# Auslegung einer Kombikühlzelle für Kühlung und Tiefkühlung mit Wärmerückgewinnung



#### Stephan Senger

# Auslegung einer Kombikühlzelle für Kühlung und Tiefkühlung mit Wärmerückgewinnung

ISBN: 978-3-8366-4551-5

Herstellung: Diplomica® Verlag GmbH, Hamburg, 2011

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden und der Verlag, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

© Diplomica Verlag GmbH http://www.diplomica-verlag.de, Hamburg 2011

## Kurzfassung

In der vorliegenden Arbeit werden für eine Kombikühlzelle die zur Bereitstellung der Kälteleistung notwendigen Anlagenkomponenten dimensioniert. Nach der technischen Konzeption werden die möglichen Abwärmequellen untersucht und die effizientere Lösung zur Wirtschaftlichkeitsanalyse herangezogen. Abschließend kann die, sich als wirtschaftlich erweisende Variante, zur Umsetzung vorgeschlagen werden.

### **Abstract**

The present work illustrates the combination cold storage cell with all the necessary components, the provision and the dimension of the cold achievements. After the technical conception the waste heat sources are investigated and the more efficient solution is pulled up. Finally may I offer a suggestion to the more economically variation.

## Inhaltsverzeichnis

| Symbolverzeichnis                                         | 7    |
|-----------------------------------------------------------|------|
| Abbildungsverzeichnis                                     | . 11 |
| Tabellenverzeichnis                                       | . 13 |
| 1. Einführung                                             | . 15 |
| 1.1. Funktion von Kombikühlzellen in Fleischereibetrieben | . 16 |
| 1.2. Grundlagen der Kältetechnik                          | . 17 |
| 1.2.1. Kreisprozesses einer Kompressionskälteanlage       | . 17 |
| 1.2.1.1. Zustände des Kältemittels                        | . 18 |
| 1.3. Kühlung und Tiefkühlung in der Gewerbekälte          | . 18 |
| 1.4. Kombikühlzellen                                      | . 19 |
| 1.4.1. Konstruktion von Kombikühlzellen                   | . 19 |
| 2. Kältelastberechnung                                    | . 21 |
| 2.1. Äußere Lasten                                        | . 21 |
| 2.1.1.Wärmestrom durch Transmission                       | . 21 |
| 2.1.2. Wärmestrom durch Luftwechsel                       | . 23 |
| 2.2. Innere Lasten                                        | . 25 |
| 2.2.1. Ermittlung des Kühlgutdurchsatzes                  | . 25 |
| 2.2.1.1. Kühlzelle                                        | . 25 |
| 2.2.1.2. Tiefkühlzelle                                    | . 26 |
| 2.2.2. Wärmestrom durch Lagergutabkühlung                 | . 27 |
| 2.2.3. Wärmestrom durch Personen                          | . 30 |
| 2.2.4. Wärmestrom durch Beleuchtung                       | . 31 |
| 2.3. Vorläufige Kälteleistung                             | . 31 |
| 2.3.1. Auslegung der Verdampfer                           | . 32 |
| 2.3.1.1. Ermittlung der Verdampfungstemperaturen          | . 33 |

