo (or forget) the edits
already done on later pages, or should that information be retained for reuse when
the user progresses again? Both alternatives are quite common.

¢ As browsers such as Opera do not contact the server at all when going back in the
navigation history, how do we keep server state synchronized with the client?
The client could be seeing stale data that is different from the current values man-
aged by the server, which could lead to confusing situations or possibly even data
corruption.

¢ An application needs to ensure that two browser windows for the same conversa-
tion do not interfere with each other, potentially overwriting data entered in one
window with the data captured in the other window.

¢ When a conversation ends, associated data should be cleaned up to avoid memory
leaks and prevent the same task from being completed multiple times.