| 2.3.2. Wärmestrom durch Luftumwälzung                     | 36        |
|-----------------------------------------------------------|-----------|
| 2.3.3. Wärmestrom durch Abtauen                           | 37        |
| 2.4. Effektive Kälteleistung                              | 39        |
| 2.4.1. Auswertung der Ergebnisse                          | 39        |
| 3. Dimensionierung der kältetechnischen Komponenten       | 41        |
| 3.1. Kältemittel                                          | 41        |
| 3.1.1. Auswahl des Kältemittels                           | 42        |
| 3.2. Kreisprozess im log p,h – Diagramm                   | 43        |
| 3.3. Projektierung der Verdichter                         | 44        |
| 3.3.1. Auswirkung d. Kälteleistung auf d. Anlagenlaufzeit | 46        |
| 3.3.2. Kältemittelmassenstrom                             | 47        |
| 3.3.3. Verdichtungsleistung                               | 48        |
| 3.3.3.1. ideale Verdichtungsleistung                      | 48        |
| 3.3.3.2. reale Verdichtungsleistung                       | 48        |
| 3.4. Projektierung der Verflüssiger                       | 52        |
| 3.5. Kältemittelvergleich                                 | 53        |
| 3.5.1. Vergleich von R404a und R134a für Tiefkühlung      | 53        |
| 3.5.2. Vergleich von R404a und R134a für Normalkühlung .  | 55        |
| 3.6. Einsparung durch Internen Wärmeübertrager            | 57        |
| 3.7. Rohrleitungsdimensionierung                          | 60        |
| 3.7.1. Druckabfall in den Rohrleitungen                   | 62        |
| 3.8. Auslegung des Expansionsventils                      | 67        |
| 3.9. Projektierung des Magnetventils                      | 72        |
| 3.10. Dimensionierung des Kältemittelsammlers             | 74        |
| 3.11. Auswahl von Filtertrockner und Schauglas            | <b>30</b> |
| 4. Wärmerückgewinnung                                     | <b>32</b> |

| 4.1. Begriffserklärung                                       | 32         |
|--------------------------------------------------------------|------------|
| 4.2. Einsatzmöglichkeiten der Wärmerückgewinnung             | 32         |
| 4.3. Warmwasserbedarf                                        | 32         |
| 4.4. Nutzbare Abwärmequellen                                 | 33         |
| 4.4.1. Auswahl der geeigneten Abwärmequelle                  | 34         |
| 4.5. Dimensionierung des WRG – Speichers                     | <b>37</b>  |
| 4.6. Auslegung der Wärmeübertrager 8                         | 39         |
| 4.6.1. Kältemittelseitiger Wärmeübertrager                   | 39         |
| 4.6.2. Wärmeübertrager für die Nachheizung                   | 91         |
| 4.7. Schaltungsänderung mit Wärmerückgewinnung               | <b>9</b> 5 |
| 5. Steuerungs- und Regelungstechnik                          | <b>9</b> 7 |
| 5.1. Funktion d. Bauteile anhand d. Tiefkühlanlage mit WRG 9 | <b>9</b> 7 |
| 6. Wirtschaftlichkeitsberechnung10                           | 00         |
| 6.1. Ermittlung der Investitionskosten10                     | 00         |
| 6.2. Wirtschaftlichkeitsvergleich beider Systeme10           | <b>)</b> 1 |
| 7. Zusammenfassung10                                         | )7         |
| Literaturverzeichnis10                                       | )9         |
| Anlagenverzeichnis 11                                        | 11         |

## Symbolverzeichnis

| Symbol               | Einheit             | Bedeutung                                       |
|----------------------|---------------------|-------------------------------------------------|
| а                    | [1/a]               | Annuitätenfaktor                                |
| Α                    | [m²]                | Fläche                                          |
| В                    | [€]                 | Barwert                                         |
| С                    | [kJ/kgK]            | Spezifische Wärmekapazität von Wasser           |
| $c_{Ab}$             | [kJ/kgK]            | Spezifische Wärmekapazität vor dem Erstarren    |
| c <sub>U</sub>       | [kJ/kg/K]           | Spezifische Wärmekapazität nach dem             |
|                      |                     | Erstarren                                       |
| d                    | [a]                 | Diskontierungsfaktor                            |
| d <sub>i</sub>       | [mm]                | Innendurchmesser                                |
| DT1                  | [K]                 | Temperaturdifferenz zw. Lufteintrittstemperatur |
|                      |                     | und Verdampfungstemperatur                      |
| $f_{WB}$             | [-]                 | Wärmebrückenkorrekturfaktor                     |
| g                    | [m/s <sup>2</sup> ] | Fallbeschleunigung                              |
| h                    | [kJ/kg]             | Enthalpie                                       |
| $h_{L,A}$            | [kJ/kg]             | Enthalpie der Außenluft                         |
| $h_{L,R}$            | [kJ/kg]             | Enthalpie der Lagerraumluft                     |
| k                    | [W/m²K]             | Wärmedurchgangskoeffizient                      |
| $k_v$                | [m³/h]              | Durchflusskoeffizient                           |
| $m_G$                | [kg]                | Gesamtmasse des Lagergutes                      |
| $m_R$                | [kg]                | Kältemittelfüllmasse                            |
| m <sub>24h</sub>     | [kg/d]              | Lagergutdurchsatz                               |
| $\dot{m}_{\text{R}}$ | [kg/s]              | Kältemittelmassenstrom                          |
| $\dot{m}_W$          | [kg/h]              | Massenstrom vom Wasser                          |
| $n_B$                | [-]                 | Anzahl der Beleuchtungsquellen                  |
| $n_{LW}$             | [1/d]               | Luftwechselzahl                                 |
| n <sub>P</sub>       | [-]                 | Anzahl der Personen                             |
| $P_{B}$              | [W]                 | Anschlussleistung der Beleuchtungsquelle        |
| $P_{i}$              | [kW]                | Indizierte Verdichtungsleistung                 |

| P <sub>is</sub>   | [kW]    | Isentrope Verdichtungsleistung              |
|-------------------|---------|---------------------------------------------|
| $P_{KL}$          | [W]     | Klemmleistung                               |
| $p_0$             | [°C]    | Verdampfungsdruck                           |
| p <sub>c</sub>    | [°C]    | Verflüssigungsdruck                         |
| $Q_{NB}$          | [kWh]   | Wärmekapazität des Bedarfs                  |
| $Q_{r\ddot{u}ck}$ | [kWh]   | Rückgewinnbare Wärme                        |
| $Q_{SP}$          | [kWh]   | Speicherkapazität                           |
| $Q_VF$            | [kWh]   | Wärmekapazität der Aufheizung durch         |
|                   |         | Verflüssiger                                |
| $Q_{NH}$          | [kWh]   | Wärmekapazität der Nachheizung durch Kessel |
| $q_{0e}$          | [kJ/kg] | Spezifischer Nutzkältegewinn                |
| $q_{0v}$          | [kJ/m³] | Volumetrische Kälteleistung                 |
| $q_P$             | [W/P]   | Wärmeabgabe pro Person                      |
| $\dot{Q}_0$       | [W]     | Effektive Kälteleistung                     |
| $\dot{Q}_{0,v}$   | [W]     | Vorläufige Kälteleistung                    |
| $\dot{Q}_{Abt}$   | [W]     | Wärmestrom durch Abtauung                   |
| $\dot{Q}_{B}$     | [W]     | Wärmestrom durch Beleuchtung                |
| $\dot{Q}_{C}$     | [kW]    | Verflüssigungsleistung                      |
| $\dot{Q}_{C,r}$   | [kW]    | Reine Verflüssigungsleistung                |
| $\dot{Q}_{E}$     | [kW]    | Enthitzungswärme                            |
| $\dot{Q}_{G}$     | [W]     | Wärmestrom durch Lagergutabkühlung          |
| $\dot{Q}_{H}$     | [W]     | Heizleistung der Abtauheizung               |
| $\dot{Q}_{LU}$    | [W]     | Wärmestrom durch Luftumwälzung              |
| $\dot{Q}_{LW}$    | [W]     | Wärmestrom durch Luftwechsel                |
| $\dot{Q}_N$       | [kW]    | Nennleistung                                |
| $\dot{Q}_p$       | [W]     | Wärmestrom durch Personen                   |
| $\dot{Q}_{Tr}$    | [W]     | Wärmestrom durch Transmission               |
| $\dot{Q}_{U}$     | [kW]    | Unterkühlungswärme                          |

| $\dot{Q}_{_{V}}$        | [W]      | Vorläufiger Gesamtwärmestrom                  |
|-------------------------|----------|-----------------------------------------------|
| S                       | [kJ/kgK] | Entropie                                      |
| t                       | [°C]     | Temperatur                                    |
| $t_0$                   | [°C]     | Verdampfungstemperatur                        |
| t <sub>c</sub>          | [°C]     | Verflüssigungstemperatur                      |
| t <sub>FI</sub>         | [°C]     | Temperatur des flüssigen Kältemittels         |
| $t_{L,A}$               | [°C]     | Temperatur der Außenluft                      |
| $t_{L,R}$               | [°C]     | Temperatur der Lagerluft                      |
| t <sub>R</sub>          | [°C]     | Raumtemperatur                                |
| V                       | [m³/kg]  | Spezifisches Volumen                          |
| V                       | [m³]     | Volumen                                       |
| $V_{H}$                 | [dm³]    | Hubvolumen                                    |
| $V_R$                   | [m³]     | Raumvolumen                                   |
| $\dot{V}_g$             | [m³/h]   | Geometrischer Hubvolumenstrom                 |
| $\dot{V}_{v1}$          | [m³/h]   | Volumenstrom am Verdichtereingang             |
| w <sub>eff</sub>        | [m/s]    | effektive Strömungsgeschwindigkeit            |
| $W_{is}$                | [kJ/kg]  | Spezifische isentrope Verdichtungsarbeit      |
| $\Delta h_{f}$          | [kJ/kg]  | Erstarrungsenthalpie                          |
| $\Delta h_G$            | [kJ/kg]  | Spezifische Enthalpiedifferenz des Lagergutes |
| Δρ                      | [bar]    | Druckverlust                                  |
| $\Delta p_1$            | [bar]    | geplante Druckdifferenz                       |
| $\Delta p_2$            | [bar]    | tatsächliche Druckdifferenz                   |
| $\Delta p_{\sf EW}$     | [bar]    | Druckverlust durch Einzelwiderstände          |
| $\Delta p_{\text{Exp}}$ | [bar]    | Druckdifferenz über dem Expansionsventil      |
| $\Delta p_{ges}$        | [bar]    | Gesamtdruckverlust                            |
| $\Delta p_{g.H}$        | [bar]    | Druckverlust durch geodätische Höhe           |
| $\Delta p_{min}$        | [bar]    | Minimale Öffnungsdruckdifferenz               |
| $\Delta p_{R}$          | [bar]    | Druckverlust durch Rohrreibung                |
| Δt                      | [K]      | Temperaturdifferenz                           |

| $\Delta t_{Ab}$     | [K]     | Temperaturdifferenz beim Abkühlen           |
|---------------------|---------|---------------------------------------------|
| $\Delta t_{U}$      | [K]     | Temperaturdifferenz beim Unterkühlen        |
| $\Delta t_{m}$      | [K]     | mittlere logarithmische Temperaturdifferenz |
| $\phi_{\text{v}}$   | [-]     | Füllungsgrad                                |
| φ                   | [%]     | Relative Luftfeuchtigkeit                   |
| $\eta_{i}$          | [-]     | Indizierter Gütergrad                       |
| λ                   | [-]     | Liefergrad des Verdichters,                 |
|                     |         | Rohrreibungsbeiwert                         |
| ρ                   | [kg/m³] | Dichte                                      |
| $\rho_{\text{L,R}}$ | [kg/m³] | Dichte der Lagerraumluft                    |
| $	au_{A}$           | [h/d]   | Anlagenlaufzeit                             |
| $\tau_{Abt}$        | [h/d]   | Relative Abtauzeit                          |
| $	au_{B}$           | [h/d]   | Relative Betriebszeit der Beleuchtung       |
| $\tau_{G}$          | [h]     | Abkühl- bzw. Gefrierzeit                    |
| $\tau_{L\ddot{u}}$  | [h/d]   | Relative Laufzeit des Lüfters               |
| $\tau_{P}$          | [h/d]   | Relative Verweilzeit der Personen           |

## Abbildungsverzeichnis

**Abb.1:** Standardausführung einer Kühlzelle

**Abb.2:** Kreisprozess einer Kompressionskälteanlage

**Abb.3:** Beispiel einer Kombikühlzelle

**Abb.4:** Belegung der Kühlzelle

Abb.5: Belegung der Tiefkühlzelle

**Abb.6:** Bestimmung des vorläufigen DT1

**Abb.7:** Bestimmung des tatsächlichen DT1

Abb.8: Lastverteilung in der Tiefkühlzelle

**Abb.9:** Lastverteilung in der Kühlzelle

**Abb.10:** Anforderungen an Kältemittel

**Abb.11:** Vor- und Nachteile von Hubkolbenverdichtern

**Abb.12**: Gütegrad in Abhängigkeit vom Schadraum, Druckverhältnis

und Liefergrad eines halbhermetischen Verdichters

**Abb.13:** Prinzip-Schaltbild mit Flüssigkeits-Saugdampf-

Wärmeübertrager

**Abb.14:** Rohrleitungsabschnitte in Kompressionskälteanlagen

Abb.15: Ausschnitt aus der Dampftafel von R134a

**Abb.16:** Vergleich von Elektronischen und Thermostatischen

Expansionsventil

**Abb.17:** Korrekturfaktoren für die Dimensionierung des

Expansionsventils

Abb.18: Randbedingung für die Berechnung der Kältemittelfüllmasse

der Tiefkühlanlage

**Abb.19:** Schematische Darstellung der Abwärmequellen bei

Kompressionskälteanlagen

**Abb.20:** Enthitzung, Verflüssigung und Unterkühlung

**Abb.21:** Wärmeschaubild zur Ermittlung der Speicherkapazität

**Abb.22:** k-Wert in Abhängigkeit von der Vorlauftemperatur und der

Strömungsgeschwindigkeit

Abb.23: Druckverlust in Abhängigkeit vom Durchfluss und der

Wärmeübertragerfläche

Abb.24: Prinzip-Schaltbild mit Wärmerückgewinnung

#### **Tabellenverzeichnis**

**Tab.1:** Allgemeine Daten

**Tab.2:** Wärmestrom durch Transmission

**Tab.3:** Wärmestrom durch Luftwechsel

**Tab.4:** Spezifische Enthalpiedifferenz des Lagergutes

**Tab.5:** Wärmestrom durch Lagergutabkühlung

**Tab.6:** Wärmestrom durch Personen

**Tab.7:** Wärmestrom durch Beleuchtung

**Tab.8:** Vorläufiger Gesamtwärmestrom

**Tab.9:** Wärmestrom durch Luftumwälzung

**Tab.10:** Wärmestrom durch Abtauen

**Tab.11:** ODP und GWP verschiedener Kältemittel

**Tab.12:** Coefficient of Performance

**Tab.13:** Kältemittelmassenstrom

**Tab.14:** Isentrope Verdichtungsleistung

**Tab.15:** Reale Verdichtungsendzustände

**Tab.16:** Tatsächliche Verflüssigungsleistung

Tab.17: Vergleich von R404a mit R134a für Tiefkühlung

**Tab.18:** Vergleich von R404a mit R134a für Normalkühlung

**Tab.19:** Optimierung der Tiefkühlung mittels Inneren

Wärmeübertrager

**Tab.20:** Rohrdimensionierung

Tab.21: Rohrleitungslängen

**Tab.22:** Druckverlust in Rohrleitungen in bar

**Tab.23:** Druckverlust in Rohrleitungen in K

**Tab.24:** Dimensionierung des Thermostatischen Expansionsventils

**Tab.25:** Projektierung der Magnetventile für die Flüssigkeitsleitung

Tab.26: Minimale Kältemittelfüllmasse

**Tab.27:** Trockner- und Schauglasdimensionierung

**Tab.28:** Warmwasserbedarf

Tab.29: Abwärmeangebot aus der Tiefkühlung

Tab.30: Ermittlung der Speicherkapazität

**Tab.31:** Ermittlung der Montagezeiten

**Tab.32:** Wirtschaftlichkeitsvergleich beider Systeme